Research Article
BibTex RIS Cite

Optimal PID control with anti-windup in neutralization process

Year 2023, Volume: 7 Issue: 3, 138 - 145, 15.12.2023
https://doi.org/10.35860/iarej.1256107

Abstract

PID control, which is a type of automation, was used to ensure that neutralization takes place in a controlled manner. To determine the PID parameters of the system with the Cohen-Coon tuning method, two different dynamic experiments were carried out for pH and temperature in the first stage, and the transfer function and model parameters were found. In the experiment carried out for the pH variable; time constant (τ) is 59 s, dead time (Ɵ) is 261 s and steady state gain (K) is read from the graph as 14,72, while PID parameters are calculated as KC =0.0375, τI =315.759 s and τD =52.601 s. Likewise, while τ=1402 s., Ɵ= 88 s, and K=-6 were read for the temperature variable, the PID parameters were calculated as KC =6.196, τI =47.23 s, and τD =-19.20 s. The determined controller parameters were used as initial parameters and simulated using the S-function block via MATLAB (2007b). The pH set range was coded as 6.5-8.5 and Tset for temperature was coded as 22 °C. As a result of the oscillation observed due to the nature of the PID control parameters that are intended to be controlled, the safe operation of the process and the desired set values are ensured. When the obtained PID controller parameters were applied to the neutralization reaction, the PID control successfully controlled the reactor temperature and pH and eliminated possible hazards in operation. Anti-windup provides better control rather than traditional PID control method.

Supporting Institution

Ankara University and the Scientific and Technological Research Council of Turkey (TÜBİTAK)

Project Number

1919B012005917

Thanks

This study was supported by Ankara University and the Scientific and Technological Research Council of Turkey (TÜBİTAK) 2209-A University Students Research Projects Support Program with project number 1919B012005917.

References

  • 1. Silberberg, M. , Principles of general chemistry. 2012, McGraw-Hill Education.
  • 2. Ekambaram, S. . General chemistry. 2012, India: Pearson Education India.
  • 3. Harris, D. C.. Quantitative chemical analysis. 2010, Macmillan.
  • 4. Gomma, G. K. and Wahdan, M. H. Schiff bases as corrosion inhibitors for aluminium in hydrochloric acid solution. Materials chemistry and physics, 1995. 39(3): 209–213.
  • 5. Ebbing, D., and Gammon, S. D. . General chemistry. 2016, Cengage Learning.
  • 6. Dimian, A. C., Bildea, C. S., and Kiss, A. A. Integrated design and simulation of chemical processes. 2014, Elsevier.
  • 7. Shannon, M. W., Borron, S. W., Burns, M. J., Haddad, L. M., & Winchester, J. F. Haddad and Winchester’s clinical management of poisoning and drug overdose. 2007, Saunders/Elsevier.
  • 8. Drechsler, M., & Schmidt, H.-J. (2005). Textbooks’ and teachers’ understanding of acid-base models used in chemistry teaching. Chemistry Education Research and Practice, 2005. 6(1): p. 19–35.
  • 9. Levenspiel, O. Chemical Reaction Engineering. Industrial & Engineering Chemistry Research, 1999. 38(11): p. 4140–4143. https://doi.org/10.1021/ie990488g
  • 10. Petrucci, R. H., Herring, F. G., & Madura, J. D. General chemistry: principles and modern applications. 2010, Pearson Prentice Hall.
  • 11. Raymond, C., & Jason, O. General chemistry-The Essenstial Concepts. 2008, McGraw-Hill.
  • 12. Sadler, G. D., & Murphy, P. A. pH and titratable acidity. Food analysis, 2010. 4: p.219–238.
  • 13. Suresh, S., and Sundaramoorthy, S. Green Chemical Engineering. 2015, Boca Raton: CRC Press.
  • 14. Avery, H. E. Basic reaction kinetics and mechanisms. 1974, Macmillan International Higher Education.
  • 15. Nazım, İ.. Su Şebeke Otomasyon Sistemi ve Uygulaması. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 2020. 7:p. 353–362.
  • 16. Küçük, H. Otomasyon yönetiminde insan faktörü ve Türk otomotiv sektöründe bir uygulama. Fen Bilimleri Enstitüsü. 1995, Istanbul Technical University: Turkey.
  • 17. Luyben, W. L. Chemical reactor design and control. 2007, John Wiley & Sons.
  • 18. Visioli, A. Practical PID control. 2006, Springer Science & Business Media.
  • 19. Sung, S. W., Lee, J., & Lee, I. B. Process Identification and PID Control. Process Identification and PID Control. 2009, John Wiley & Sons.
  • 20. Green, D. W. and Southard, M. Z. Perry’s Chemical Engineers’ Handbook. New York. 2019, USA: McGraw-Hill Education.
  • 21. Seborg, D. E., Edgar, T. F., Mellichamp, D. A. and Doyle III, F. J. Process dynamics and control. 2016, John Wiley & Sons.
  • 22. Aldemir, A., & Anwer, M. S. Determination of optimal PID control parameters by response surface methodology. International Advanced Researches and Engineering Journal, 2020. 4(2): 142–153.
  • 23. Bleicher, F., Biermann, D., Drossel, W.-G., Moehring, H.-C., & Altintas, Y. Sensor and actuator integrated tooling systems. 2023, CIRP Annals.
  • 24. Zarrop, M. B. Optimal experiment design for dynamic system identification. 1979, Springer.
  • 25. Bera, S. C., Mandal, N., & Sarkar, R. An accurate technique of measurement of a transducer output by using a modified two core saturable reactor. Measurement, 2009. 42(8):p. 1233–1240.
  • 26. Stanelytė, D., & Radziukynas, V. Analysis of voltage and reactive power algorithms in low voltage networks. Energies, 2022. 15(5): 1843.
  • 27. Liptak, B. G. Process Control and Optimization. Instrument Engineers’ Handbook, Volume II. 2006, CRC Press.
  • 28. Elguindy, A. Drum-boiler control performance optimization using an observer-based state-feedback controller within MATLAB/Simulink environment. 2013, Bremen University.
  • 29. Wen, S.-X., Pan, Z.-R., Liu, K.-Z., & Sun, X.-M. Practical anti-windup for open-loop stable systems under magnitude and rate constraints: Application to turbofan engines. IEEE Transactions on Industrial Electronics, 2022. 70(4): p. 4128–4137.
  • 30. Walgama, K. S., & Sternby, J. Inherent observer property in a class of anti-windup compensators. International Journal of Control, 1990. 52(3): p. 705–724.
  • 31. Muresan, C. I., Birs, I., Ionescu, C., Dulf, E. H., & De Keyser, R. A review of recent developments in autotuning methods for fractional-order controllers. Fractal and Fractional, 2022. 6(1): 37.
  • 32. Gazette, O. Turkish State Water Pollution Control Regulation, 4 Sept. 1988, Number: 19919, Ankara. Turkish
Year 2023, Volume: 7 Issue: 3, 138 - 145, 15.12.2023
https://doi.org/10.35860/iarej.1256107

Abstract

Project Number

1919B012005917

References

  • 1. Silberberg, M. , Principles of general chemistry. 2012, McGraw-Hill Education.
  • 2. Ekambaram, S. . General chemistry. 2012, India: Pearson Education India.
  • 3. Harris, D. C.. Quantitative chemical analysis. 2010, Macmillan.
  • 4. Gomma, G. K. and Wahdan, M. H. Schiff bases as corrosion inhibitors for aluminium in hydrochloric acid solution. Materials chemistry and physics, 1995. 39(3): 209–213.
  • 5. Ebbing, D., and Gammon, S. D. . General chemistry. 2016, Cengage Learning.
  • 6. Dimian, A. C., Bildea, C. S., and Kiss, A. A. Integrated design and simulation of chemical processes. 2014, Elsevier.
  • 7. Shannon, M. W., Borron, S. W., Burns, M. J., Haddad, L. M., & Winchester, J. F. Haddad and Winchester’s clinical management of poisoning and drug overdose. 2007, Saunders/Elsevier.
  • 8. Drechsler, M., & Schmidt, H.-J. (2005). Textbooks’ and teachers’ understanding of acid-base models used in chemistry teaching. Chemistry Education Research and Practice, 2005. 6(1): p. 19–35.
  • 9. Levenspiel, O. Chemical Reaction Engineering. Industrial & Engineering Chemistry Research, 1999. 38(11): p. 4140–4143. https://doi.org/10.1021/ie990488g
  • 10. Petrucci, R. H., Herring, F. G., & Madura, J. D. General chemistry: principles and modern applications. 2010, Pearson Prentice Hall.
  • 11. Raymond, C., & Jason, O. General chemistry-The Essenstial Concepts. 2008, McGraw-Hill.
  • 12. Sadler, G. D., & Murphy, P. A. pH and titratable acidity. Food analysis, 2010. 4: p.219–238.
  • 13. Suresh, S., and Sundaramoorthy, S. Green Chemical Engineering. 2015, Boca Raton: CRC Press.
  • 14. Avery, H. E. Basic reaction kinetics and mechanisms. 1974, Macmillan International Higher Education.
  • 15. Nazım, İ.. Su Şebeke Otomasyon Sistemi ve Uygulaması. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 2020. 7:p. 353–362.
  • 16. Küçük, H. Otomasyon yönetiminde insan faktörü ve Türk otomotiv sektöründe bir uygulama. Fen Bilimleri Enstitüsü. 1995, Istanbul Technical University: Turkey.
  • 17. Luyben, W. L. Chemical reactor design and control. 2007, John Wiley & Sons.
  • 18. Visioli, A. Practical PID control. 2006, Springer Science & Business Media.
  • 19. Sung, S. W., Lee, J., & Lee, I. B. Process Identification and PID Control. Process Identification and PID Control. 2009, John Wiley & Sons.
  • 20. Green, D. W. and Southard, M. Z. Perry’s Chemical Engineers’ Handbook. New York. 2019, USA: McGraw-Hill Education.
  • 21. Seborg, D. E., Edgar, T. F., Mellichamp, D. A. and Doyle III, F. J. Process dynamics and control. 2016, John Wiley & Sons.
  • 22. Aldemir, A., & Anwer, M. S. Determination of optimal PID control parameters by response surface methodology. International Advanced Researches and Engineering Journal, 2020. 4(2): 142–153.
  • 23. Bleicher, F., Biermann, D., Drossel, W.-G., Moehring, H.-C., & Altintas, Y. Sensor and actuator integrated tooling systems. 2023, CIRP Annals.
  • 24. Zarrop, M. B. Optimal experiment design for dynamic system identification. 1979, Springer.
  • 25. Bera, S. C., Mandal, N., & Sarkar, R. An accurate technique of measurement of a transducer output by using a modified two core saturable reactor. Measurement, 2009. 42(8):p. 1233–1240.
  • 26. Stanelytė, D., & Radziukynas, V. Analysis of voltage and reactive power algorithms in low voltage networks. Energies, 2022. 15(5): 1843.
  • 27. Liptak, B. G. Process Control and Optimization. Instrument Engineers’ Handbook, Volume II. 2006, CRC Press.
  • 28. Elguindy, A. Drum-boiler control performance optimization using an observer-based state-feedback controller within MATLAB/Simulink environment. 2013, Bremen University.
  • 29. Wen, S.-X., Pan, Z.-R., Liu, K.-Z., & Sun, X.-M. Practical anti-windup for open-loop stable systems under magnitude and rate constraints: Application to turbofan engines. IEEE Transactions on Industrial Electronics, 2022. 70(4): p. 4128–4137.
  • 30. Walgama, K. S., & Sternby, J. Inherent observer property in a class of anti-windup compensators. International Journal of Control, 1990. 52(3): p. 705–724.
  • 31. Muresan, C. I., Birs, I., Ionescu, C., Dulf, E. H., & De Keyser, R. A review of recent developments in autotuning methods for fractional-order controllers. Fractal and Fractional, 2022. 6(1): 37.
  • 32. Gazette, O. Turkish State Water Pollution Control Regulation, 4 Sept. 1988, Number: 19919, Ankara. Turkish
There are 32 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Articles
Authors

Zeynep Yilmazer Hitit 0000-0001-9078-191X

İsmet Koçer This is me 0000-0001-8319-5437

Gökçe Kuş This is me 0000-0001-9931-3899

Nermin Zeynep Arslan This is me 0000-0001-7221-8058

Elif Pınar Dal This is me 0000-0001-5060-1275

Habipcan Koz This is me 0000-0002-1054-6993

Project Number 1919B012005917
Publication Date December 15, 2023
Submission Date February 24, 2023
Acceptance Date October 31, 2023
Published in Issue Year 2023 Volume: 7 Issue: 3

Cite

APA Yilmazer Hitit, Z., Koçer, İ., Kuş, G., Arslan, N. Z., et al. (2023). Optimal PID control with anti-windup in neutralization process. International Advanced Researches and Engineering Journal, 7(3), 138-145. https://doi.org/10.35860/iarej.1256107
AMA Yilmazer Hitit Z, Koçer İ, Kuş G, Arslan NZ, Dal EP, Koz H. Optimal PID control with anti-windup in neutralization process. Int. Adv. Res. Eng. J. December 2023;7(3):138-145. doi:10.35860/iarej.1256107
Chicago Yilmazer Hitit, Zeynep, İsmet Koçer, Gökçe Kuş, Nermin Zeynep Arslan, Elif Pınar Dal, and Habipcan Koz. “Optimal PID Control With Anti-Windup in Neutralization Process”. International Advanced Researches and Engineering Journal 7, no. 3 (December 2023): 138-45. https://doi.org/10.35860/iarej.1256107.
EndNote Yilmazer Hitit Z, Koçer İ, Kuş G, Arslan NZ, Dal EP, Koz H (December 1, 2023) Optimal PID control with anti-windup in neutralization process. International Advanced Researches and Engineering Journal 7 3 138–145.
IEEE Z. Yilmazer Hitit, İ. Koçer, G. Kuş, N. Z. Arslan, E. P. Dal, and H. Koz, “Optimal PID control with anti-windup in neutralization process”, Int. Adv. Res. Eng. J., vol. 7, no. 3, pp. 138–145, 2023, doi: 10.35860/iarej.1256107.
ISNAD Yilmazer Hitit, Zeynep et al. “Optimal PID Control With Anti-Windup in Neutralization Process”. International Advanced Researches and Engineering Journal 7/3 (December 2023), 138-145. https://doi.org/10.35860/iarej.1256107.
JAMA Yilmazer Hitit Z, Koçer İ, Kuş G, Arslan NZ, Dal EP, Koz H. Optimal PID control with anti-windup in neutralization process. Int. Adv. Res. Eng. J. 2023;7:138–145.
MLA Yilmazer Hitit, Zeynep et al. “Optimal PID Control With Anti-Windup in Neutralization Process”. International Advanced Researches and Engineering Journal, vol. 7, no. 3, 2023, pp. 138-45, doi:10.35860/iarej.1256107.
Vancouver Yilmazer Hitit Z, Koçer İ, Kuş G, Arslan NZ, Dal EP, Koz H. Optimal PID control with anti-windup in neutralization process. Int. Adv. Res. Eng. J. 2023;7(3):138-45.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.