Research Article
BibTex RIS Cite
Year 2016, Volume: 4 Issue: Special Issue-1, 32 - 37, 26.12.2016
https://doi.org/10.18201/ijisae.265971

Abstract

References

  • [1] Muetze, A., and Vining, J. G. (2006). Ocean wave energy conversion-a survey. IEEE Industry Applications Conference Forty-First IAS Annual Meeting. Vol. 3. Pages. 1410-1417.
  • [2] Czech, B., and Bauer, P. (2012). Wave energy converter concepts: Design challenges and classification. IEEE Industrial Electronics Magazine. Vol. 6. Pages. 4-16.
  • [3] Hong, Y., Waters, R., Boström, C., Eriksson, M., Engström, J., and Leijon, M. (2014). Review on electrical control strategies for wave energy converting systems. Renewable and Sustainable Energy Reviews. Vol. 31. Pages. 329-342.
  • [4] Conway, B. E. (2013). Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media.
  • [5] Hazra, S., and Bhattacharya, S. (2012). Short time power smoothing of a low power wave energy system. 38th Annual IEEE Industrial Electronics Conference (IECON). Pages. 5846-5851.
  • [6] Murray, D. B., Hayes, J. G., O'Sullivan, D. L., and Egan, M. G. (2012). Supercapacitor testing for power smoothing in a variable speed offshore wave energy converter. IEEE Journal of Oceanic Engineering. Vol. 37. Pages. 301-308.
  • [7] Kovaltchouk, T., Multon, B., Ahmed, H. B., Aubry, J., and Venet, P. (2015). Enhanced aging model for supercapacitors taking into account power cycling: Application to the sizing of an Energy Storage System in a Direct Wave Energy Converter. IEEE Transactions on Industry Applications. Vol. 51. Pages. 2405-2414.
  • [8] Uzunoglu, M., and Alam, M. S. (2006). Dynamic modeling, design, and simulation of a combined PEM fuel cell and ultracapacitor system for stand-alone residential applications. IEEE Transactions on Energy Conversion. Vol. 21. Pages. 767-775.
  • [9] I. Podlubny. (1999). Fractional Differential Equations, Academic Press, San Diego.
  • [10] Eberhart, R. C., and Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings of the sixth international symposium on micro machine and human science. Vol. 1. Pages. 39-43.
  • [11] Hong, Y., Eriksson, M., Castellucci, V., Boström, C., and Waters, R. (2016). Linear generator-based wave energy converter model with experimental verification and three loading strategies. IET Renewable Power Generation. Vol. 10. Pages. 349-359.
  • [12] H. Sira-Ramirez, and R. Silva-Ortigoza. (2006). Control design techniques in power electronic devices. Springer Science and Business Media.
  • [13] L. Zubieta, and R. Boner. (2000). Characterization of double-layer capacitors for power electronics applications. IEEE Transactions on Industrial Applications Vol. 36. Pages. 199-205.
  • [14] De Levie, R. (1963). On porous electrodes in electrolyte solutions: I. Capacitance effects. Electrochimica Acta. Vol. 8. Pages. 751-780.
  • [15] Spyker, R. L., & Nelms, R. M. (2000). Classical equivalent circuit parameters for a double-layer capacitor. IEEE Transactions on Aerospace and Electronic Systems. Vol. 36. Pages. 829-836.
  • [16] Nelms, R. M., Cahela, D. R., and Tatarchuk, B. J. (2003). Modeling double-layer capacitor behavior using ladder circuits. IEEE Transactions on Aerospace and Electronic Systems. Vol. 39. Pages. 430-438.
  • [17] Maxwell Technologies. BMOD0083-P048 ultracapacitor datasheet. [Online]. Available: www.maxwell.com.
  • [18] I. Podlubny. (1999). Fractional-order systems and PIλDμ controllers. Transactions Automation Control. Vol. 44. Pages. 208–213.
  • [19] Tepljakov, A., Petlenkov, E., and Belikov, J. (2011). FOMCON: Fractional-order modeling and control toolbox for MATLAB. 18th International Mixed Design of Integrated Circuits and Systems (MIXDES) Conference. Pages. 684-689.
  • [20] R. Poli, J. Kennedy, T. Blackwell. (2007). Particle swarm optimization. Swarm Intelligence. Vol. 1. Pages. 33–57.
  • [21] Gaing, Z. L. (2004). A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE transactions on energy conversion. Vol. 19. Pages. 384-391.
  • [22] Schultz, W. C., and Rideout, V. C. (1961). Control system performance measures: Past, present, and future. IRE Transactions on Automatic Control. Vol. 1. Pages. 22-35.
  • [23] Nagrath, I. J. (2006). Control systems engineering. New Age International.

A PSO Tuned Fractional-Order PID Controlled Non-inverting Buck-Boost Converter for a Wave/UC Energy System

Year 2016, Volume: 4 Issue: Special Issue-1, 32 - 37, 26.12.2016
https://doi.org/10.18201/ijisae.265971

Abstract

In this study, a fractional order PID (FOPID) controller is designed and
used to control a DC-DC non-inverting buck-boost converter (NIBBC) for a
wave/ultra-capacitor (UC) energy system. Because of the energy discontinuities
encountered in wave energy conversion systems (WECS), an UC is integrated to
the WECS. In order to obtain the best controller performance, particle swarm
optimization (PSO) is employed to find the optimum controller parameters.
Integral of time weighted absolute error (ITAE) criteria is used as an
objective function. Also, an optimized PID controller is designed to test the
performance of the FOPID controller. The whole system is developed in
Matlab/Simulink/SimPower environment. The simulation results show that the
FOPID controller provides lower value performance indices than the PID
controller in terms of reducing the output voltage sags and swells.

References

  • [1] Muetze, A., and Vining, J. G. (2006). Ocean wave energy conversion-a survey. IEEE Industry Applications Conference Forty-First IAS Annual Meeting. Vol. 3. Pages. 1410-1417.
  • [2] Czech, B., and Bauer, P. (2012). Wave energy converter concepts: Design challenges and classification. IEEE Industrial Electronics Magazine. Vol. 6. Pages. 4-16.
  • [3] Hong, Y., Waters, R., Boström, C., Eriksson, M., Engström, J., and Leijon, M. (2014). Review on electrical control strategies for wave energy converting systems. Renewable and Sustainable Energy Reviews. Vol. 31. Pages. 329-342.
  • [4] Conway, B. E. (2013). Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media.
  • [5] Hazra, S., and Bhattacharya, S. (2012). Short time power smoothing of a low power wave energy system. 38th Annual IEEE Industrial Electronics Conference (IECON). Pages. 5846-5851.
  • [6] Murray, D. B., Hayes, J. G., O'Sullivan, D. L., and Egan, M. G. (2012). Supercapacitor testing for power smoothing in a variable speed offshore wave energy converter. IEEE Journal of Oceanic Engineering. Vol. 37. Pages. 301-308.
  • [7] Kovaltchouk, T., Multon, B., Ahmed, H. B., Aubry, J., and Venet, P. (2015). Enhanced aging model for supercapacitors taking into account power cycling: Application to the sizing of an Energy Storage System in a Direct Wave Energy Converter. IEEE Transactions on Industry Applications. Vol. 51. Pages. 2405-2414.
  • [8] Uzunoglu, M., and Alam, M. S. (2006). Dynamic modeling, design, and simulation of a combined PEM fuel cell and ultracapacitor system for stand-alone residential applications. IEEE Transactions on Energy Conversion. Vol. 21. Pages. 767-775.
  • [9] I. Podlubny. (1999). Fractional Differential Equations, Academic Press, San Diego.
  • [10] Eberhart, R. C., and Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings of the sixth international symposium on micro machine and human science. Vol. 1. Pages. 39-43.
  • [11] Hong, Y., Eriksson, M., Castellucci, V., Boström, C., and Waters, R. (2016). Linear generator-based wave energy converter model with experimental verification and three loading strategies. IET Renewable Power Generation. Vol. 10. Pages. 349-359.
  • [12] H. Sira-Ramirez, and R. Silva-Ortigoza. (2006). Control design techniques in power electronic devices. Springer Science and Business Media.
  • [13] L. Zubieta, and R. Boner. (2000). Characterization of double-layer capacitors for power electronics applications. IEEE Transactions on Industrial Applications Vol. 36. Pages. 199-205.
  • [14] De Levie, R. (1963). On porous electrodes in electrolyte solutions: I. Capacitance effects. Electrochimica Acta. Vol. 8. Pages. 751-780.
  • [15] Spyker, R. L., & Nelms, R. M. (2000). Classical equivalent circuit parameters for a double-layer capacitor. IEEE Transactions on Aerospace and Electronic Systems. Vol. 36. Pages. 829-836.
  • [16] Nelms, R. M., Cahela, D. R., and Tatarchuk, B. J. (2003). Modeling double-layer capacitor behavior using ladder circuits. IEEE Transactions on Aerospace and Electronic Systems. Vol. 39. Pages. 430-438.
  • [17] Maxwell Technologies. BMOD0083-P048 ultracapacitor datasheet. [Online]. Available: www.maxwell.com.
  • [18] I. Podlubny. (1999). Fractional-order systems and PIλDμ controllers. Transactions Automation Control. Vol. 44. Pages. 208–213.
  • [19] Tepljakov, A., Petlenkov, E., and Belikov, J. (2011). FOMCON: Fractional-order modeling and control toolbox for MATLAB. 18th International Mixed Design of Integrated Circuits and Systems (MIXDES) Conference. Pages. 684-689.
  • [20] R. Poli, J. Kennedy, T. Blackwell. (2007). Particle swarm optimization. Swarm Intelligence. Vol. 1. Pages. 33–57.
  • [21] Gaing, Z. L. (2004). A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE transactions on energy conversion. Vol. 19. Pages. 384-391.
  • [22] Schultz, W. C., and Rideout, V. C. (1961). Control system performance measures: Past, present, and future. IRE Transactions on Automatic Control. Vol. 1. Pages. 22-35.
  • [23] Nagrath, I. J. (2006). Control systems engineering. New Age International.
There are 23 citations in total.

Details

Subjects Engineering
Journal Section Research Article
Authors

Erdinc Sahın

İsmail Hakki Altas

Publication Date December 26, 2016
Published in Issue Year 2016 Volume: 4 Issue: Special Issue-1

Cite

APA Sahın, E., & Altas, İ. H. (2016). A PSO Tuned Fractional-Order PID Controlled Non-inverting Buck-Boost Converter for a Wave/UC Energy System. International Journal of Intelligent Systems and Applications in Engineering, 4(Special Issue-1), 32-37. https://doi.org/10.18201/ijisae.265971
AMA Sahın E, Altas İH. A PSO Tuned Fractional-Order PID Controlled Non-inverting Buck-Boost Converter for a Wave/UC Energy System. International Journal of Intelligent Systems and Applications in Engineering. December 2016;4(Special Issue-1):32-37. doi:10.18201/ijisae.265971
Chicago Sahın, Erdinc, and İsmail Hakki Altas. “A PSO Tuned Fractional-Order PID Controlled Non-Inverting Buck-Boost Converter for a Wave/UC Energy System”. International Journal of Intelligent Systems and Applications in Engineering 4, no. Special Issue-1 (December 2016): 32-37. https://doi.org/10.18201/ijisae.265971.
EndNote Sahın E, Altas İH (December 1, 2016) A PSO Tuned Fractional-Order PID Controlled Non-inverting Buck-Boost Converter for a Wave/UC Energy System. International Journal of Intelligent Systems and Applications in Engineering 4 Special Issue-1 32–37.
IEEE E. Sahın and İ. H. Altas, “A PSO Tuned Fractional-Order PID Controlled Non-inverting Buck-Boost Converter for a Wave/UC Energy System”, International Journal of Intelligent Systems and Applications in Engineering, vol. 4, no. Special Issue-1, pp. 32–37, 2016, doi: 10.18201/ijisae.265971.
ISNAD Sahın, Erdinc - Altas, İsmail Hakki. “A PSO Tuned Fractional-Order PID Controlled Non-Inverting Buck-Boost Converter for a Wave/UC Energy System”. International Journal of Intelligent Systems and Applications in Engineering 4/Special Issue-1 (December 2016), 32-37. https://doi.org/10.18201/ijisae.265971.
JAMA Sahın E, Altas İH. A PSO Tuned Fractional-Order PID Controlled Non-inverting Buck-Boost Converter for a Wave/UC Energy System. International Journal of Intelligent Systems and Applications in Engineering. 2016;4:32–37.
MLA Sahın, Erdinc and İsmail Hakki Altas. “A PSO Tuned Fractional-Order PID Controlled Non-Inverting Buck-Boost Converter for a Wave/UC Energy System”. International Journal of Intelligent Systems and Applications in Engineering, vol. 4, no. Special Issue-1, 2016, pp. 32-37, doi:10.18201/ijisae.265971.
Vancouver Sahın E, Altas İH. A PSO Tuned Fractional-Order PID Controlled Non-inverting Buck-Boost Converter for a Wave/UC Energy System. International Journal of Intelligent Systems and Applications in Engineering. 2016;4(Special Issue-1):32-7.