Research Article
BibTex RIS Cite

Use the Thermodynamic State Equations to Analyze the Non-ideality of Gas Mixtures

Year 2024, Volume: 27 Issue: 1, 43 - 50, 01.03.2024
https://doi.org/10.5541/ijot.1328839

Abstract

The assessment of gas behavior in chemical engineering systems necessitates a profound understanding of thermodynamic principles that govern the interactions among the components within a given system. To this end, the deviation from ideality in a single gas or gas mixture is associated with the disparity between the actual behavior of the gas or gas mixture and the behavior anticipated by the ideal gas model. This study is aimed at scrutinizing the deviation from ideal behavior in a gas mixture composed of CH4 and CO2. The analysis employs the cubic equations of state: Van Der Waals, Soave-Redlich-Kwong, and generalized Virial equations, truncated to the third term. These equations are widely recognized for their utility in characterizing substance behavior under specific thermodynamic conditions. The investigation involves an evaluation of the mixture's behavior by assessing variations in the compressibility factor concerning pressure, volume, and pressure, using a thermodynamic calculator at 296.15 K and 15 bar. The findings of this study reveal the prevalence of attractive intermolecular forces at higher pressures and repulsive interactions at lower pressures. An analogous examination of the effect of altering the composition of CH4 was undertaken using the Soave-Redlich-Kwong equation, which incorporates parameters allowing for an evaluation of the impact of molecule size and intermolecular interactions within the mixture. Furthermore, experimental data were employed to validate the results obtained in this study. Consequently, it can be inferred that these equations provide insight into the influence of pressure on molecular interaction forces, encompassing repulsive and attractive forces, which in turn can define the new volume of a real system. Thus, based on the corroboration established herein, these equations demonstrate a high degree of consistency and applicability, thereby expanding the realm of thermodynamic inquiry.

References

  • A. Muachia, A. Manuel, J. Marques, M. Lemos and A. A. C. Barros. Uso das equações generalizadas de Pitzer para Avaliação termodinâmica de gases. SAPIENTIAE: Revista de Ciências Sociais, Humanas e Engenharias. vol. 1, pp. 35-43, 2020.
  • V. U. Elechi, S. S. Ikiensikimama and I. I. Azubuike. A correlation for estimating gas compressibility factor in the Niger Delta. Festschrift for J. A. Ajienka, pp. 137–148, 2015.
  • B. A. Mamedov, E. Somuncu and I. M. Askerov. Theoretical assessment of compressibility factor of gases by using second virial coefficient. Zeitschrift für Naturforschung. Vol. 73, nº 2, pp. 121-125, 2018. doi:10.1515/zna-2017-0225.
  • Costa, M. A. (2006). Análise do desvio de comportamento entre gás real e gás ideal. (Master Dissertation), Centro Federal de Educação Tecnológica. Rio Grande do Norte, Brazil.
  • B. H. Mahan and R. J. Myers. University Chemistry. California, USA. University of California, 1076 pages, 2008.
  • P. Colonna, N. R. Nannan, A. A. Guardone and T. P. Van der Stelt. On the computation of the fundamental derivative of gas dynamics using equations of state. Fluid Phase Equilibria, vol. 286, nº 43, 2009.
  • D. Rowland and P. M. May. Comparison of the Pitzer and Hückel equation frameworks for activity coefficients, osmotic coefficients and apparent molar relative enthalpies, heat capacities and volumes of binary aqueous strong electrolyte solutions at 25°C. J. Chem. Eng. Data, 2015. doi:10.1021/acs.jced.5b00161.
  • Y. Adacid, I. Fijihara, M. Takamiya and K. Nakanishi. Generalized equation of state for Lennard-Jones fluids—I. Pure fluids and simple mixtures. Fluid Phase Equilibria Journal. Vol. 39. pp. 1-38, 1988. doi:10.1016/0378-3812 (88)80001-3.
  • G. Van Wylen, R. Sonntag and C. Borgnakke, Fundamentos da Termodinâmica Clássica. 4ª edição. São Paulo, Brazil. Editora Edgard Blücher Ltda, 2003.
  • M. C. Simões, K. J. Hughes, D. B. Ingham, Lin Ma, and M. Pourkashanian. Estimation of the Pitzer parameters for 1–1, 2–1, 3–1, 4–1, and 2–2 single electrolytes at 25°C. J. Chem. Eng. Data. Vol. 61, nº 7, pp 2536 - 2554, 2016. doi: 10.1021/acs.jced.6b00236.
  • J. M. Smith, H. C. Van Ness and M. M. Abbott, Introduction to chemical engineering thermodynamics. 7th Edition. Rio de Janeiro, Brazil. LTC Editor, 2007.
  • P. M. S. Kalvelage, A. A. Albuquerque, A. A. C. Barros and S. L. Bertoli. (Vapor + Liquid) Equilibrium for Mixtures Ethanol + Biodiesel from Soybean Oil and Frying Oil. International Journal of Thermodynamic, vol. 20, pp. 159-164, 2017.
  • C. Hwang, G. A. Iglesias-Silva, J. C. Holste, K. R. Hall, B. E. Gammon and K. N. Marsh. Densities of carbon dioxide + methane mixtures from 225 K to 350 K at pressures up to 35 Mpa. J. Chem. Eng. Data, vol. 42, nº 5, pp. 897–899, September 1997, doi: 10.1021/je970042b.
  • M. S. Russel. The Chemistry of Fireworks. 2nd Edition. London, UK. Royal Society of Chemistry, 2009.
Year 2024, Volume: 27 Issue: 1, 43 - 50, 01.03.2024
https://doi.org/10.5541/ijot.1328839

Abstract

References

  • A. Muachia, A. Manuel, J. Marques, M. Lemos and A. A. C. Barros. Uso das equações generalizadas de Pitzer para Avaliação termodinâmica de gases. SAPIENTIAE: Revista de Ciências Sociais, Humanas e Engenharias. vol. 1, pp. 35-43, 2020.
  • V. U. Elechi, S. S. Ikiensikimama and I. I. Azubuike. A correlation for estimating gas compressibility factor in the Niger Delta. Festschrift for J. A. Ajienka, pp. 137–148, 2015.
  • B. A. Mamedov, E. Somuncu and I. M. Askerov. Theoretical assessment of compressibility factor of gases by using second virial coefficient. Zeitschrift für Naturforschung. Vol. 73, nº 2, pp. 121-125, 2018. doi:10.1515/zna-2017-0225.
  • Costa, M. A. (2006). Análise do desvio de comportamento entre gás real e gás ideal. (Master Dissertation), Centro Federal de Educação Tecnológica. Rio Grande do Norte, Brazil.
  • B. H. Mahan and R. J. Myers. University Chemistry. California, USA. University of California, 1076 pages, 2008.
  • P. Colonna, N. R. Nannan, A. A. Guardone and T. P. Van der Stelt. On the computation of the fundamental derivative of gas dynamics using equations of state. Fluid Phase Equilibria, vol. 286, nº 43, 2009.
  • D. Rowland and P. M. May. Comparison of the Pitzer and Hückel equation frameworks for activity coefficients, osmotic coefficients and apparent molar relative enthalpies, heat capacities and volumes of binary aqueous strong electrolyte solutions at 25°C. J. Chem. Eng. Data, 2015. doi:10.1021/acs.jced.5b00161.
  • Y. Adacid, I. Fijihara, M. Takamiya and K. Nakanishi. Generalized equation of state for Lennard-Jones fluids—I. Pure fluids and simple mixtures. Fluid Phase Equilibria Journal. Vol. 39. pp. 1-38, 1988. doi:10.1016/0378-3812 (88)80001-3.
  • G. Van Wylen, R. Sonntag and C. Borgnakke, Fundamentos da Termodinâmica Clássica. 4ª edição. São Paulo, Brazil. Editora Edgard Blücher Ltda, 2003.
  • M. C. Simões, K. J. Hughes, D. B. Ingham, Lin Ma, and M. Pourkashanian. Estimation of the Pitzer parameters for 1–1, 2–1, 3–1, 4–1, and 2–2 single electrolytes at 25°C. J. Chem. Eng. Data. Vol. 61, nº 7, pp 2536 - 2554, 2016. doi: 10.1021/acs.jced.6b00236.
  • J. M. Smith, H. C. Van Ness and M. M. Abbott, Introduction to chemical engineering thermodynamics. 7th Edition. Rio de Janeiro, Brazil. LTC Editor, 2007.
  • P. M. S. Kalvelage, A. A. Albuquerque, A. A. C. Barros and S. L. Bertoli. (Vapor + Liquid) Equilibrium for Mixtures Ethanol + Biodiesel from Soybean Oil and Frying Oil. International Journal of Thermodynamic, vol. 20, pp. 159-164, 2017.
  • C. Hwang, G. A. Iglesias-Silva, J. C. Holste, K. R. Hall, B. E. Gammon and K. N. Marsh. Densities of carbon dioxide + methane mixtures from 225 K to 350 K at pressures up to 35 Mpa. J. Chem. Eng. Data, vol. 42, nº 5, pp. 897–899, September 1997, doi: 10.1021/je970042b.
  • M. S. Russel. The Chemistry of Fireworks. 2nd Edition. London, UK. Royal Society of Chemistry, 2009.
There are 14 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Research Articles
Authors

Ngoma Manuel 0000-0002-4872-3123

T.c.f.s. Major 0000-0003-0386-7892

S.m. Pedro 0009-0007-6231-7352

António Barros 0000-0001-5922-5368

Early Pub Date November 6, 2023
Publication Date March 1, 2024
Published in Issue Year 2024 Volume: 27 Issue: 1

Cite

APA Manuel, N., Major, T., Pedro, S., Barros, A. (2024). Use the Thermodynamic State Equations to Analyze the Non-ideality of Gas Mixtures. International Journal of Thermodynamics, 27(1), 43-50. https://doi.org/10.5541/ijot.1328839
AMA Manuel N, Major T, Pedro S, Barros A. Use the Thermodynamic State Equations to Analyze the Non-ideality of Gas Mixtures. International Journal of Thermodynamics. March 2024;27(1):43-50. doi:10.5541/ijot.1328839
Chicago Manuel, Ngoma, T.c.f.s. Major, S.m. Pedro, and António Barros. “Use the Thermodynamic State Equations to Analyze the Non-Ideality of Gas Mixtures”. International Journal of Thermodynamics 27, no. 1 (March 2024): 43-50. https://doi.org/10.5541/ijot.1328839.
EndNote Manuel N, Major T, Pedro S, Barros A (March 1, 2024) Use the Thermodynamic State Equations to Analyze the Non-ideality of Gas Mixtures. International Journal of Thermodynamics 27 1 43–50.
IEEE N. Manuel, T. Major, S. Pedro, and A. Barros, “Use the Thermodynamic State Equations to Analyze the Non-ideality of Gas Mixtures”, International Journal of Thermodynamics, vol. 27, no. 1, pp. 43–50, 2024, doi: 10.5541/ijot.1328839.
ISNAD Manuel, Ngoma et al. “Use the Thermodynamic State Equations to Analyze the Non-Ideality of Gas Mixtures”. International Journal of Thermodynamics 27/1 (March 2024), 43-50. https://doi.org/10.5541/ijot.1328839.
JAMA Manuel N, Major T, Pedro S, Barros A. Use the Thermodynamic State Equations to Analyze the Non-ideality of Gas Mixtures. International Journal of Thermodynamics. 2024;27:43–50.
MLA Manuel, Ngoma et al. “Use the Thermodynamic State Equations to Analyze the Non-Ideality of Gas Mixtures”. International Journal of Thermodynamics, vol. 27, no. 1, 2024, pp. 43-50, doi:10.5541/ijot.1328839.
Vancouver Manuel N, Major T, Pedro S, Barros A. Use the Thermodynamic State Equations to Analyze the Non-ideality of Gas Mixtures. International Journal of Thermodynamics. 2024;27(1):43-50.