Research Article
BibTex RIS Cite

APPLYING OF NANOTECHNOLOGY TO EDIBLE FILMS

Year 2023, Volume: 11 Issue: 1, 411 - 425, 27.03.2023
https://doi.org/10.21923/jesd.1123446

Abstract

In recent years, nanotechnological applications on edible films have a lot of interest since they bring specific and functional properties to the products in which they are used. Many studies have been conducted on nanoparticles, which are used to improve physical properties such as thermal, mechanical, and gas permeability, as well as the antimicrobial effects they provide in edible films. Within the scope of the use of nanotechnological methods for the production of edible films; different approaches can be applied such as nanoemulsions, nanocapsules, nanolaminates, nanowires and polymer nanocomposites. Edible films are produced using nanotechnology; due to their biodegradability and eco-friendly properties, also ensure an environmental advantage compared to traditional plastic-based food packaging. Edible films developed using nanotechnology is an innovative approach that has numerous advantages in the food industry. In order for this novel technology to be used more widely in the food industry, large-scale production solutions need to be adapted. Nevertheless, the toxicity of the nanomaterials used and their potential to cause food safety problems should not be neglected and should be thoroughly examined. In this review, a detailed examination of the use of nanotechnology in edible films in recent years has been conducted, and the advantages and disadvantages of this new technology as well as its effects on food systems have been summarized.

References

  • Abdel Ghaffar, A. M., Ali, H. E., Nasef, S. M., El-Bialy, H. A., 2018. Effect of gamma radiation on the properties of crosslinked chitosan nano-composite film. Journal of Polymers and the Environment, 26(8), 3226-3236.
  • Ananda, A. P., Manukumar, H. M., Umesha, S., Soumya, G., Priyanka, D., Mohan Kumar, A. S., Savitha, K. R., Krishnamurthy, N. B., 2017. A relook at food packaging for cost effective by incorporation of novel technologies. Journal of Packaging Technology and Research, 1(2), 67-85.
  • Anitha, A., Rani, V. V. D., Krishna, R., Sreeja, V., Selvamurugan, N., Nair, S. V, Tamura, H., Jayakumar, R., 2009. Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N, O-carboxymethyl chitosan nanoparticles. Carbohydrate Polymers, 78(4), 672-677.
  • Azam, A., Ahmed, A., S., Oves, M., Khan, M., S., Habib, S., S., Memic, A., 2012. Antimicrobial activity of metal oxide NPs against Gram positive and Gram negative bacteria: a comparative study. Int J. Nanomed. 7, 6003-6009.
  • Bahrami, A., Rezaei Mokarram, R., Sowti Khiabani, M., Ghanbarzadeh, B., Salehi, R., 2019. Physico-mechanical and antimicrobial properties of tragacanth/hydroxypropyl methylcellulose/beeswax edible films reinforced with silver nanoparticles. International Journal of Biological Macromolecules, 129, 1103-1112.
  • Bajpai, V., K., Kamle, M., Shukla, S., Mahato, D., K., Chandra, P., Hwang, S., K., Kumar, P., Huh, Y., S., Han, Y., K., 2018. Prospects of using nanotechnology for food preservation, safety, and security. Journal of Food and Analysis, 26, 1201-1214.
  • Bastarrachea, L., Dhawan, S., Sablani, S., S., 2011. Engineering properties of polymeric-based antimicrobial films for food packaging: a review. Food Eng Rev, 3:79e93.
  • Baysal, G., Doğan, F., 2020. Investigation and preparation of biodegradable starch-based nanofilms for potential use of curcumin and garlic in food packaging applications. Journal of Biomaterials Science, Polymer Edition, 31(9), 1127-1143.
  • Becerril, R., Nerín, C., Silva, F., 2020. Encapsulation systems for antimicrobial food packaging components: an update. Molecules, 25(5), 1134.
  • Ben-Shalom, N., Ardi, R., Pinto, R., Aki, C., Fallik, E., 2003. Controlling gray mould caused by Botrytis cinerea in cucumber plants by means of chitosan. Crop Protection, 22, 285-290.
  • Bhuyan, S., Sundararajan, S., Lu, Y., Larock, R., C., 2010. A study of the physical and terminological properties of bio based polymerclay nanocomposites at diferent clay concentrations. Wear, 268, 797-802.
  • Bohlooli, S., Eskandaric, S., 2021. An overview on the applications of nanotechnology for improving the safety of food products. Journal of Food and Bioprocess Engineering, 4(1), 90-93.
  • Cano, L., Pollet, E., Avérous, L., Tercjak, A., 2017. Effect of TiO2 nanoparticles on the properties of thermoplasticchitosan-based nano-biocomposites obtained by mechanical kneading. Compos. Part A Appl. Sci. Manuf, 93, 33–40.
  • Cavaliere, E., De Cesari, S., Landini, G., Riccobono, E., Pallecchi, L., Rossolini, G., M., Gavioli, L., 2015. Highly bactericidal Ag nanoparticle films obtained by cluster beam deposition. Nanomedicine, 11(6), 1417–1423.
  • Chaichi, M., Hashemi, M., Badii, F., Mohammadi, A., 2017. Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydrate Polymers, 157, 167-175.
  • Chaudhary, P., Fatima, F., Kumar, A., 2020. Relevance of nanomaterials in food packaging and its advanced future prospects. Journal of Inorganic and Organometallic Polymers and Materials, 30:5180-5192.
  • Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., Watkins, R., 2008. Applications and implications of nanotechnologies for the food sector. Food Additives and Contaminants, 25 (3), 241-258.
  • Chawla, R., Sivakumar, S., Kaur, H., 2021. Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements-a review. Carbohydrate Polymer Technologies and Applications, 2 (December 2020), 100024.
  • Colon, G., Ward, B., C., Webster, T., J., 2006. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. Journal of Biomedical Materials Research Part A, 78(3), 595-604.
  • Condés, M. C., Echeverría, I., Añón, M. C., Mauri, A. N., 2016. Nanocompounds as formulating aids. Barbosa-Cánovas G. V., López-Caballero, M. E., Gómez-Guillén, M. C., Montero Garcia M. P. (chief ed.), Edible Films and Coatings Fundamentals and Applications, içinde (pp. 616). CRC Press is an imprint of the Taylor & Francis Group, an informa business.
  • Çelebi Sezer, Y., Bozkurt, H., 2021. Et ve et ürünlerinin üretimi ve saklanmasında antimikrobiyal ambalajlama sistemlerinin kullanımı. Food and Health, 7(2), 150-163.
  • Das, S., K., Das, A., R., Guha, A., K., 2009. Gold nanoparticles: Microbial synthesis and application in water hygiene management. Langmuir, 25: 8192-8199.
  • Dash, K. K., Ali, N. A., Das, D., Mohanta, D., 2019. Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. International Journal of Biological Macromolecules, 139, 449-458.
  • Davoodbasha, M., Kim, S., C., Lee, S., Y., Kim, J., W., 2016. The facile synthesis of chitosan-based silver nano-biocomposites via a solution plasma process and their potential antimicrobial efficacy. Arch. Biochem.Biophys,605, 49-58.
  • Dholariya, P., K., Borkar, S., Borah, A., 2021. Prospect of nanotechnology in food and edible packaging: A review. The Pharma Innovation Journal, 10(5): 197-203.
  • Divya, K., Smitha, V., Jisha, M. S., 2018. Antifungal, antioxidant and cytotoxic activities of chitosan nanoparticles and its use as an edible coating on vegetables. International Journal of Biological Macromolecules, 114, 572-577.
  • Durán, N. and Marcato, P.D., 2013. Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review. International Journal of Food Science and Technology, 48: 1127-1134.
  • Esmaeili, A., Ebrahimzadeh Fazel, M., 2016. Optimization and preparation of Methylcellulose edible film combined with of Ferulago angulata essential oil (FEO) nanocapsules for food packaging applications. Flavour and Fragrance Journal, 31(5), 341-349.
  • Esteban-Tejeda, L., Malpartida, F., Esteban-Cubillo, A., Pecharromn, C., Moya, J., S., 2009. Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology, 20(50):505701.
  • Fang, Y., Fu, J., Tao, C., Liu, P., Cui, B., 2020. Mechanical properties and antibacterial activities of novel starch-based composite films incorporated with salicylic acid. International Journal of Biological Macromolecules, 155, 1350-1358.
  • Farhoodi, M., 2016. Nanocomposite materials for food packaging applications: characterization and safety evaluation. Food Eng. Rev., 8 (1), 35–51.
  • Fuente-Salcido, N. M., Alejo-Andrade, A. M., Favela-González, K. M., Marszalek, J. E., 2018. Polymers and nanotechnology, the new face of bioactive edible coatings. Polymer Research: Communicating Current Advances, Contributions, Applications and Educational Aspects, November 2018.
  • Fulaz, S., Vitale, S., Quinn, L., Casey, E., 2019. Nanoparticle-biofilm interactions: The role of the EPS matrix. Trends in Microbiology, Nov;27(11):915-926. DOİ: 10.1016/j.tim.2019.07.004
  • Galus, S., Arik Kibar, A. E., Gniewosz, M., Krasniewska, K., 2020. Novel materials in the preparation of edible films and coatings-a review. Coatings, 10(7), 1-14.
  • Han, W., Yu, Y., Li, N., Wang, L., 2011. Application and safety assessment for nano-composite materials in food packaging. Chinese Science Bulletin, 56(12), 1216-1225.
  • He, X., Deng, H., Hwang, H., 2019. The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis, 27(1), 1-21.
  • Hetrick, E., M., Shin, J., H., Paul, H., S., Schoenfisch, M., H., 2009. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials, 30, 2782–2789.
  • Homayonpour, P., Jalali, H., Shariatifar, N., Amanlou, M., 2021. Effects of nano-chitosan coatings incorporating with free/nano-encapsulated cumin (Cuminum cyminum L.) essential oil on quality characteristics of sardine fillet. International Journal of Food Microbiology, 341(January).
  • Hu, X., Jia, X., Zhi, C., Jin, Z., Miao, M., 2019. Improving the properties of starch-based antimicrobial composite films using ZnO-chitosan nanoparticles. Carbohydrate Polymers, 210, 204-209.
  • Huang, Y., Gu, C., He, S., Zhu, D., Xiuchun, L., Chen, Z., 2020. Development and characterization of an edible chitosan-whey protein nano composite film for chestnut (Castanea mollissima Bl.) preservation. Food Science, 85(7), 2114-2123.
  • Iijima, S., 1991. Helical microtubules of graphitic carbon. Nature, 354(6348), 56-58.
  • Indumathi, M. P., Saral Sarojini, K., Rajarajeswari, G. R., 2019. Antimicrobial and biodegradable chitosan/cellulose acetate phthalate/ZnO nano composite films with optimal oxygen permeability and hydrophobicity for extending the shelf life of black grape fruits. International Journal of Biological Macromolecules, 132, 1112-1120.
  • İşleyici, Ö., Çakmak, T., Sancak, Y., C., Elçek, R., Tuncay, R., M., 2019. Gıda ambalajlarında nanoteknoloji uygulamaları. Ereğli Uluslararası Bilim ve Akademi Kongresi Bildiriler Kitabı, (1), 171-192.
  • Jafarzadeh, S., Rhim, J., Alias, A. K., Ariffin, F., Mahmud, S., 2019. Application of antimicrobial active packaging film made of semolina flour, nano zinc oxide and nano‐kaolin to maintain the quality of low‐moisture mozzarella cheese during low‐temperature storage. Journal of the Science of Food and Agriculture, 99(6), 2716-2725.
  • Jeevahan, J., Chandrasekaran, M., 2019. Nanoedible films for food packaging: a review. Journal of Materials Science, 54(19), 12290-12318.
  • Jones, N., Ray, B., Ranjit, K., T., Manna, A., C., 2008. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiology Letters, 279(1), 71-76.
  • Joye, I. J., Davidov-Pardo, G., McClements, D. J., 2016. Nanotechnology in food processing. Caballero B., Finglas P. M., Fidel T. (chief ed.) Encyclopedia of Food and Health içinde (pp. 49-55). UK: Academic Press.
  • Kumar, R., Munstedt, H., 2005. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials, 26 (14), 2081–2088.
  • Kumar, S., Mukherjee, A., Dutta, J., 2020. Chitosan based nanocomposite films and coatings: emerging antimicrobial food packaging alternatives. Trends in Food Science and Technology, 97(August 2019), 196-209.
  • Lamabam, S. D., Thangjam, R., 2018. Chapter 4-progress and challenges of nanotechnology in food engineering. Grumezescu, A. M., Holban A. M. (chief ed.), Impact of Nanoscience in the Food Industry Handbook of Food Bioengineering içinde (pp. 87-112). UK: Academic Press.
  • Lee, K., T., 2010. Quality and safety aspects of meat products as affected by various physical manipulations of packaging materials. Meat Sci., 86(1), 138-50.
  • Li, H., Li, F., Wang, L., Sheng, J., Xin, Z., Zhao, L., Xiao, H., Zheng, Y., Hu, Q., 2009. Effect of nano-packing onpreservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Food Chem., 114,547-552.
  • Li, H., Wang, J., Liu, H., Zhang, H., Li, X., 2005. Zinc oxide films prepared by sol–gel method. Journal of Crystal Growth, 275(1-2), e943-e946.
  • Li, J., H., Hong, R., Y., Li, M., Y., Li, H., Z., Zheng, Y., Ding, J., 2009. Effects of ZnO nanoparticles on the mechanical andantibacterial properties of polyurethane coatings. Prog. Org. Coat.,64, 504–509.
  • Li, Y., Rokayya, S., Jia, F., Nie, X., Xu, J., Elhakem, A., Almatrafı, M., Benajiba, N., Helal, M., 2021. Shelf-life, quality, safety evaluations of blueberry fruits coated with chitosan nano-material films. Scientific Reports, 11(1), 1-10.
  • Li, Y., Tseng, Y., D., Kwon, S., Y., d'Espaux, L., Bunch, J., S., McEuen, P., L., Luo, D., 2004. Controlled assembly of dendrimer-like DNA. Nature Mater 3, 38–42.
  • Lindström, T., Österberg, F., 2020. Evolution of biobased and nanotechnology packaging-a review. Nordic Pulp and Paper Research Journal, 35(4), 491-515.
  • Malhotra, B. D., & Ali, M. A., 2018. Nanomaterials in biosensors: Fundamentals and applications. Nanomaterials for Biosensors, 1–74. https://doi.org/10.1016/B978-0-323-44923-6.00001-7.
  • Mallakpour, S., Dinari, S., 2012. Treated montmorillonite: structural and thermal properties of chiral poly(amide-imide)/organoclay bionanocomposites containing natural amino acids. J. Inorg. Organomet. Polym. 22, 929–937.
  • Maneerat, C., Hayata, Y., 2006. Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests. International Journal of Food Microbiology, 107(2), 99-103.
  • Mao, B. H., Tsai, J. C., Chen, C. W., Yan, S. J., Wang, Y. J., 2016. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology, 10(8), 1021-1040.
  • Mihindukulasuriya, S. D. F., Lim, L. T., 2014. Nanotechnology development in food packaging: a review. Trends in Food Science and Technology, 40(2), 149-167.
  • Mkandawire, M., Aryee, A. N., 2018. Resurfacing and modernization of edible packaging material technology. Current Opinion in Food Science, 19, 104-112.
  • Momin, J. K., Jayakumar, C. Prajapati, J. B., 2013. Potential of nanotechnology in functional foods. Emir J Food Agric, 25 (1): 10-19.
  • Moore, M. N., 2006. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment. Environ Int, 32, (8): 967-976.
  • Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., Yacaman, M. J., 2005. The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346.
  • Nasab, M. S., Tabari, M., Bidarigh, S., 2019. Antifungal activity of nano-composite films-based poly lactic acid. Nanomedicine Research Journal, 4(3), 186-192.
  • Nile, S. H., Baskar, V., Selvaraj, D., Nile, A., Xiao, J., Kai, G., 2020. Nanotechnologies in food science: applications, recent trends, and future perspectives. Nano-Micro Letters, 12(1), 1-34.
  • Pathakoti, K., Manubolu, M., Hwang, H. M., 2017. Nanostructures: current uses and future applications in food science. Journal of Food and Drug Analysis, 25(2), 245-253.
  • Pirsa, S., Farshchi, E., Roufegarinejad, L., 2020. Antioxidant/antimicrobial film based on carboxymethyl cellulose/gelatin/TiO2-Ag nano-composite. Journal of Polymers and the Environment, 28(12), 3154-3163.
  • Primožič, M., Knez, Ž., Leitgeb, M., 2021. (Bio)nanotechnology in food science-food packaging. Nanomaterials, 11(2), 1-31.
  • Qiao, G., Xiao, Z., Ding, W., Rok, A., 2019. Effect of chitosan/nano-titanium dioxide/thymol and tween films on ready-to-eat cantaloupe fruit quality. Coatings, 9(12), 828.
  • Qin, Y., Zhang, S., Yu, J., Yang, J., Xiong, L., Sun, Q., 2016. Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films. Carbohydrate Polymers, 147, 372-378.
  • Radusin, T., Ristic, I., Pilic, B., Novakovic, A., 2016. Antimicrobial nanomaterials for food packaging applications. Food and Feed Research, 43(2), 119-126.
  • Rahman, P. M., Mujeeb, V. M. A., Muraleedharan, K., 2017. Flexible chitosan-nano ZnO antimicrobial pouches as a new material for extending the shelf life of raw meat. International Journal of Biological Macromolecules, 97, 382-391.
  • Ramasamy, M., Lee, J., 2016. Recent nanotechnology approaches for prevention and treatment of biofilm-associated ınfections on medical devices. BioMed Research International, 2016, 17.
  • Ren, G., Hu, D., Cheng, E., W., C., Vargas-Reus, M., A., Reip, P., Allaker, R., P., 2009. Characterisation of copper oxide nanoparticles for antimicrobial applications. International Journal of Antimicrobial Agents, 33(6), 587-590.
  • Ribeiro, A. M., Estevinho, B. N., Rocha, F., 2021. Preparation and ıncorporation of functional ıngredients in edible films and coatings. Food and Bioprocess Technology, 14(2), 209-231.
  • Roy, S., Rhim, J. W., 2020. Effect of CuS reinforcement on the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of alginate-based composite films. International Journal of Biological Macromolecules, 164, 37-44.
  • Ruparelia, J., P., Chatterjee, A., K., Duttagupta, S., P., Mukherji, S., 2008. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia, 4(3), 707–716.
  • Salami-Kalajahi, M., Haddadi-Asl, V., Roghani-Mamaqani, H., 2012. Study of kinetics and properties of polystyrene/silica nanocomposites prepared via in situ free radical and reversible addition-fragmentation chain transfer polymerizations. Sci. Iran. 19(6), 2004-2011.
  • Sami, R., Almatrafi, M., Elhakem, A., Alharbi, M., Benajiba, N., Helal, M., 2021. Effect of nano silicon dioxide coating films on the quality characteristics of fresh-cut cantaloupe. Membranes, 11(2), 1-10.
  • Sani, I. K., Pirsa, S., Tağı, Ş., 2019. Preparation of chitosan/zinc oxide/Melissa officinalis essential oil nano-composite film and evaluation of physical, mechanical and antimicrobial properties by response surface method. Polymer Testing, 79, 106004.
  • Shahabi-Ghahfarrokhi, I., Khodaiyan, F., Mousavi, M., Yousefi, H., 2015. Preparation of UV-protective kefiran/nano-ZnO nanocomposites: Physical and mechanical properties. Int. J. Biol. Macromol., 72, 41-46.
  • Shakeel, A., Annu, S., I., Salprima, Y., S., 2016. Biosynthesis of gold nanoparticles: A green approach. Journal of Photochemistry Photobiology B, 161: 141-153.
  • Shankar, S., Wang, L. F., Rhim, J. W., 2018. Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films. Materials Science and Engineering C, 93, 289-298.
  • Sharma, C., Dhiman, R., Rokana, N., Panwar, H., 2017. Nanotechnology: an untapped resource for food packaging. Frontiers in Microbiology, 8, 1735.
  • Shekarabi, A. S., Davachi, S. M., 2018. Characterization a novel antimicrobial nano composite edible film based on Salvia macrosiphon. ETP International Journal of Food Engineering, 4(4), 337-340.
  • Shi, L., E., Li, Z., H., Zheng, W., Zhao, Y., F., Jin, Y., F., Tang, Z., X., 2014. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO NPs: a review. Food Addit. Contam. Part A Chem. Anal. Control Expo Risk Assess, 31(2), 173-186.
  • Singh, R., Smitha, M., S., Singh, S., P., 2014. The role of nanotechnology in combating multi-drug resistant bacteria. Journal of Nanoscience and Nanotechnology, 14, 1-12.
  • Singh, T., Shukla, S., Kumar, P., Wahla, V., Bajpai, V. K., 2017. Application of nanotechnology in food science: perception and overview. Frontiers in Microbiology, 8(August), 1-7.
  • Sondi, I., Salopek-Sondi, B., 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275(1), 177-182.
  • Şahin, M., 2020. Değerli metal içeren nanoparçacıkların sentezi, karakterizasyonu ve kataliz uygulamaları, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
  • Tjong, S., C., 2006. Structural and mechanical properties of polymer nanocomposites, Materials Science and Engineering: R: Reports, 53(3–4), 73-197.
  • Wahab, A., Rahim, A., A., Hassan, S., Egbuna, C., Manzoor, M., F., Okere, K., Walag, A., M., P., 2021. Chapter 10 - Application of nanotechnology in the packaging of edible materials. Editor(s): Egbuna, C., Mishra, A., P., Goyal, M., R. Preparation of Phytopharmaceuticals for the Management of Disorders içinde (pp 215-225). Academic Press, ISBN 9780128202845.
  • Weiss, J., Takhistov, P., McClements, D. J., 2006. Functional materials in food nanotechnology. Journal of Food Science, 71(9), 107-116.
  • Whitesides, G., 2005. Nanoscience, nanotechnology, and chemistry. Small 1, 172–179.
  • Xiao, J., Gu, C., Zhu, D., Huang, Y., Luo, Y., Zhou, Q., 2021. Development and characterization of an edible chitosan/zein-cinnamaldehyde nano-cellulose composite film and its effects on mango quality during storage. Lwt, 140, 110809.
  • Xing Y, Li W, Wang Q, Li X, Xu Q, Guo X, Bi X, Liu X, Shui Y, Lin H, Yang H., 2019. Antimicrobial nanoparticles ıncorporated in edible coatings and films for the preservation of fruits and vegetables. Molecules, 24(9):1695.
  • Yemmireddy, V., K., Hung, Y., C., 2015. Effect of binder on the physical stability and bactericidal property of titaniumdioxide (TiO2) nanocoatings on food contact surfaces. Food Control,57, 82-88.
  • Yin, H., Tsai, W., 2015. Advances of nanomaterials for food processing. Cheung, P. C. K., Mehta B. M. (Ed.) Handbook of Food Chemistry içinde (pp. 1137-1159). Berlin, Heidelberg: Springer.
  • Yoksan, R., Chirachanchai, S., 2010. Silver nanoparticle-loaded chitosan-starch based films: fabrication and evaluation of tensile, barrier and antimicrobial properties. Materials Science & Engineering C, 30(6), 891-897.
  • Youssef, A. M., El-Sayed, S. M., 2018. Bionanocomposites materials for food packaging applications: concepts and future outlook. Carbohydrate Polymers, 193(February), 19-27.
  • Zambrano-Zaragoza, M. L., González-Reza, R., Mendoza-Muñoz, N., Miranda-Linares, V., Bernal-Couoh, T. F., Mendoza-Elvira, S., Quintanar-Guerrero, D., 2018. Nanosystems in edible coatings: a novel strategy for food preservation. International Journal of Molecular Sciences, 19(3).
  • Zhang, R., Wang, X., Wang, J., Cheng, M., 2019. Synthesis and characterization of Konjac glucomannan/Carrageenan/nano-silica films for the preservation of postharvest white mushrooms. Polymers, 11(1), 6.

NANOTEKNOLOJİNİN YENİLEBİLİR FİLMLERE UYGULANMASI

Year 2023, Volume: 11 Issue: 1, 411 - 425, 27.03.2023
https://doi.org/10.21923/jesd.1123446

Abstract

Nanoteknoloji, yenilebilir filmlere spesifik işlevsellik kazandırması nedeniyle son yıllarda oldukça ilgi çekmektedir. Yenilebilir filmlerde sağladıkları antimikrobiyal etkilerin yanı sıra; termal, mekanik ve gaz geçirgenliği gibi fiziksel özellikleri de geliştirmek amacıyla kullanılan nanoparçacıklar, birçok çalışmanın konusu olmuştur. Yenilebilir filmlerin üretiminde nanoteknolojik yöntemlerin kullanımı kapsamında; nanoemülsiyonlar, nanokapsüller, nanolaminatlar, nanoteller ve polimer nanokompozitler gibi farklı yaklaşımlar uygulanabilmektedir. Nanoteknoloji kullanılarak üretilen yenilebilir filmler; biyolojik olarak parçalanabilme ve çevre dostu olma özelliklerinden dolayı, geleneksel plastik bazlı gıda ambalajlarına kıyasla, ekolojik bir avantaj da sağlamaktadır. Nanoteknoloji kullanılarak geliştirilmiş yenilebilir filmler, gıda endüstrisinde pek çok avantajı beraberinde getiren yenilikçi bir yaklaşımdır. Bu yeni teknolojinin gıda sanayinde daha yaygın şekilde kullanılabilmesi için büyük ölçekli üretim yöntemlerine adapte edilmesi ihtiyacı bulunmaktadır. Bununla birlikte, kullanılan nanomateryallerin toksisitesi ve gıda güvenliği ile ilgili sorunlar yaratma potansiyelleri de ihmal edilmemeli ve detaylı olarak incelenmelidir. Bu derlemede, son yıllarda nanoteknolojinin yenilebilir filmlerde kullanımı hakkında detaylı bir araştırma yapılarak bu yeni teknolojinin avantaj ve dezavantajlarının yanı sıra gıdalardaki etkileri de özetlenmiştir.

References

  • Abdel Ghaffar, A. M., Ali, H. E., Nasef, S. M., El-Bialy, H. A., 2018. Effect of gamma radiation on the properties of crosslinked chitosan nano-composite film. Journal of Polymers and the Environment, 26(8), 3226-3236.
  • Ananda, A. P., Manukumar, H. M., Umesha, S., Soumya, G., Priyanka, D., Mohan Kumar, A. S., Savitha, K. R., Krishnamurthy, N. B., 2017. A relook at food packaging for cost effective by incorporation of novel technologies. Journal of Packaging Technology and Research, 1(2), 67-85.
  • Anitha, A., Rani, V. V. D., Krishna, R., Sreeja, V., Selvamurugan, N., Nair, S. V, Tamura, H., Jayakumar, R., 2009. Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N, O-carboxymethyl chitosan nanoparticles. Carbohydrate Polymers, 78(4), 672-677.
  • Azam, A., Ahmed, A., S., Oves, M., Khan, M., S., Habib, S., S., Memic, A., 2012. Antimicrobial activity of metal oxide NPs against Gram positive and Gram negative bacteria: a comparative study. Int J. Nanomed. 7, 6003-6009.
  • Bahrami, A., Rezaei Mokarram, R., Sowti Khiabani, M., Ghanbarzadeh, B., Salehi, R., 2019. Physico-mechanical and antimicrobial properties of tragacanth/hydroxypropyl methylcellulose/beeswax edible films reinforced with silver nanoparticles. International Journal of Biological Macromolecules, 129, 1103-1112.
  • Bajpai, V., K., Kamle, M., Shukla, S., Mahato, D., K., Chandra, P., Hwang, S., K., Kumar, P., Huh, Y., S., Han, Y., K., 2018. Prospects of using nanotechnology for food preservation, safety, and security. Journal of Food and Analysis, 26, 1201-1214.
  • Bastarrachea, L., Dhawan, S., Sablani, S., S., 2011. Engineering properties of polymeric-based antimicrobial films for food packaging: a review. Food Eng Rev, 3:79e93.
  • Baysal, G., Doğan, F., 2020. Investigation and preparation of biodegradable starch-based nanofilms for potential use of curcumin and garlic in food packaging applications. Journal of Biomaterials Science, Polymer Edition, 31(9), 1127-1143.
  • Becerril, R., Nerín, C., Silva, F., 2020. Encapsulation systems for antimicrobial food packaging components: an update. Molecules, 25(5), 1134.
  • Ben-Shalom, N., Ardi, R., Pinto, R., Aki, C., Fallik, E., 2003. Controlling gray mould caused by Botrytis cinerea in cucumber plants by means of chitosan. Crop Protection, 22, 285-290.
  • Bhuyan, S., Sundararajan, S., Lu, Y., Larock, R., C., 2010. A study of the physical and terminological properties of bio based polymerclay nanocomposites at diferent clay concentrations. Wear, 268, 797-802.
  • Bohlooli, S., Eskandaric, S., 2021. An overview on the applications of nanotechnology for improving the safety of food products. Journal of Food and Bioprocess Engineering, 4(1), 90-93.
  • Cano, L., Pollet, E., Avérous, L., Tercjak, A., 2017. Effect of TiO2 nanoparticles on the properties of thermoplasticchitosan-based nano-biocomposites obtained by mechanical kneading. Compos. Part A Appl. Sci. Manuf, 93, 33–40.
  • Cavaliere, E., De Cesari, S., Landini, G., Riccobono, E., Pallecchi, L., Rossolini, G., M., Gavioli, L., 2015. Highly bactericidal Ag nanoparticle films obtained by cluster beam deposition. Nanomedicine, 11(6), 1417–1423.
  • Chaichi, M., Hashemi, M., Badii, F., Mohammadi, A., 2017. Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydrate Polymers, 157, 167-175.
  • Chaudhary, P., Fatima, F., Kumar, A., 2020. Relevance of nanomaterials in food packaging and its advanced future prospects. Journal of Inorganic and Organometallic Polymers and Materials, 30:5180-5192.
  • Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., Watkins, R., 2008. Applications and implications of nanotechnologies for the food sector. Food Additives and Contaminants, 25 (3), 241-258.
  • Chawla, R., Sivakumar, S., Kaur, H., 2021. Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements-a review. Carbohydrate Polymer Technologies and Applications, 2 (December 2020), 100024.
  • Colon, G., Ward, B., C., Webster, T., J., 2006. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. Journal of Biomedical Materials Research Part A, 78(3), 595-604.
  • Condés, M. C., Echeverría, I., Añón, M. C., Mauri, A. N., 2016. Nanocompounds as formulating aids. Barbosa-Cánovas G. V., López-Caballero, M. E., Gómez-Guillén, M. C., Montero Garcia M. P. (chief ed.), Edible Films and Coatings Fundamentals and Applications, içinde (pp. 616). CRC Press is an imprint of the Taylor & Francis Group, an informa business.
  • Çelebi Sezer, Y., Bozkurt, H., 2021. Et ve et ürünlerinin üretimi ve saklanmasında antimikrobiyal ambalajlama sistemlerinin kullanımı. Food and Health, 7(2), 150-163.
  • Das, S., K., Das, A., R., Guha, A., K., 2009. Gold nanoparticles: Microbial synthesis and application in water hygiene management. Langmuir, 25: 8192-8199.
  • Dash, K. K., Ali, N. A., Das, D., Mohanta, D., 2019. Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. International Journal of Biological Macromolecules, 139, 449-458.
  • Davoodbasha, M., Kim, S., C., Lee, S., Y., Kim, J., W., 2016. The facile synthesis of chitosan-based silver nano-biocomposites via a solution plasma process and their potential antimicrobial efficacy. Arch. Biochem.Biophys,605, 49-58.
  • Dholariya, P., K., Borkar, S., Borah, A., 2021. Prospect of nanotechnology in food and edible packaging: A review. The Pharma Innovation Journal, 10(5): 197-203.
  • Divya, K., Smitha, V., Jisha, M. S., 2018. Antifungal, antioxidant and cytotoxic activities of chitosan nanoparticles and its use as an edible coating on vegetables. International Journal of Biological Macromolecules, 114, 572-577.
  • Durán, N. and Marcato, P.D., 2013. Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review. International Journal of Food Science and Technology, 48: 1127-1134.
  • Esmaeili, A., Ebrahimzadeh Fazel, M., 2016. Optimization and preparation of Methylcellulose edible film combined with of Ferulago angulata essential oil (FEO) nanocapsules for food packaging applications. Flavour and Fragrance Journal, 31(5), 341-349.
  • Esteban-Tejeda, L., Malpartida, F., Esteban-Cubillo, A., Pecharromn, C., Moya, J., S., 2009. Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology, 20(50):505701.
  • Fang, Y., Fu, J., Tao, C., Liu, P., Cui, B., 2020. Mechanical properties and antibacterial activities of novel starch-based composite films incorporated with salicylic acid. International Journal of Biological Macromolecules, 155, 1350-1358.
  • Farhoodi, M., 2016. Nanocomposite materials for food packaging applications: characterization and safety evaluation. Food Eng. Rev., 8 (1), 35–51.
  • Fuente-Salcido, N. M., Alejo-Andrade, A. M., Favela-González, K. M., Marszalek, J. E., 2018. Polymers and nanotechnology, the new face of bioactive edible coatings. Polymer Research: Communicating Current Advances, Contributions, Applications and Educational Aspects, November 2018.
  • Fulaz, S., Vitale, S., Quinn, L., Casey, E., 2019. Nanoparticle-biofilm interactions: The role of the EPS matrix. Trends in Microbiology, Nov;27(11):915-926. DOİ: 10.1016/j.tim.2019.07.004
  • Galus, S., Arik Kibar, A. E., Gniewosz, M., Krasniewska, K., 2020. Novel materials in the preparation of edible films and coatings-a review. Coatings, 10(7), 1-14.
  • Han, W., Yu, Y., Li, N., Wang, L., 2011. Application and safety assessment for nano-composite materials in food packaging. Chinese Science Bulletin, 56(12), 1216-1225.
  • He, X., Deng, H., Hwang, H., 2019. The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis, 27(1), 1-21.
  • Hetrick, E., M., Shin, J., H., Paul, H., S., Schoenfisch, M., H., 2009. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials, 30, 2782–2789.
  • Homayonpour, P., Jalali, H., Shariatifar, N., Amanlou, M., 2021. Effects of nano-chitosan coatings incorporating with free/nano-encapsulated cumin (Cuminum cyminum L.) essential oil on quality characteristics of sardine fillet. International Journal of Food Microbiology, 341(January).
  • Hu, X., Jia, X., Zhi, C., Jin, Z., Miao, M., 2019. Improving the properties of starch-based antimicrobial composite films using ZnO-chitosan nanoparticles. Carbohydrate Polymers, 210, 204-209.
  • Huang, Y., Gu, C., He, S., Zhu, D., Xiuchun, L., Chen, Z., 2020. Development and characterization of an edible chitosan-whey protein nano composite film for chestnut (Castanea mollissima Bl.) preservation. Food Science, 85(7), 2114-2123.
  • Iijima, S., 1991. Helical microtubules of graphitic carbon. Nature, 354(6348), 56-58.
  • Indumathi, M. P., Saral Sarojini, K., Rajarajeswari, G. R., 2019. Antimicrobial and biodegradable chitosan/cellulose acetate phthalate/ZnO nano composite films with optimal oxygen permeability and hydrophobicity for extending the shelf life of black grape fruits. International Journal of Biological Macromolecules, 132, 1112-1120.
  • İşleyici, Ö., Çakmak, T., Sancak, Y., C., Elçek, R., Tuncay, R., M., 2019. Gıda ambalajlarında nanoteknoloji uygulamaları. Ereğli Uluslararası Bilim ve Akademi Kongresi Bildiriler Kitabı, (1), 171-192.
  • Jafarzadeh, S., Rhim, J., Alias, A. K., Ariffin, F., Mahmud, S., 2019. Application of antimicrobial active packaging film made of semolina flour, nano zinc oxide and nano‐kaolin to maintain the quality of low‐moisture mozzarella cheese during low‐temperature storage. Journal of the Science of Food and Agriculture, 99(6), 2716-2725.
  • Jeevahan, J., Chandrasekaran, M., 2019. Nanoedible films for food packaging: a review. Journal of Materials Science, 54(19), 12290-12318.
  • Jones, N., Ray, B., Ranjit, K., T., Manna, A., C., 2008. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiology Letters, 279(1), 71-76.
  • Joye, I. J., Davidov-Pardo, G., McClements, D. J., 2016. Nanotechnology in food processing. Caballero B., Finglas P. M., Fidel T. (chief ed.) Encyclopedia of Food and Health içinde (pp. 49-55). UK: Academic Press.
  • Kumar, R., Munstedt, H., 2005. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials, 26 (14), 2081–2088.
  • Kumar, S., Mukherjee, A., Dutta, J., 2020. Chitosan based nanocomposite films and coatings: emerging antimicrobial food packaging alternatives. Trends in Food Science and Technology, 97(August 2019), 196-209.
  • Lamabam, S. D., Thangjam, R., 2018. Chapter 4-progress and challenges of nanotechnology in food engineering. Grumezescu, A. M., Holban A. M. (chief ed.), Impact of Nanoscience in the Food Industry Handbook of Food Bioengineering içinde (pp. 87-112). UK: Academic Press.
  • Lee, K., T., 2010. Quality and safety aspects of meat products as affected by various physical manipulations of packaging materials. Meat Sci., 86(1), 138-50.
  • Li, H., Li, F., Wang, L., Sheng, J., Xin, Z., Zhao, L., Xiao, H., Zheng, Y., Hu, Q., 2009. Effect of nano-packing onpreservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Food Chem., 114,547-552.
  • Li, H., Wang, J., Liu, H., Zhang, H., Li, X., 2005. Zinc oxide films prepared by sol–gel method. Journal of Crystal Growth, 275(1-2), e943-e946.
  • Li, J., H., Hong, R., Y., Li, M., Y., Li, H., Z., Zheng, Y., Ding, J., 2009. Effects of ZnO nanoparticles on the mechanical andantibacterial properties of polyurethane coatings. Prog. Org. Coat.,64, 504–509.
  • Li, Y., Rokayya, S., Jia, F., Nie, X., Xu, J., Elhakem, A., Almatrafı, M., Benajiba, N., Helal, M., 2021. Shelf-life, quality, safety evaluations of blueberry fruits coated with chitosan nano-material films. Scientific Reports, 11(1), 1-10.
  • Li, Y., Tseng, Y., D., Kwon, S., Y., d'Espaux, L., Bunch, J., S., McEuen, P., L., Luo, D., 2004. Controlled assembly of dendrimer-like DNA. Nature Mater 3, 38–42.
  • Lindström, T., Österberg, F., 2020. Evolution of biobased and nanotechnology packaging-a review. Nordic Pulp and Paper Research Journal, 35(4), 491-515.
  • Malhotra, B. D., & Ali, M. A., 2018. Nanomaterials in biosensors: Fundamentals and applications. Nanomaterials for Biosensors, 1–74. https://doi.org/10.1016/B978-0-323-44923-6.00001-7.
  • Mallakpour, S., Dinari, S., 2012. Treated montmorillonite: structural and thermal properties of chiral poly(amide-imide)/organoclay bionanocomposites containing natural amino acids. J. Inorg. Organomet. Polym. 22, 929–937.
  • Maneerat, C., Hayata, Y., 2006. Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests. International Journal of Food Microbiology, 107(2), 99-103.
  • Mao, B. H., Tsai, J. C., Chen, C. W., Yan, S. J., Wang, Y. J., 2016. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology, 10(8), 1021-1040.
  • Mihindukulasuriya, S. D. F., Lim, L. T., 2014. Nanotechnology development in food packaging: a review. Trends in Food Science and Technology, 40(2), 149-167.
  • Mkandawire, M., Aryee, A. N., 2018. Resurfacing and modernization of edible packaging material technology. Current Opinion in Food Science, 19, 104-112.
  • Momin, J. K., Jayakumar, C. Prajapati, J. B., 2013. Potential of nanotechnology in functional foods. Emir J Food Agric, 25 (1): 10-19.
  • Moore, M. N., 2006. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment. Environ Int, 32, (8): 967-976.
  • Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., Yacaman, M. J., 2005. The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346.
  • Nasab, M. S., Tabari, M., Bidarigh, S., 2019. Antifungal activity of nano-composite films-based poly lactic acid. Nanomedicine Research Journal, 4(3), 186-192.
  • Nile, S. H., Baskar, V., Selvaraj, D., Nile, A., Xiao, J., Kai, G., 2020. Nanotechnologies in food science: applications, recent trends, and future perspectives. Nano-Micro Letters, 12(1), 1-34.
  • Pathakoti, K., Manubolu, M., Hwang, H. M., 2017. Nanostructures: current uses and future applications in food science. Journal of Food and Drug Analysis, 25(2), 245-253.
  • Pirsa, S., Farshchi, E., Roufegarinejad, L., 2020. Antioxidant/antimicrobial film based on carboxymethyl cellulose/gelatin/TiO2-Ag nano-composite. Journal of Polymers and the Environment, 28(12), 3154-3163.
  • Primožič, M., Knez, Ž., Leitgeb, M., 2021. (Bio)nanotechnology in food science-food packaging. Nanomaterials, 11(2), 1-31.
  • Qiao, G., Xiao, Z., Ding, W., Rok, A., 2019. Effect of chitosan/nano-titanium dioxide/thymol and tween films on ready-to-eat cantaloupe fruit quality. Coatings, 9(12), 828.
  • Qin, Y., Zhang, S., Yu, J., Yang, J., Xiong, L., Sun, Q., 2016. Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films. Carbohydrate Polymers, 147, 372-378.
  • Radusin, T., Ristic, I., Pilic, B., Novakovic, A., 2016. Antimicrobial nanomaterials for food packaging applications. Food and Feed Research, 43(2), 119-126.
  • Rahman, P. M., Mujeeb, V. M. A., Muraleedharan, K., 2017. Flexible chitosan-nano ZnO antimicrobial pouches as a new material for extending the shelf life of raw meat. International Journal of Biological Macromolecules, 97, 382-391.
  • Ramasamy, M., Lee, J., 2016. Recent nanotechnology approaches for prevention and treatment of biofilm-associated ınfections on medical devices. BioMed Research International, 2016, 17.
  • Ren, G., Hu, D., Cheng, E., W., C., Vargas-Reus, M., A., Reip, P., Allaker, R., P., 2009. Characterisation of copper oxide nanoparticles for antimicrobial applications. International Journal of Antimicrobial Agents, 33(6), 587-590.
  • Ribeiro, A. M., Estevinho, B. N., Rocha, F., 2021. Preparation and ıncorporation of functional ıngredients in edible films and coatings. Food and Bioprocess Technology, 14(2), 209-231.
  • Roy, S., Rhim, J. W., 2020. Effect of CuS reinforcement on the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of alginate-based composite films. International Journal of Biological Macromolecules, 164, 37-44.
  • Ruparelia, J., P., Chatterjee, A., K., Duttagupta, S., P., Mukherji, S., 2008. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia, 4(3), 707–716.
  • Salami-Kalajahi, M., Haddadi-Asl, V., Roghani-Mamaqani, H., 2012. Study of kinetics and properties of polystyrene/silica nanocomposites prepared via in situ free radical and reversible addition-fragmentation chain transfer polymerizations. Sci. Iran. 19(6), 2004-2011.
  • Sami, R., Almatrafi, M., Elhakem, A., Alharbi, M., Benajiba, N., Helal, M., 2021. Effect of nano silicon dioxide coating films on the quality characteristics of fresh-cut cantaloupe. Membranes, 11(2), 1-10.
  • Sani, I. K., Pirsa, S., Tağı, Ş., 2019. Preparation of chitosan/zinc oxide/Melissa officinalis essential oil nano-composite film and evaluation of physical, mechanical and antimicrobial properties by response surface method. Polymer Testing, 79, 106004.
  • Shahabi-Ghahfarrokhi, I., Khodaiyan, F., Mousavi, M., Yousefi, H., 2015. Preparation of UV-protective kefiran/nano-ZnO nanocomposites: Physical and mechanical properties. Int. J. Biol. Macromol., 72, 41-46.
  • Shakeel, A., Annu, S., I., Salprima, Y., S., 2016. Biosynthesis of gold nanoparticles: A green approach. Journal of Photochemistry Photobiology B, 161: 141-153.
  • Shankar, S., Wang, L. F., Rhim, J. W., 2018. Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films. Materials Science and Engineering C, 93, 289-298.
  • Sharma, C., Dhiman, R., Rokana, N., Panwar, H., 2017. Nanotechnology: an untapped resource for food packaging. Frontiers in Microbiology, 8, 1735.
  • Shekarabi, A. S., Davachi, S. M., 2018. Characterization a novel antimicrobial nano composite edible film based on Salvia macrosiphon. ETP International Journal of Food Engineering, 4(4), 337-340.
  • Shi, L., E., Li, Z., H., Zheng, W., Zhao, Y., F., Jin, Y., F., Tang, Z., X., 2014. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO NPs: a review. Food Addit. Contam. Part A Chem. Anal. Control Expo Risk Assess, 31(2), 173-186.
  • Singh, R., Smitha, M., S., Singh, S., P., 2014. The role of nanotechnology in combating multi-drug resistant bacteria. Journal of Nanoscience and Nanotechnology, 14, 1-12.
  • Singh, T., Shukla, S., Kumar, P., Wahla, V., Bajpai, V. K., 2017. Application of nanotechnology in food science: perception and overview. Frontiers in Microbiology, 8(August), 1-7.
  • Sondi, I., Salopek-Sondi, B., 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275(1), 177-182.
  • Şahin, M., 2020. Değerli metal içeren nanoparçacıkların sentezi, karakterizasyonu ve kataliz uygulamaları, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
  • Tjong, S., C., 2006. Structural and mechanical properties of polymer nanocomposites, Materials Science and Engineering: R: Reports, 53(3–4), 73-197.
  • Wahab, A., Rahim, A., A., Hassan, S., Egbuna, C., Manzoor, M., F., Okere, K., Walag, A., M., P., 2021. Chapter 10 - Application of nanotechnology in the packaging of edible materials. Editor(s): Egbuna, C., Mishra, A., P., Goyal, M., R. Preparation of Phytopharmaceuticals for the Management of Disorders içinde (pp 215-225). Academic Press, ISBN 9780128202845.
  • Weiss, J., Takhistov, P., McClements, D. J., 2006. Functional materials in food nanotechnology. Journal of Food Science, 71(9), 107-116.
  • Whitesides, G., 2005. Nanoscience, nanotechnology, and chemistry. Small 1, 172–179.
  • Xiao, J., Gu, C., Zhu, D., Huang, Y., Luo, Y., Zhou, Q., 2021. Development and characterization of an edible chitosan/zein-cinnamaldehyde nano-cellulose composite film and its effects on mango quality during storage. Lwt, 140, 110809.
  • Xing Y, Li W, Wang Q, Li X, Xu Q, Guo X, Bi X, Liu X, Shui Y, Lin H, Yang H., 2019. Antimicrobial nanoparticles ıncorporated in edible coatings and films for the preservation of fruits and vegetables. Molecules, 24(9):1695.
  • Yemmireddy, V., K., Hung, Y., C., 2015. Effect of binder on the physical stability and bactericidal property of titaniumdioxide (TiO2) nanocoatings on food contact surfaces. Food Control,57, 82-88.
  • Yin, H., Tsai, W., 2015. Advances of nanomaterials for food processing. Cheung, P. C. K., Mehta B. M. (Ed.) Handbook of Food Chemistry içinde (pp. 1137-1159). Berlin, Heidelberg: Springer.
  • Yoksan, R., Chirachanchai, S., 2010. Silver nanoparticle-loaded chitosan-starch based films: fabrication and evaluation of tensile, barrier and antimicrobial properties. Materials Science & Engineering C, 30(6), 891-897.
  • Youssef, A. M., El-Sayed, S. M., 2018. Bionanocomposites materials for food packaging applications: concepts and future outlook. Carbohydrate Polymers, 193(February), 19-27.
  • Zambrano-Zaragoza, M. L., González-Reza, R., Mendoza-Muñoz, N., Miranda-Linares, V., Bernal-Couoh, T. F., Mendoza-Elvira, S., Quintanar-Guerrero, D., 2018. Nanosystems in edible coatings: a novel strategy for food preservation. International Journal of Molecular Sciences, 19(3).
  • Zhang, R., Wang, X., Wang, J., Cheng, M., 2019. Synthesis and characterization of Konjac glucomannan/Carrageenan/nano-silica films for the preservation of postharvest white mushrooms. Polymers, 11(1), 6.
There are 105 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Review Articles
Authors

Kadriye Şen 0000-0002-9946-917X

Kadir Gürbüz Güner 0000-0002-6676-560X

Publication Date March 27, 2023
Submission Date May 30, 2022
Acceptance Date November 14, 2022
Published in Issue Year 2023 Volume: 11 Issue: 1

Cite

APA Şen, K., & Güner, K. G. (2023). NANOTEKNOLOJİNİN YENİLEBİLİR FİLMLERE UYGULANMASI. Mühendislik Bilimleri Ve Tasarım Dergisi, 11(1), 411-425. https://doi.org/10.21923/jesd.1123446