Research Article
BibTex RIS Cite

A STUDY ON DETERMINATION OF TOTAL PHENOLIC AND PROTEIN AMOUNTS OF WASTE GREEN ALGAE OF MAMASIN DAM LAKE (AKSARAY-TURKEY)

Year 2024, Volume: 12 Issue: 1, 132 - 139, 25.03.2024
https://doi.org/10.21923/jesd.1421074

Abstract

The excessive proliferation of green algae in aquatic ecosystems threatens aquatic life, leading to oxygen depletion and water pollution. This study investigates two common green algae species, Ulva sp. and Cladophora sp., with potential in terms of protein and phenolic compounds. Cladophora sp. and Ulva sp. extracts were analyzed for total phenolic content using the Folin-Ciocalteau method. Despite lower phenolic content compared to specific plant species, both algae species exhibit various phenolic compounds. GC-MS analysis indicates the presence of major compounds such as limonene in Cladophora sp. and Tetradec-1-ene in Ulva sp., suggesting potential applications in the pharmaceutical and cosmetic industries. Despite modest protein amounts, the study emphasizes that algae, aligned with the increasing interest in plant-based nutrition, are a promising source for plant-based protein production. Ulva sp. and Cladophora sp. algae demonstrate potential as alternative protein sources and reservoirs of bioactive phenolic compounds from waste sources. This study pioneers further research in the food, pharmaceutical, and cosmetic industries to contribute to sustainable water resource utilization.

References

  • Al-Saif, S.S.A.-l., Abdel-Raouf, N., El-Wazanani, H.A., Aref, I.A., 2014. Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia. Saudi journal of biological sciences 21, 57-64.
  • Araújo‐Filho, H.G.d., Dos Santos, J.F., Carvalho, M.T., Picot, L., Fruitier‐Arnaudin, I., Groult, H., Quintans‐Júnior, L.J., Quintans, J.S., 2021. Anticancer activity of limonene: A systematic review of target signaling pathways. Phytotherapy research 35, 4957-4970.
  • Azmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K., Mohamed, A., Sahena, F., Jahurul, M., Ghafoor, K., Norulaini, N., Omar, A., 2013. Techniques for extraction of bioactive compounds from plant materials: A review. Journal of food engineering 117, 426-436.
  • Barbarino, E., Lourenço, S.O., 2005. An evaluation of methods for extraction and quantification of protein from marine macro-and microalgae. Journal of Applied Phycology 17, 447-460.
  • Barbosa-Pereira, L., Bilbao, A., Vilches, P., Angulo, I., LLuis, J., Fité, B., Paseiro-Losada, P., Cruz, J.M., 2014. Brewery waste as a potential source of phenolic compounds: Optimisation of the extraction process and evaluation of antioxidant and antimicrobial activities. Food chemistry 145, 191-197.
  • Becker, E.W., 2007. Micro-algae as a source of protein. Biotechnology advances 25, 207-210.
  • Bleakley, S., Hayes, M., 2017. Algal proteins: extraction, application, and challenges concerning production. Foods 6, 33.
  • Chacón-Lee, T., González-Mariño, G., 2010. Microalgae for “healthy” foods—possibilities and challenges. Compr Rev Food Sci Food Saf 9: 655–675.
  • Chisté, R.C., Godoy, H.T., Prado, M.A., 2013. The phenolic compounds and the antioxidant potential of infusion of herbs from the Brazilian Amazonian region. Food Research International 53, 875-881.
  • Fleurence, J., 1999. Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends in food science & technology 10, 25-28.
  • Gaillac, R., Marbach, S., 2021. The carbon footprint of meat and dairy proteins: A practical perspective to guide low carbon footprint dietary choices. Journal of Cleaner Production 321, 128766.
  • Geada, P., Moreira, C., Silva, M., Nunes, R., Madureira, L., Rocha, C.M., Pereira, R.N., Vicente, A.A., Teixeira, J.A., 2021. Algal proteins: Production strategies and nutritional and functional properties. Bioresource Technology 332, 125125.
  • Ghribi, A.M., Gafsi, I.M., Blecker, C., Danthine, S., Attia, H., Besbes, S., 2015. Effect of drying methods on physico-chemical and functional properties of chickpea protein concentrates. Journal of Food Engineering 165, 179-188.
  • Giannakos, N.R.O., 2016. Mensuração do perfil redox em hipocampo de ratos reprodutores e não reprodutores ao longo do envelhecimento.
  • Han, Y., Chen, W., Sun, Z., 2021. Antimicrobial activity and mechanism of limonene against Staphylococcus aureus. Journal of Food Safety 41, e12918.
  • Heusala, H., Sinkko, T., Mogensen, L., Knudsen, M.T., 2020. Carbon footprint and land use of food products containing oat protein concentrate. Journal of Cleaner Production 276, 122938.
  • Holan, Z., Volesky, B., 1994. Biosorption of lead and nickel by biomass of marine algae. Biotechnology and bioengineering 43, 1001-1009.
  • Ijaola, A.O., Akamo, D.O., George, T.T., Sengul, A., Adediji, M.Y., Asmatulu, E., 2023. Algae as a potential source of protein: A review on cultivation, harvesting, extraction, and applications. Algal Research, 103329.
  • Ito, K., Hori, K., 1989. Seaweed: chemical composition and potential food uses. Food reviews international 5, 101-144.
  • Jarmalavičienė, R., Szumski, M., Kornyšova, O., Kłodzińska, E., Westerlund, D., Krawczyk, S., Mickevičius, D., Buszewski, B., Maruška, A., 2008. Coupling of solid-phase microextraction continuous bed (monolithic) capillaries with capillary zone electrophoresis for direct analysis of drugs in biological fluids. ELECTROPHORESIS 29, 1753-1760.
  • Jimenez-Lopez, C., Pereira, A., Lourenço-Lopes, C., García-Oliveira, P., Cassani, L., Fraga-Corral, M., Prieto, M., Simal-Gandara, J., 2021. Main bioactive phenolic compounds in marine algae and their mechanisms of action supporting potential health benefits. Food chemistry 341, 128262.
  • Jousson, O., Pawlowski, J., Zaninetti, L., Zechman, F.W., Dini, F., Di Guiseppe, G., Woodfield, R., Millar, A., Meinesz, A., 2000. Invasive alga reaches California. Nature 408, 157-158.
  • Liu, M., Hansen, P.E., Lin, X., 2011. Bromophenols in marine algae and their bioactivities. Marine Drugs 9, 1273-1292.
  • Lourenço, S.O., Barbarino, E., Lavín, P.L., Lanfer Marquez, U.M., Aidar, E., 2004. Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. European Journal of Phycology 39, 17-32.
  • Mihranyan, A., 2011. Cellulose from cladophorales green algae: From environmental problem to high‐tech composite materials. Journal of Applied Polymer Science 119, 2449-2460.
  • Ramelow, G., Fralick, D., Zhao, Y.-f., 1992. Factors affecting the uptake of aqueous metal ions by dried seaweed biomass. Microbios 72, 81-93.
  • Rasala, B.A., Mayfield, S.P., 2015. Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynthesis research 123, 227-239.
  • Roberto, D., Micucci, P., Sebastian, T., Graciela, F., Anesini, C., 2010. Antioxidant activity of limonene on normal murine lymphocytes: relation to H2O2 modulation and cell proliferation. Basic & clinical pharmacology & toxicology 106, 38-44.
  • Saeed, N., Khan, M.R., Shabbir, M., 2012. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC complementary and alternative medicine 12, 1-12.
  • Safi, C., Liu, D.Z., Yap, B.H., Martin, G.J., Vaca-Garcia, C., Pontalier, P.-Y., 2014. A two-stage ultrafiltration process for separating multiple components of Tetraselmis suecica after cell disruption. Journal of applied phycology 26, 2379-2387.
  • Santana, H.S., de Carvalho, F.O., Silva, E.R., Santos, N.G., Shanmugam, S., Santos, D.N., Wisniewski, J.O., Junior, J.S.C., Nunes, P.S., Araujo, A.A., 2020. Anti-inflammatory activity of limonene in the prevention and control of injuries in the respiratory system: A systematic review. Current pharmaceutical design 26, 2182-2191.
  • Santos, E.S., Abreu, M.M., Saraiva, J.A., 2016. Mutielemental concentration and physiological responses of Lavandula pedunculata growing in soils developed on different mine wastes. Environmental Pollution 213, 43-52.
  • Sirbu, R., Stanciu, G., Tomescu, A., Ionescu, A.M., Cadar, E., 2019. Evaluation of antioxidant and antimicrobial activity in relation to total phenolic content of green algae from Black Sea. Rev. Chim 70, 1197-1203.
  • Sousa, I., Gouveia, L., Batista, A.P., Raymundo, A., Bandarra, N.M., 2008. Microalgae in novel food products. Food chemistry research developments, 75-112.
  • Tawaha, K., Alali, F.Q., Gharaibeh, M., Mohammad, M., El-Elimat, T., 2007. Antioxidant activity and total phenolic content of selected Jordanian plant species. Food chemistry 104, 1372-1378.
  • Vernes, L., Abert-Vian, M., El Maâtaoui, M., Tao, Y., Bornard, I., Chemat, F., 2019. Application of ultrasound for green extraction of proteins from spirulina. Mechanism, optimization, modeling, and industrial prospects. Ultrasonics sonochemistry 54, 48-60.
  • Viegas, C.V., Hachemi, I., Mäki-Arvela, P., Smeds, A., Aho, A., Freitas, S.P., da Silva Gorgônio, C.M., Carbonetti, G., Peurla, M., Paranko, J., 2015. Algal products beyond lipids: Comprehensive characterization of different products in direct saponification of green alga Chlorella sp. Algal Research 11, 156-164.
  • Waghmare, A.G., Salve, M.K., LeBlanc, J.G., Arya, S.S., 2016. Concentration and characterization of microalgae proteins from Chlorella pyrenoidosa. Bioresources and Bioprocessing 3, 1-11.
  • Wu, C.-H., Murthy, H.N., Hahn, E.-J., Paek, K.-Y., 2007. Improved production of caffeic acid derivatives in suspension cultures ofEchinacea purpurea by medium replenishment strategy. Archives of pharmacal research 30, 945-949.
  • Zhang, X., Song, Y., Liu, D., Keesing, J.K., Gong, J., 2015. Macroalgal blooms favor heterotrophic diazotrophic bacteria in nitrogen-rich and phosphorus-limited coastal surface waters in the Yellow Sea. Estuarine, Coastal and Shelf Science 163, 75-81.

MAMASIN BARAJI GÖLETİ'NİN ATIK YEŞİL ALGLERİNİN TOPLAM FENOLİK VE PROTEİN MİKTARLARININ BELİRLENMESİ ÜZERİNE BİR ÇALIŞMA (AKSARAY-TÜRKİYE)

Year 2024, Volume: 12 Issue: 1, 132 - 139, 25.03.2024
https://doi.org/10.21923/jesd.1421074

Abstract

Su ekosistemlerinde yeşil alglerin aşırı çoğalması sudaki yaşamı tehdit ederek oksijen tükenmesine ve su kirliliğine yol açmaktadır. Bu çalışma, protein ve fenolik bileşikler açısından potansiyeli olan iki yaygın yeşil alg türü olan Ulva sp. ve Cladophora sp.'yi incelemektedir. Cladophora sp. ve Ulva sp. ekstraktları, toplam fenolik içeriği Folin-Ciocalteau yöntemi kullanılarak analiz edildi. Fenolik içerik, belirli bitki türleriyle kıyaslandığında düşük olmasına rağmen, her iki alg türü de çeşitli fenolik bileşiklere sahiptir. GC-MS analizi, Cladophora sp.'de limonen ve Ulva sp.'de Tetradec-1-en gibi ana bileşiklerin tespit edildiğini göstererek, bunların farmasötik ve kozmetik uygulamalarda kullanılabileceğini işaret etmektedir. Çalışma, beslenme alanındaki artan ilgiye paralel olarak, mütevazı protein miktarlarına rağmen, alglerin bitkisel bazlı protein üretimi için umut verici bir kaynak olduğunu vurgular. Ulva sp. ve Cladophora sp. algleri, atık kaynaklardan elde edilebilecek alternatif protein kaynakları ve biyoaktif fenolik bileşik rezervuarları olarak potansiyel gösterir. Bu çalışma, sürdürülebilir su kaynakları kullanımına katkı sağlamak amacıyla gıda, ilaç ve kozmetik endüstrilerinde daha fazla keşfe öncülük etmektedir.

References

  • Al-Saif, S.S.A.-l., Abdel-Raouf, N., El-Wazanani, H.A., Aref, I.A., 2014. Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia. Saudi journal of biological sciences 21, 57-64.
  • Araújo‐Filho, H.G.d., Dos Santos, J.F., Carvalho, M.T., Picot, L., Fruitier‐Arnaudin, I., Groult, H., Quintans‐Júnior, L.J., Quintans, J.S., 2021. Anticancer activity of limonene: A systematic review of target signaling pathways. Phytotherapy research 35, 4957-4970.
  • Azmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K., Mohamed, A., Sahena, F., Jahurul, M., Ghafoor, K., Norulaini, N., Omar, A., 2013. Techniques for extraction of bioactive compounds from plant materials: A review. Journal of food engineering 117, 426-436.
  • Barbarino, E., Lourenço, S.O., 2005. An evaluation of methods for extraction and quantification of protein from marine macro-and microalgae. Journal of Applied Phycology 17, 447-460.
  • Barbosa-Pereira, L., Bilbao, A., Vilches, P., Angulo, I., LLuis, J., Fité, B., Paseiro-Losada, P., Cruz, J.M., 2014. Brewery waste as a potential source of phenolic compounds: Optimisation of the extraction process and evaluation of antioxidant and antimicrobial activities. Food chemistry 145, 191-197.
  • Becker, E.W., 2007. Micro-algae as a source of protein. Biotechnology advances 25, 207-210.
  • Bleakley, S., Hayes, M., 2017. Algal proteins: extraction, application, and challenges concerning production. Foods 6, 33.
  • Chacón-Lee, T., González-Mariño, G., 2010. Microalgae for “healthy” foods—possibilities and challenges. Compr Rev Food Sci Food Saf 9: 655–675.
  • Chisté, R.C., Godoy, H.T., Prado, M.A., 2013. The phenolic compounds and the antioxidant potential of infusion of herbs from the Brazilian Amazonian region. Food Research International 53, 875-881.
  • Fleurence, J., 1999. Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends in food science & technology 10, 25-28.
  • Gaillac, R., Marbach, S., 2021. The carbon footprint of meat and dairy proteins: A practical perspective to guide low carbon footprint dietary choices. Journal of Cleaner Production 321, 128766.
  • Geada, P., Moreira, C., Silva, M., Nunes, R., Madureira, L., Rocha, C.M., Pereira, R.N., Vicente, A.A., Teixeira, J.A., 2021. Algal proteins: Production strategies and nutritional and functional properties. Bioresource Technology 332, 125125.
  • Ghribi, A.M., Gafsi, I.M., Blecker, C., Danthine, S., Attia, H., Besbes, S., 2015. Effect of drying methods on physico-chemical and functional properties of chickpea protein concentrates. Journal of Food Engineering 165, 179-188.
  • Giannakos, N.R.O., 2016. Mensuração do perfil redox em hipocampo de ratos reprodutores e não reprodutores ao longo do envelhecimento.
  • Han, Y., Chen, W., Sun, Z., 2021. Antimicrobial activity and mechanism of limonene against Staphylococcus aureus. Journal of Food Safety 41, e12918.
  • Heusala, H., Sinkko, T., Mogensen, L., Knudsen, M.T., 2020. Carbon footprint and land use of food products containing oat protein concentrate. Journal of Cleaner Production 276, 122938.
  • Holan, Z., Volesky, B., 1994. Biosorption of lead and nickel by biomass of marine algae. Biotechnology and bioengineering 43, 1001-1009.
  • Ijaola, A.O., Akamo, D.O., George, T.T., Sengul, A., Adediji, M.Y., Asmatulu, E., 2023. Algae as a potential source of protein: A review on cultivation, harvesting, extraction, and applications. Algal Research, 103329.
  • Ito, K., Hori, K., 1989. Seaweed: chemical composition and potential food uses. Food reviews international 5, 101-144.
  • Jarmalavičienė, R., Szumski, M., Kornyšova, O., Kłodzińska, E., Westerlund, D., Krawczyk, S., Mickevičius, D., Buszewski, B., Maruška, A., 2008. Coupling of solid-phase microextraction continuous bed (monolithic) capillaries with capillary zone electrophoresis for direct analysis of drugs in biological fluids. ELECTROPHORESIS 29, 1753-1760.
  • Jimenez-Lopez, C., Pereira, A., Lourenço-Lopes, C., García-Oliveira, P., Cassani, L., Fraga-Corral, M., Prieto, M., Simal-Gandara, J., 2021. Main bioactive phenolic compounds in marine algae and their mechanisms of action supporting potential health benefits. Food chemistry 341, 128262.
  • Jousson, O., Pawlowski, J., Zaninetti, L., Zechman, F.W., Dini, F., Di Guiseppe, G., Woodfield, R., Millar, A., Meinesz, A., 2000. Invasive alga reaches California. Nature 408, 157-158.
  • Liu, M., Hansen, P.E., Lin, X., 2011. Bromophenols in marine algae and their bioactivities. Marine Drugs 9, 1273-1292.
  • Lourenço, S.O., Barbarino, E., Lavín, P.L., Lanfer Marquez, U.M., Aidar, E., 2004. Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. European Journal of Phycology 39, 17-32.
  • Mihranyan, A., 2011. Cellulose from cladophorales green algae: From environmental problem to high‐tech composite materials. Journal of Applied Polymer Science 119, 2449-2460.
  • Ramelow, G., Fralick, D., Zhao, Y.-f., 1992. Factors affecting the uptake of aqueous metal ions by dried seaweed biomass. Microbios 72, 81-93.
  • Rasala, B.A., Mayfield, S.P., 2015. Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynthesis research 123, 227-239.
  • Roberto, D., Micucci, P., Sebastian, T., Graciela, F., Anesini, C., 2010. Antioxidant activity of limonene on normal murine lymphocytes: relation to H2O2 modulation and cell proliferation. Basic & clinical pharmacology & toxicology 106, 38-44.
  • Saeed, N., Khan, M.R., Shabbir, M., 2012. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC complementary and alternative medicine 12, 1-12.
  • Safi, C., Liu, D.Z., Yap, B.H., Martin, G.J., Vaca-Garcia, C., Pontalier, P.-Y., 2014. A two-stage ultrafiltration process for separating multiple components of Tetraselmis suecica after cell disruption. Journal of applied phycology 26, 2379-2387.
  • Santana, H.S., de Carvalho, F.O., Silva, E.R., Santos, N.G., Shanmugam, S., Santos, D.N., Wisniewski, J.O., Junior, J.S.C., Nunes, P.S., Araujo, A.A., 2020. Anti-inflammatory activity of limonene in the prevention and control of injuries in the respiratory system: A systematic review. Current pharmaceutical design 26, 2182-2191.
  • Santos, E.S., Abreu, M.M., Saraiva, J.A., 2016. Mutielemental concentration and physiological responses of Lavandula pedunculata growing in soils developed on different mine wastes. Environmental Pollution 213, 43-52.
  • Sirbu, R., Stanciu, G., Tomescu, A., Ionescu, A.M., Cadar, E., 2019. Evaluation of antioxidant and antimicrobial activity in relation to total phenolic content of green algae from Black Sea. Rev. Chim 70, 1197-1203.
  • Sousa, I., Gouveia, L., Batista, A.P., Raymundo, A., Bandarra, N.M., 2008. Microalgae in novel food products. Food chemistry research developments, 75-112.
  • Tawaha, K., Alali, F.Q., Gharaibeh, M., Mohammad, M., El-Elimat, T., 2007. Antioxidant activity and total phenolic content of selected Jordanian plant species. Food chemistry 104, 1372-1378.
  • Vernes, L., Abert-Vian, M., El Maâtaoui, M., Tao, Y., Bornard, I., Chemat, F., 2019. Application of ultrasound for green extraction of proteins from spirulina. Mechanism, optimization, modeling, and industrial prospects. Ultrasonics sonochemistry 54, 48-60.
  • Viegas, C.V., Hachemi, I., Mäki-Arvela, P., Smeds, A., Aho, A., Freitas, S.P., da Silva Gorgônio, C.M., Carbonetti, G., Peurla, M., Paranko, J., 2015. Algal products beyond lipids: Comprehensive characterization of different products in direct saponification of green alga Chlorella sp. Algal Research 11, 156-164.
  • Waghmare, A.G., Salve, M.K., LeBlanc, J.G., Arya, S.S., 2016. Concentration and characterization of microalgae proteins from Chlorella pyrenoidosa. Bioresources and Bioprocessing 3, 1-11.
  • Wu, C.-H., Murthy, H.N., Hahn, E.-J., Paek, K.-Y., 2007. Improved production of caffeic acid derivatives in suspension cultures ofEchinacea purpurea by medium replenishment strategy. Archives of pharmacal research 30, 945-949.
  • Zhang, X., Song, Y., Liu, D., Keesing, J.K., Gong, J., 2015. Macroalgal blooms favor heterotrophic diazotrophic bacteria in nitrogen-rich and phosphorus-limited coastal surface waters in the Yellow Sea. Estuarine, Coastal and Shelf Science 163, 75-81.
There are 40 citations in total.

Details

Primary Language English
Subjects Waste Management, Reduction, Reuse and Recycling
Journal Section Araştırma Articlessi \ Research Articles
Authors

Behlül Koç Bilican 0000-0001-9943-771X

Audrius Sigitas Maruška 0000-0002-9267-3805

Publication Date March 25, 2024
Submission Date January 19, 2024
Acceptance Date March 5, 2024
Published in Issue Year 2024 Volume: 12 Issue: 1

Cite

APA Koç Bilican, B., & Maruška, A. S. (2024). A STUDY ON DETERMINATION OF TOTAL PHENOLIC AND PROTEIN AMOUNTS OF WASTE GREEN ALGAE OF MAMASIN DAM LAKE (AKSARAY-TURKEY). Mühendislik Bilimleri Ve Tasarım Dergisi, 12(1), 132-139. https://doi.org/10.21923/jesd.1421074