Research Article
BibTex RIS Cite

Low-temperature Synthesis and Characterization of Bismuth Ferrite/Graphene Oxide Nano electroceramics by the Hydrothermal Method

Year 2018, Volume: 1 Issue: 1, 111 - 125, 06.08.2018

Abstract

Nano electroceramic samples of Bismuth Ferrite/Graphene
Oxide were
prepared by
the hydrothermal process. T
he crystalline structure,
morphological properties, electrical and optical properties of samples
were investigated.
X-ray
results
confirm
that all the BFO nanopowders are
polycrystalline with a cubic structure.
The
c
rystallite sizes and lattice parameters values of the samples
were calculated.
SEM and TEM results indicate
that the Bismuth ferrite/Graphene oxide powders have nanostructure. The average
grain size values of the powders were found to be
351,
337, 411 and 371nm
for BF0,
BFO20, BFO50 and BFO100
samples, respectively. The effects of the Graphene oxide
doped on the Bismuth ferrite are resulted in a change of grain size.
The optical band gaps of the nano electroceramics were
calculated for the various amount of Graphene oxide. The optical constants of
the Bismuth Ferrite were changed with Graphene oxide doping. The room
temperature dielectric measurement with frequency reveals the dielectric
constant and loss are affected with increasing frequency for BFO nanoceramics. The
alternating current conductivity of the as-synthesized nano electroceramics
increases with the increasing frequency. The obtained results suggest that the
structural, optical and electrical properties of BFO can be controlled and
changed by Graphene Oxide doping. 

References

  • [1] Sakar M., Balakumar S., Saravanan P., Jaisankar S.N., Mater Res Bull, 48 (2013), 2878-2885.
  • [2] Mukherjee S., Mitra M. K., J Aust Ceram Soc, 50 [2] (2014), 180-187.
  • [3] Wang Y., Xu G., Yang L., Ren Z., Wei X., Weng W., Du P., Shen G., Han G., J Am Ceram Soc, 90 [11] (2007), 3673-3675.
  • [4] Yang X., Zhang Y., Xu G., Wei X., Ren Z., Shen G., Han G., Mater Res Bull, 48 (2013), 1694-1699.
  • [5] Chen C., Cheng J., Yu S., Che L., Meng Z., J Cryst Growth, 291 (2006),135-139.
  • [6] Gao T., . Chen Z, Huang Q., Niu F., Huang X., Qin L., . Huang Y, Rev Adv Mater Sci, 40 (2015), 97-109.
  • [7] Zhang H., Kajiyoshi K., J Am Ceram Soc, 93 [11] (2010), 3842-3849.
  • [8] Chen X-Z., Qiu Z-C., Zhou J-P., Zhu G., Bian X-B, Liu P., Mater Chem Phys, 126 (2011), 560-567.
  • [9] Chen C., Cheng J., Yu S., Che L., Meng Z., J Cryst Growth, 291 (2006), 135-139.
  • [10] Aguiara E.C., Ramirez M.A., Moura F., Varelaa J.A., Longoa E., Simoes A.Z., Ceram Int, 39 (2013),13-20.
  • [11] Srivastav S. K., Gajbhiye N. S., J Am Ceram Soc, 95 [11] (2012), 3678-3682.
  • [12] Ghosh S., Dasgupta S., Sen A., Maiti H. S., Mater Res Bull, 40 (2005), 2073-2079.
  • [13] Biasotto G., Simo A.Z., Foschini C.R., Zaghete M.A., Varela J.A., Longo E., Mater Res Bull , 46 (2011), 2543-2547.
  • [14] Achenbach G.D., James W.J., Gerson R., J Am Ceram Soc, 8 (1967), 437-438.
  • [15] Sakar M., Balakumar S., Saravanan P., Jaisankar S.N., Mater Res Bull, 48 (2013), 2878-2885.
  • [16] Xu J-H., Ke H., Jia D-C., Wang W., Zhou Y., J Alloy Compd, 472 (2009), 473-477.
  • [17] Shetty S., Palkar V.R., Pinto R., Pramana, J Phys, 58 (2002), 1027-1030.
  • [18] Ghosh S., Dasgupta S., Sen A., Maiti H.S., J Am Ceram Soc, 88(5) (2005), 1349-1352.
  • [19] Ghosh S., Dasgupta S., Sen A., Maiti H.S., Mater Res Bull, 40 (2005), 2073-2079.
  • [20] Ghosh S., Dasgupta S., Sen A., Maiti H. S., P Mater Res Bull, 40 [12] (2005), 2073–9.
  • [21] Das N., Majumdar R., Sen A., Maiti H.S., Mater Lett, 61 (10) (2007), 2100-2104.
  • [22] Chen C., Cheng J., Yu S., Che L.J., Meng Z.Y., J Cryst Growth, 291 (2006), 135-139.
  • [23] Han J.T., Huang Y.H., Wu X.J., Wu C.L., Wei W., Peng B., Huang W., Goodenough J.B., Adv Mater, 18 (2006), 2145-2148.
  • [24] Xiaomeng L., Jimin X., Yuanzhi S., Jiamin L., J Mater Sci, 42 (2007), 6824-6827.
  • [25] Wang Y., Xu G., Ren Z., Wei X., Weng W., Du P., Shen G., Han G., J Am Ceram Soc, 90 (2007), 2615-2617.
  • [26] C Cho.M., Noh J.H., Cho İ.-S., An J.-S., Hong K.S., Kim J.Y., J Am Ceram Soc, 91 (2008), 3753-3755.
  • [27] Kim J.K., Kim S.S., Kim W.J., Mater Lett, 59 (2005), 4006-4009.
  • [28] Park T.J., Papaefthymiou G.C., Viescas A.J., Moodenbaugh A.R., Wong S.S., Nano Lett, 7 (2007), 766-772.
  • [29] Wang Y., Xu G., Yang L., Ren Z., Wei X., Weng W., Du P., Shen G., Han G., Ceram Int, 35 (2009), 1285-1287.
  • [30] Han S. H., Kim K. S., Kim H. G., Lee H.-G., Kang H.-W., Kim J. S., Cheon C. I., Ceram Int, 36 (2010), 1365-1372.
  • [31] Fruth V., Mitoserıu L., Berger D., Ianculescu A., Matei C., Preda S., Zaharescu M., Prog Solid State Ch, 35 (2007), 193-202.
  • [32] Chen C., Cheng J., Yu S., Che L., Meng Z., J Cryst Growth, 291 (2006), 135-139.
  • [33] Aydin C., El-Nasser H.M., Yakuphanoglu F., Yahia I.S., Aksoy M., J Alloy Compd, 509 (2011), 854-858.
  • [34] Aydin C., Al-Hartomy Omar A., Al-Ghamdi A. A., Al-Hazmi F., Yahia I. S., El-Tantawy F., Yakuphanoglu F., J Electroceram, 29(2012), 155-162.
  • [35] Slamovich E.B., Aksay I.A., J Am Ceram Soc, 79 (1996), 239.
  • [36] Li S., Condrate Sr R.A., Jang S.D., Spriggs R.M., J Mater Sci, 24 (1989), 3873.
  • [37] Kaygili O., Keser S., Ates T., Kirbag S., Yakuphanoglu F., Mater Sci, 22 (2016), 1392-1320.
  • [38] Aydin C., Abd El-Sadek M.S., Zheng K., Yahia I.S., Yakuphanoglu F., Opt Laser Technol, 48 (2013), 447-452.
  • [39] Aydin C., Benhaliliba M., Al-Ghamdi A. A., Gafer Z. H., El-Tantawy F., Yakuphanoglu F., J Electroceram, 31 (2013), 265-270.
  • [40] Guler O., Guler S. H., Yakuphanoglu F., Aydin H., Aydin C., El-Tantawy F., Duraia El-Shazly M., Fouda A. N., Fuller Nanotub Car N, 23 (2014), 865-869.
  • [41] Aydin C., Khusayfan N. M., Al-Ghamdi Ahmed A., El-Tantawy F., Farooq W. A., Yakuphanoglu F., J Sol-Gel Sci Technol, 78 (2016), 68.
  • [42] Aydin C., Al-Hartomy Omar A., Al-Ghamdi A. A., Al-Hazmi F., Yahia I. S., El-Tantawy F., Yakuphanoglu F., J Electroceram, 29 (2012), 155-162.
  • [43] Aydin H., Mansour Sh. A. , Aydin C., A. Al-Ghamdi A., Al-Hartomy O.A., El-Tantawy F., Yakuphanoglu F., J Sol-Gel Sci Technol 64 (2012), 728-733.
  • [44] Aydin C., Mansour Sh. A., Alahmed Z. A., Yakuphanoglu F., J Sol-Gel Sci Technol, 62 (2012), 397-403.
  • [45] Aydin H., Tataroglu A., Al-Ghamdi A. A., Yakuphanoglu F., El-Tantawy F., Farooq W.A., J Alloy Compd, 625 (2015), 18-25.
  • [46] Aydin H., El-Nasser H.M., Aydin C., Al-Ghamdi A. A., Yakuphanoglu F., Appl Surf Sci, 350 (2015), 109-114.
Year 2018, Volume: 1 Issue: 1, 111 - 125, 06.08.2018

Abstract

References

  • [1] Sakar M., Balakumar S., Saravanan P., Jaisankar S.N., Mater Res Bull, 48 (2013), 2878-2885.
  • [2] Mukherjee S., Mitra M. K., J Aust Ceram Soc, 50 [2] (2014), 180-187.
  • [3] Wang Y., Xu G., Yang L., Ren Z., Wei X., Weng W., Du P., Shen G., Han G., J Am Ceram Soc, 90 [11] (2007), 3673-3675.
  • [4] Yang X., Zhang Y., Xu G., Wei X., Ren Z., Shen G., Han G., Mater Res Bull, 48 (2013), 1694-1699.
  • [5] Chen C., Cheng J., Yu S., Che L., Meng Z., J Cryst Growth, 291 (2006),135-139.
  • [6] Gao T., . Chen Z, Huang Q., Niu F., Huang X., Qin L., . Huang Y, Rev Adv Mater Sci, 40 (2015), 97-109.
  • [7] Zhang H., Kajiyoshi K., J Am Ceram Soc, 93 [11] (2010), 3842-3849.
  • [8] Chen X-Z., Qiu Z-C., Zhou J-P., Zhu G., Bian X-B, Liu P., Mater Chem Phys, 126 (2011), 560-567.
  • [9] Chen C., Cheng J., Yu S., Che L., Meng Z., J Cryst Growth, 291 (2006), 135-139.
  • [10] Aguiara E.C., Ramirez M.A., Moura F., Varelaa J.A., Longoa E., Simoes A.Z., Ceram Int, 39 (2013),13-20.
  • [11] Srivastav S. K., Gajbhiye N. S., J Am Ceram Soc, 95 [11] (2012), 3678-3682.
  • [12] Ghosh S., Dasgupta S., Sen A., Maiti H. S., Mater Res Bull, 40 (2005), 2073-2079.
  • [13] Biasotto G., Simo A.Z., Foschini C.R., Zaghete M.A., Varela J.A., Longo E., Mater Res Bull , 46 (2011), 2543-2547.
  • [14] Achenbach G.D., James W.J., Gerson R., J Am Ceram Soc, 8 (1967), 437-438.
  • [15] Sakar M., Balakumar S., Saravanan P., Jaisankar S.N., Mater Res Bull, 48 (2013), 2878-2885.
  • [16] Xu J-H., Ke H., Jia D-C., Wang W., Zhou Y., J Alloy Compd, 472 (2009), 473-477.
  • [17] Shetty S., Palkar V.R., Pinto R., Pramana, J Phys, 58 (2002), 1027-1030.
  • [18] Ghosh S., Dasgupta S., Sen A., Maiti H.S., J Am Ceram Soc, 88(5) (2005), 1349-1352.
  • [19] Ghosh S., Dasgupta S., Sen A., Maiti H.S., Mater Res Bull, 40 (2005), 2073-2079.
  • [20] Ghosh S., Dasgupta S., Sen A., Maiti H. S., P Mater Res Bull, 40 [12] (2005), 2073–9.
  • [21] Das N., Majumdar R., Sen A., Maiti H.S., Mater Lett, 61 (10) (2007), 2100-2104.
  • [22] Chen C., Cheng J., Yu S., Che L.J., Meng Z.Y., J Cryst Growth, 291 (2006), 135-139.
  • [23] Han J.T., Huang Y.H., Wu X.J., Wu C.L., Wei W., Peng B., Huang W., Goodenough J.B., Adv Mater, 18 (2006), 2145-2148.
  • [24] Xiaomeng L., Jimin X., Yuanzhi S., Jiamin L., J Mater Sci, 42 (2007), 6824-6827.
  • [25] Wang Y., Xu G., Ren Z., Wei X., Weng W., Du P., Shen G., Han G., J Am Ceram Soc, 90 (2007), 2615-2617.
  • [26] C Cho.M., Noh J.H., Cho İ.-S., An J.-S., Hong K.S., Kim J.Y., J Am Ceram Soc, 91 (2008), 3753-3755.
  • [27] Kim J.K., Kim S.S., Kim W.J., Mater Lett, 59 (2005), 4006-4009.
  • [28] Park T.J., Papaefthymiou G.C., Viescas A.J., Moodenbaugh A.R., Wong S.S., Nano Lett, 7 (2007), 766-772.
  • [29] Wang Y., Xu G., Yang L., Ren Z., Wei X., Weng W., Du P., Shen G., Han G., Ceram Int, 35 (2009), 1285-1287.
  • [30] Han S. H., Kim K. S., Kim H. G., Lee H.-G., Kang H.-W., Kim J. S., Cheon C. I., Ceram Int, 36 (2010), 1365-1372.
  • [31] Fruth V., Mitoserıu L., Berger D., Ianculescu A., Matei C., Preda S., Zaharescu M., Prog Solid State Ch, 35 (2007), 193-202.
  • [32] Chen C., Cheng J., Yu S., Che L., Meng Z., J Cryst Growth, 291 (2006), 135-139.
  • [33] Aydin C., El-Nasser H.M., Yakuphanoglu F., Yahia I.S., Aksoy M., J Alloy Compd, 509 (2011), 854-858.
  • [34] Aydin C., Al-Hartomy Omar A., Al-Ghamdi A. A., Al-Hazmi F., Yahia I. S., El-Tantawy F., Yakuphanoglu F., J Electroceram, 29(2012), 155-162.
  • [35] Slamovich E.B., Aksay I.A., J Am Ceram Soc, 79 (1996), 239.
  • [36] Li S., Condrate Sr R.A., Jang S.D., Spriggs R.M., J Mater Sci, 24 (1989), 3873.
  • [37] Kaygili O., Keser S., Ates T., Kirbag S., Yakuphanoglu F., Mater Sci, 22 (2016), 1392-1320.
  • [38] Aydin C., Abd El-Sadek M.S., Zheng K., Yahia I.S., Yakuphanoglu F., Opt Laser Technol, 48 (2013), 447-452.
  • [39] Aydin C., Benhaliliba M., Al-Ghamdi A. A., Gafer Z. H., El-Tantawy F., Yakuphanoglu F., J Electroceram, 31 (2013), 265-270.
  • [40] Guler O., Guler S. H., Yakuphanoglu F., Aydin H., Aydin C., El-Tantawy F., Duraia El-Shazly M., Fouda A. N., Fuller Nanotub Car N, 23 (2014), 865-869.
  • [41] Aydin C., Khusayfan N. M., Al-Ghamdi Ahmed A., El-Tantawy F., Farooq W. A., Yakuphanoglu F., J Sol-Gel Sci Technol, 78 (2016), 68.
  • [42] Aydin C., Al-Hartomy Omar A., Al-Ghamdi A. A., Al-Hazmi F., Yahia I. S., El-Tantawy F., Yakuphanoglu F., J Electroceram, 29 (2012), 155-162.
  • [43] Aydin H., Mansour Sh. A. , Aydin C., A. Al-Ghamdi A., Al-Hartomy O.A., El-Tantawy F., Yakuphanoglu F., J Sol-Gel Sci Technol 64 (2012), 728-733.
  • [44] Aydin C., Mansour Sh. A., Alahmed Z. A., Yakuphanoglu F., J Sol-Gel Sci Technol, 62 (2012), 397-403.
  • [45] Aydin H., Tataroglu A., Al-Ghamdi A. A., Yakuphanoglu F., El-Tantawy F., Farooq W.A., J Alloy Compd, 625 (2015), 18-25.
  • [46] Aydin H., El-Nasser H.M., Aydin C., Al-Ghamdi A. A., Yakuphanoglu F., Appl Surf Sci, 350 (2015), 109-114.
There are 46 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Articles
Authors

Cihat Aydın

Handan Aydin This is me

Mustafa Taşkın

Publication Date August 6, 2018
Submission Date July 4, 2018
Acceptance Date August 1, 2018
Published in Issue Year 2018 Volume: 1 Issue: 1

Cite

APA Aydın, C., Aydin, H., & Taşkın, M. (2018). Low-temperature Synthesis and Characterization of Bismuth Ferrite/Graphene Oxide Nano electroceramics by the Hydrothermal Method. Journal of Physical Chemistry and Functional Materials, 1(1), 111-125.
AMA Aydın C, Aydin H, Taşkın M. Low-temperature Synthesis and Characterization of Bismuth Ferrite/Graphene Oxide Nano electroceramics by the Hydrothermal Method. Journal of Physical Chemistry and Functional Materials. August 2018;1(1):111-125.
Chicago Aydın, Cihat, Handan Aydin, and Mustafa Taşkın. “Low-Temperature Synthesis and Characterization of Bismuth Ferrite/Graphene Oxide Nano Electroceramics by the Hydrothermal Method”. Journal of Physical Chemistry and Functional Materials 1, no. 1 (August 2018): 111-25.
EndNote Aydın C, Aydin H, Taşkın M (August 1, 2018) Low-temperature Synthesis and Characterization of Bismuth Ferrite/Graphene Oxide Nano electroceramics by the Hydrothermal Method. Journal of Physical Chemistry and Functional Materials 1 1 111–125.
IEEE C. Aydın, H. Aydin, and M. Taşkın, “Low-temperature Synthesis and Characterization of Bismuth Ferrite/Graphene Oxide Nano electroceramics by the Hydrothermal Method”, Journal of Physical Chemistry and Functional Materials, vol. 1, no. 1, pp. 111–125, 2018.
ISNAD Aydın, Cihat et al. “Low-Temperature Synthesis and Characterization of Bismuth Ferrite/Graphene Oxide Nano Electroceramics by the Hydrothermal Method”. Journal of Physical Chemistry and Functional Materials 1/1 (August 2018), 111-125.
JAMA Aydın C, Aydin H, Taşkın M. Low-temperature Synthesis and Characterization of Bismuth Ferrite/Graphene Oxide Nano electroceramics by the Hydrothermal Method. Journal of Physical Chemistry and Functional Materials. 2018;1:111–125.
MLA Aydın, Cihat et al. “Low-Temperature Synthesis and Characterization of Bismuth Ferrite/Graphene Oxide Nano Electroceramics by the Hydrothermal Method”. Journal of Physical Chemistry and Functional Materials, vol. 1, no. 1, 2018, pp. 111-25.
Vancouver Aydın C, Aydin H, Taşkın M. Low-temperature Synthesis and Characterization of Bismuth Ferrite/Graphene Oxide Nano electroceramics by the Hydrothermal Method. Journal of Physical Chemistry and Functional Materials. 2018;1(1):111-25.