Research Article
BibTex RIS Cite

THE EFFECT OF CAROB (CERATONIA SILIQUA L.) AGAINST NICOTINE BASED OXIDATIVE STRESS

Year 2024, Volume: 25 Issue: 1 - OCAK 2024 SAYISI, 8 - 15, 17.01.2024
https://doi.org/10.18229/kocatepetip.1133332

Abstract

OBJECTIVE: In this study the antioxidant effect of carob plant, ıt's effects of nicotine-induced oxidative stress and the number of pyramidal cells in the rat hippocampus in cornu ammonis (CA) were investigated.
MATERIAL AND METHODS: In the study, 28 adult Wistar Albino male rats were used. Rats are divided into four groups as control group, carob group, nicotine group and nicotine + carob group. Nicotine was applied to the experimental group, and carob extract was applied to the treatment group as well as nicotine. Superoxide dismutase (SOD), glutathione (GSH), glutathione disulfide (GSSG), total oxidant capacity (TOS), total antioxidant capacity (TAS) values were measured by spectrophotometric analysis on the lung, brain, kidney, heart and liver tissues. Oxidative stress index (OSI) and GSH / GSSG values, respectively, were calculated as TOS/TAS and GSH/GSSG rates. The number of pyramidal cells in the CA was estimated using the optical fractionator technique.
RESULTS: It is seen that the TAS level in the kidney tissue of the nicotine group is significantly lower than the control and carob groups. In brain tissue, the TAS level of the nicotine group was significantly lower than that of other groups (p<0.001). The OSI value of the nicotine group was significantly higher in liver tissue compared to the control group (p<0.001). Nicotine exposure has been shown to cause a significant reduction in the number of pyramidal cells in CA.
CONCLUSIONS: It is understood that Carob plant is an important phytomedical plant that has antioxidant properties against nicotine by increasing TAS level in oxidative stress formation.

References

  • 1. Chand HS, Muthumalage T, Maziak W, Rahman I. Pulmonary toxicity and the pathophysiology of electronic cigarette, or vaping product, use associated lung injury. Front Pharmacol. 2020;10:1619.
  • 2. Köseoğlu E, Fatih U, Saraymen R, ve ark. Elektronik sigara kullanımına objektif bakış. Cukurova Medical Journal. 2014;39(3):572–80.
  • 3. Sütçü R, Doğuç D, Aktürk O, ve ark. Subkronik nikotin uygulamasının, ratlarda lipid peroksidasyonu ve antioksidan enzim aktivitelerine etkisi. SDÜ Tıp Fakültesi Dergisi. 2006;13(3):17–20.
  • 4. Saad A Ben, Rjeibi I, Brahmi N, et al. Nicotine-induced oxidative stress, testis injury, AChE inhibition and brain damage alleviated by Mentha spicata. Inflammopharmacology. 2020;28(4):939–48.
  • 5. Motaghinejad M, Motevalian M, Fatima S, et al. The neuroprotective effect of curcumin against nicotine-induced neurotoxicity is mediated by CREB–BDNF signaling pathway. Neurochem Res. 2017;42(10):2921–32.
  • 6. Mosbah R, Yousef MI, Mantovani A. Nicotine-induced reproductive toxicity, oxidative damage, histological changes and haematotoxicity in male rats: the protective effects of green tea extract. Exp Toxicol Pathol. 2015;67(3):253–9.
  • 7. Pryor WA, Stone K. Oxidants in Cigarette Smoke Radicals, Hydrogen Peroxide, Peroxynitrate, and Peroxynitrite a. Ann N Y Acad Sci. 1993;686(1):12–27.
  • 8. Nidugala H, Avadhani R, Prabhu A, et al. The toxicological and histopathological effects of aqueous and ethanolic extracts of Cyperus rotundus rhizomes in ehrlich ascites carcinoma induced in Swiss albino mice. J Anat Soc India. 2019;68(2):99.
  • 9. Yilmaz S, Alpa Ş, Nisari M, et al. Examining the antitumoral effect of cornelian cherry (Cornus mas) in ehrlich ascites tumor-induced mice. J Anat Soc India. 2019;68:16-22.
  • 10. Navarro A, Boveris A. Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Integr Comp Physiol. 2004;287(5):R1244–9.
  • 11. Faydaoğlu E, Sürücüoğlu M. Tıbbi ve aromatik bitkilerin antimikrobiyal, antioksidan aktiviteleri ve kullanım olanakları. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2013;6(2):233–65.
  • 12. Gübbük H, Tozlu İ, Doğan A, ve ark. Çevre, endüstriyel kullanım ve insan sağlığı yönleriyle keçiboynuzu. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi. 2016;21(2):207-15.
  • 13. Pazır F, Alper Y. Keçiboynuzu Meyvesi Ceratonia siliqua L. ve Sağlık. Akademik Gıda. 2016;14(3):302–6.
  • 14. Souli A, Sebai H, Chehimi L, et al. Hepatoprotective effect of carob against acute ethanol-induced oxidative stress in rat. Toxicol Ind Health. 2015;31(9):802–10.
  • 15. Ahmed MM. Biochemical studies on nephroprotective effect of carob (Ceratonia siliqua L.) growing in Egypt. Nat Sci. 2010;8(3):41–7.
  • 16. Xu Y, Ku B, Cui L, et al. Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. Brain Res. 2007;1162:9–18.
  • 17. Odaci E, Bas O, Kaplan S. Effects of prenatal exposure to a 900 MHz electromagnetic field on the dentate gyrus of rats: a stereological and histopathological study. Brain Res. 2008;1238:224–9.
  • 18. Rosato‐Siri M, Cattaneo A, Cherubini E. Nicotine‐induced enhancement of synaptic plasticity at CA3–CA1 synapses requires GABAergic interneurons in adult anti‐NGF mice. J Physiol. 2006;576(2):361–77. 19. Bozinoff N, Le Foll B. Understanding the implications of the biobehavioral basis of nicotine addiction and its impact on the efficacy of treatment. Expert Rev Respir Med. 2018;12(9):793–804.
  • 20. Öztürk O, Gümüşlü S. Changes in glucose-6-phosphate dehydrogenase, copper, zinc-superoxide dismutase and catalase activities, glutathione and its metabolizing enzymes, and lipid peroxidation in rat erythrocytes with age. Exp Gerontol. 2004;39(2):211–6.
  • 21. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005; 38: 1103–11.
  • 22. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004; 37: 277–85.
  • 23. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979; 95: 351–8.
  • 24. Hausdorf J, Lemmens MAM, Kaplan S, et al. Extracorporeal shockwave application to the distal femur of rabbits diminishes the number of neurons immunoreactive for substance P in dorsal root ganglia L5. Brain Res. 2008;1207:96–101.
  • 25. Sarsilmaz M, Kaplan S, Songur A, et al. Effects of postnatal formaldehyde exposure on pyramidal cell number, volume of cell layer in hippocampus and hemisphere in the rat: a stereological study. Brain Res. 2007;1145:157–67.
  • 26. Bas O, Odaci E, Mollaoglu H, et al. Chronic prenatal exposure to the 900 megahertz electromagnetic field induces pyramidal cell loss in the hippocampus of newborn rats. Toxicol Ind Health. 2009;25(6):377–84.
  • 27. Bas O, Odaci E, Kaplan S, et al. 900 MHz electromagnetic field exposure affects qualitative and quantitative features of hippocampal pyramidal cells in the adult female rat. Brain Res. 2009;1265:178–85.
  • 28. Zou W, Zou Y, Zhao Z, et al. Nicotine-induced epithelial-mesenchymal transition via Wnt/β-catenin signaling in human airway epithelial cells. Am J Physiol Cell Mol Physiol. 2013;304(4):L199–209.
  • 29. Rezonzew G, Chumley P, Feng W, et al. Nicotine exposure and the progression of chronic kidney disease: role of the α7-nicotinic acetylcholine receptor. Am J Physiol Physiol. 2012;303(2):F304–12.
  • 30. Yılmaz H, Ertekin T, Atay E, et al. Antioxidant role of melatonin against nicotine’s teratogenic effects on embryonic bone development. Iran J Basic Med Sci. 2018;21(8):787.
  • 31. Nisari M, Yılmaz S, Göçmen AY, et al. The protective effect of caffeine and melatonin on antioxidant enzymes in rat fetal lung tissues. J Surg Med. 2019;3(11):805–8.
  • 32. Yılmaz S, Göçmen Ay, Üner Ak, et al. The protective role of melatonin against the effect of caffeine on embryonic kidney. Reactions. 2020;1:2.
  • 33. Pintican D, Strilciuc Ş, Armean S-M et al. Effects of ethanol, nicotine and caffeine gestational exposure of female rats on lung and brain tissues in fetuses: morphological and biological study. Rom J Morphol Embryol. 2019;60(2):643–51.
  • 34. Abdel-Rahman M, Salem FEH, Bauomy AA, et al. Ameliorative effect of carob aqueous extract on water pipe smoke induced-toxicity in adult male albino rats. Int J Pharm Pharm Sci. 2017; 9(1): 246-53.
  • 35. Salford LG, Brun AE, Eberhardt JL, et al. Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ Health Perspect. 2003;111(7):881–3.
  • 36. Rtibi K, Selmi S, Jabri M-A, et al. Protective effect of Ceratonia siliqua L. against a dextran sulfate sodium-induced alterations in liver and kidney in rat. J Med Food. 2016;19(9):882–9.
  • 37. Akkaya H, Yilmaz O. Antioxidant Capacity and Radical Scavenging Activity of Silybum marianum and Ceratonia siliqua. Ekoloji Derg. 2012;21(82):9-16.
  • 38. Temiz MA, Temur A, Çelik I. Antioxidant role and hepatoprotective effects of carob (Ceratonia siliqua L.) seeds against ethanol-induced oxidative stress in rats. J Food Nutr Res. 2015;3(1):57–61.
  • 39. Rtibi K, Jabri MA, Selmi S, et al. Gastroprotective effect of carob (Ceratonia siliqua L.) against ethanol-induced oxidative stress in rat. BMC Complement Altern Med. 2015;15(1):1–8.
  • 40. Qasem MA, Noordin MI, Arya A, et al. Evaluation of the glycemic effect of Ceratonia siliqua pods (Carob) on a streptozotocin-nicotinamide induced diabetic rat model. Peer J. 2018;6:e4788.

KEÇİBOYNUZUNUN (CERATONİA SİLİQUA L.) NİKOTİN BAZLI OKSİDATİF STRESE ETKİSİ

Year 2024, Volume: 25 Issue: 1 - OCAK 2024 SAYISI, 8 - 15, 17.01.2024
https://doi.org/10.18229/kocatepetip.1133332

Abstract

AMAÇ: Bu çalışmada keçiboynuzu bitkisinin antioksidan etkisi, nikotin kaynaklı oksidatif strese ve rat hipokampüsü cornu ammonisinde (CA) piramidal hücre sayısına etkisi araştırılmıştır.
GEREÇ VE YÖNTEM: Çalışmada 28 adet yetişkin Wistar Albino erkek rat kullanıldı. Ratlar kontrol grubu, keçiboynuzu grubu, nikotin grubu ve nikotin+keçiboynuzu grubu olmak üzere dört gruba ayrıldı. Deney grubuna nikotin, tedavi grubuna ise nikotin ile birlikte keçiboynuzu ekstresi uygulandı. Akciğer, beyin, böbrek, kalp ve karaciğer dokularında superoksit dismutaz (SOD), glutatyon (GSH), glutatyon disülfit (GSSG), total oksidan seviye (TOS), total antioksidan seviye (TAS) değerleri spektrofotometrik analiz ile ölçüldü. Oksidatif stres indeksi (OSI) ve GSH/GSSG değerleri sırasıyla TOS/TAS ve GSH/GSSG oranları şeklinde hesaplandı. CA'daki piramidal hücre sayısı, optik fraksiyonlama tekniği kullanılarak belirlendi.
BULGULAR: Nikotin grubunun böbrek dokusundaki TAS düzeyinin kontrol ve keçiboynuzu gruplarına göre anlamlı derecede düşük olduğu görüldü. Beyin dokusunda, nikotin grubunun TAS düzeyi diğer gruplara göre önemli ölçüde düşüktü (p<0.001). Nikotin grubunun OSI değeri karaciğer dokusunda kontrol grubuna göre anlamlı derecede yüksekti (p<0.001). Nikotine maruz kalmanın CA'daki piramidal hücre sayısında önemli bir azalmaya neden olduğu gösterildi.
SONUÇ: Keçiboynuzu bitkisinin oksidatif stres oluşumunda TAS düzeyini artırarak nikotine karşı antioksidan özelliklere sahip önemli bir fitomedikal bitki olabileceği kanısına varılmıştır.

References

  • 1. Chand HS, Muthumalage T, Maziak W, Rahman I. Pulmonary toxicity and the pathophysiology of electronic cigarette, or vaping product, use associated lung injury. Front Pharmacol. 2020;10:1619.
  • 2. Köseoğlu E, Fatih U, Saraymen R, ve ark. Elektronik sigara kullanımına objektif bakış. Cukurova Medical Journal. 2014;39(3):572–80.
  • 3. Sütçü R, Doğuç D, Aktürk O, ve ark. Subkronik nikotin uygulamasının, ratlarda lipid peroksidasyonu ve antioksidan enzim aktivitelerine etkisi. SDÜ Tıp Fakültesi Dergisi. 2006;13(3):17–20.
  • 4. Saad A Ben, Rjeibi I, Brahmi N, et al. Nicotine-induced oxidative stress, testis injury, AChE inhibition and brain damage alleviated by Mentha spicata. Inflammopharmacology. 2020;28(4):939–48.
  • 5. Motaghinejad M, Motevalian M, Fatima S, et al. The neuroprotective effect of curcumin against nicotine-induced neurotoxicity is mediated by CREB–BDNF signaling pathway. Neurochem Res. 2017;42(10):2921–32.
  • 6. Mosbah R, Yousef MI, Mantovani A. Nicotine-induced reproductive toxicity, oxidative damage, histological changes and haematotoxicity in male rats: the protective effects of green tea extract. Exp Toxicol Pathol. 2015;67(3):253–9.
  • 7. Pryor WA, Stone K. Oxidants in Cigarette Smoke Radicals, Hydrogen Peroxide, Peroxynitrate, and Peroxynitrite a. Ann N Y Acad Sci. 1993;686(1):12–27.
  • 8. Nidugala H, Avadhani R, Prabhu A, et al. The toxicological and histopathological effects of aqueous and ethanolic extracts of Cyperus rotundus rhizomes in ehrlich ascites carcinoma induced in Swiss albino mice. J Anat Soc India. 2019;68(2):99.
  • 9. Yilmaz S, Alpa Ş, Nisari M, et al. Examining the antitumoral effect of cornelian cherry (Cornus mas) in ehrlich ascites tumor-induced mice. J Anat Soc India. 2019;68:16-22.
  • 10. Navarro A, Boveris A. Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Integr Comp Physiol. 2004;287(5):R1244–9.
  • 11. Faydaoğlu E, Sürücüoğlu M. Tıbbi ve aromatik bitkilerin antimikrobiyal, antioksidan aktiviteleri ve kullanım olanakları. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2013;6(2):233–65.
  • 12. Gübbük H, Tozlu İ, Doğan A, ve ark. Çevre, endüstriyel kullanım ve insan sağlığı yönleriyle keçiboynuzu. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi. 2016;21(2):207-15.
  • 13. Pazır F, Alper Y. Keçiboynuzu Meyvesi Ceratonia siliqua L. ve Sağlık. Akademik Gıda. 2016;14(3):302–6.
  • 14. Souli A, Sebai H, Chehimi L, et al. Hepatoprotective effect of carob against acute ethanol-induced oxidative stress in rat. Toxicol Ind Health. 2015;31(9):802–10.
  • 15. Ahmed MM. Biochemical studies on nephroprotective effect of carob (Ceratonia siliqua L.) growing in Egypt. Nat Sci. 2010;8(3):41–7.
  • 16. Xu Y, Ku B, Cui L, et al. Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. Brain Res. 2007;1162:9–18.
  • 17. Odaci E, Bas O, Kaplan S. Effects of prenatal exposure to a 900 MHz electromagnetic field on the dentate gyrus of rats: a stereological and histopathological study. Brain Res. 2008;1238:224–9.
  • 18. Rosato‐Siri M, Cattaneo A, Cherubini E. Nicotine‐induced enhancement of synaptic plasticity at CA3–CA1 synapses requires GABAergic interneurons in adult anti‐NGF mice. J Physiol. 2006;576(2):361–77. 19. Bozinoff N, Le Foll B. Understanding the implications of the biobehavioral basis of nicotine addiction and its impact on the efficacy of treatment. Expert Rev Respir Med. 2018;12(9):793–804.
  • 20. Öztürk O, Gümüşlü S. Changes in glucose-6-phosphate dehydrogenase, copper, zinc-superoxide dismutase and catalase activities, glutathione and its metabolizing enzymes, and lipid peroxidation in rat erythrocytes with age. Exp Gerontol. 2004;39(2):211–6.
  • 21. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005; 38: 1103–11.
  • 22. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004; 37: 277–85.
  • 23. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979; 95: 351–8.
  • 24. Hausdorf J, Lemmens MAM, Kaplan S, et al. Extracorporeal shockwave application to the distal femur of rabbits diminishes the number of neurons immunoreactive for substance P in dorsal root ganglia L5. Brain Res. 2008;1207:96–101.
  • 25. Sarsilmaz M, Kaplan S, Songur A, et al. Effects of postnatal formaldehyde exposure on pyramidal cell number, volume of cell layer in hippocampus and hemisphere in the rat: a stereological study. Brain Res. 2007;1145:157–67.
  • 26. Bas O, Odaci E, Mollaoglu H, et al. Chronic prenatal exposure to the 900 megahertz electromagnetic field induces pyramidal cell loss in the hippocampus of newborn rats. Toxicol Ind Health. 2009;25(6):377–84.
  • 27. Bas O, Odaci E, Kaplan S, et al. 900 MHz electromagnetic field exposure affects qualitative and quantitative features of hippocampal pyramidal cells in the adult female rat. Brain Res. 2009;1265:178–85.
  • 28. Zou W, Zou Y, Zhao Z, et al. Nicotine-induced epithelial-mesenchymal transition via Wnt/β-catenin signaling in human airway epithelial cells. Am J Physiol Cell Mol Physiol. 2013;304(4):L199–209.
  • 29. Rezonzew G, Chumley P, Feng W, et al. Nicotine exposure and the progression of chronic kidney disease: role of the α7-nicotinic acetylcholine receptor. Am J Physiol Physiol. 2012;303(2):F304–12.
  • 30. Yılmaz H, Ertekin T, Atay E, et al. Antioxidant role of melatonin against nicotine’s teratogenic effects on embryonic bone development. Iran J Basic Med Sci. 2018;21(8):787.
  • 31. Nisari M, Yılmaz S, Göçmen AY, et al. The protective effect of caffeine and melatonin on antioxidant enzymes in rat fetal lung tissues. J Surg Med. 2019;3(11):805–8.
  • 32. Yılmaz S, Göçmen Ay, Üner Ak, et al. The protective role of melatonin against the effect of caffeine on embryonic kidney. Reactions. 2020;1:2.
  • 33. Pintican D, Strilciuc Ş, Armean S-M et al. Effects of ethanol, nicotine and caffeine gestational exposure of female rats on lung and brain tissues in fetuses: morphological and biological study. Rom J Morphol Embryol. 2019;60(2):643–51.
  • 34. Abdel-Rahman M, Salem FEH, Bauomy AA, et al. Ameliorative effect of carob aqueous extract on water pipe smoke induced-toxicity in adult male albino rats. Int J Pharm Pharm Sci. 2017; 9(1): 246-53.
  • 35. Salford LG, Brun AE, Eberhardt JL, et al. Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ Health Perspect. 2003;111(7):881–3.
  • 36. Rtibi K, Selmi S, Jabri M-A, et al. Protective effect of Ceratonia siliqua L. against a dextran sulfate sodium-induced alterations in liver and kidney in rat. J Med Food. 2016;19(9):882–9.
  • 37. Akkaya H, Yilmaz O. Antioxidant Capacity and Radical Scavenging Activity of Silybum marianum and Ceratonia siliqua. Ekoloji Derg. 2012;21(82):9-16.
  • 38. Temiz MA, Temur A, Çelik I. Antioxidant role and hepatoprotective effects of carob (Ceratonia siliqua L.) seeds against ethanol-induced oxidative stress in rats. J Food Nutr Res. 2015;3(1):57–61.
  • 39. Rtibi K, Jabri MA, Selmi S, et al. Gastroprotective effect of carob (Ceratonia siliqua L.) against ethanol-induced oxidative stress in rat. BMC Complement Altern Med. 2015;15(1):1–8.
  • 40. Qasem MA, Noordin MI, Arya A, et al. Evaluation of the glycemic effect of Ceratonia siliqua pods (Carob) on a streptozotocin-nicotinamide induced diabetic rat model. Peer J. 2018;6:e4788.
There are 39 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Articles
Authors

Mustafa Nisari 0000-0001-7469-8921

Seher Yilmaz 0000-0003-4551-995X

Yeşim Göçmen 0000-0002-8511-639X

Ünal Öztekin 0000-0001-9568-9442

Şükrü Ateş 0000-0001-7096-2481

Gökçe Şeker Karatoprak 0000-0001-5829-6914

Neriman İnanç 0000-0001-5026-4133

Publication Date January 17, 2024
Acceptance Date January 25, 2023
Published in Issue Year 2024 Volume: 25 Issue: 1 - OCAK 2024 SAYISI

Cite

APA Nisari, M., Yilmaz, S., Göçmen, Y., Öztekin, Ü., et al. (2024). THE EFFECT OF CAROB (CERATONIA SILIQUA L.) AGAINST NICOTINE BASED OXIDATIVE STRESS. Kocatepe Tıp Dergisi, 25(1), 8-15. https://doi.org/10.18229/kocatepetip.1133332
AMA Nisari M, Yilmaz S, Göçmen Y, Öztekin Ü, Ateş Ş, Şeker Karatoprak G, İnanç N. THE EFFECT OF CAROB (CERATONIA SILIQUA L.) AGAINST NICOTINE BASED OXIDATIVE STRESS. KTD. January 2024;25(1):8-15. doi:10.18229/kocatepetip.1133332
Chicago Nisari, Mustafa, Seher Yilmaz, Yeşim Göçmen, Ünal Öztekin, Şükrü Ateş, Gökçe Şeker Karatoprak, and Neriman İnanç. “THE EFFECT OF CAROB (CERATONIA SILIQUA L.) AGAINST NICOTINE BASED OXIDATIVE STRESS”. Kocatepe Tıp Dergisi 25, no. 1 (January 2024): 8-15. https://doi.org/10.18229/kocatepetip.1133332.
EndNote Nisari M, Yilmaz S, Göçmen Y, Öztekin Ü, Ateş Ş, Şeker Karatoprak G, İnanç N (January 1, 2024) THE EFFECT OF CAROB (CERATONIA SILIQUA L.) AGAINST NICOTINE BASED OXIDATIVE STRESS. Kocatepe Tıp Dergisi 25 1 8–15.
IEEE M. Nisari, “THE EFFECT OF CAROB (CERATONIA SILIQUA L.) AGAINST NICOTINE BASED OXIDATIVE STRESS”, KTD, vol. 25, no. 1, pp. 8–15, 2024, doi: 10.18229/kocatepetip.1133332.
ISNAD Nisari, Mustafa et al. “THE EFFECT OF CAROB (CERATONIA SILIQUA L.) AGAINST NICOTINE BASED OXIDATIVE STRESS”. Kocatepe Tıp Dergisi 25/1 (January 2024), 8-15. https://doi.org/10.18229/kocatepetip.1133332.
JAMA Nisari M, Yilmaz S, Göçmen Y, Öztekin Ü, Ateş Ş, Şeker Karatoprak G, İnanç N. THE EFFECT OF CAROB (CERATONIA SILIQUA L.) AGAINST NICOTINE BASED OXIDATIVE STRESS. KTD. 2024;25:8–15.
MLA Nisari, Mustafa et al. “THE EFFECT OF CAROB (CERATONIA SILIQUA L.) AGAINST NICOTINE BASED OXIDATIVE STRESS”. Kocatepe Tıp Dergisi, vol. 25, no. 1, 2024, pp. 8-15, doi:10.18229/kocatepetip.1133332.
Vancouver Nisari M, Yilmaz S, Göçmen Y, Öztekin Ü, Ateş Ş, Şeker Karatoprak G, İnanç N. THE EFFECT OF CAROB (CERATONIA SILIQUA L.) AGAINST NICOTINE BASED OXIDATIVE STRESS. KTD. 2024;25(1):8-15.

88x31.png
Bu Dergi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.