On the Generalized Hermite-Hadamard Inequalities Involving Beta Function
Year 2021,
Volume: 9 Issue: 1, 112 - 118, 28.04.2021
Mehmet Zeki Sarıkaya
,
Fatih Ata
Abstract
In this paper, we establish new generalized fractional integral inequalities of Hermite-Hadamard type which cover the previously published result such as Riemann integral, Riemann-Liouville fractional integral, k-Riemann-Liouville fractional integral.
References
- [1] A. Akkurt, Z. Kacar, H. Yildirim, Generalized Fractional Integral Inequalities for Continuous Random Variables,
Journal of Probability and Statistics 2015(2015), Article ID 958980.
- [2] A. Akkurt, M. E. Yildirim, H. Yildirim, On some integral inequalities for (k,h)-Riemann-Liouville fractional inte-
gral, New Trends in Mathematical Sciences (NTMSCI) 4 (1), 138-146, 2016.
- [3] S. S. Dragomir and R.P. Agarwal, Two inequalities for di¤ erentiable mappings and applications to special means
of real numbers and to trapezoidal formula, Appl. Math. lett., 11(5) (1998), 91-95.
- [4] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional di¤ erential equations,
North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, 2006.
- [5] U. S. Kirmaci, Inequalities for di¤ erentiable mappings and applications to special means of real numbers and to
midpoint formula, Applied Mathematics and Computation 147 (2004) 137-46
- [6] R. Goreno and F. Mainardi, Fractional calculus: integral and di¤ erential equations of fractional order, Springer
Verlag, Wien (1997), 223-276.
- [7] J. Hadamard, Etude sur les proprietes des fonctions entieres et en particulier dune fonction considree par, Rie-
mann, J. Math. Pures. et Appl. 58 (1893), 171-215.
- [8] S. Miller and B. Ross, An introduction to the fractional calculus and fractional di¤ erential equations, John Wiley
& Sons, USA, 1993, p.2.
- [9] R. K. Raina, On generalized Wrights hypergeometric functions and fractional calculus operators, East Asian Math.
J., 21(2) (2005), 191-203.
- [10] M. Z. Sarikaya, E. Set, H. Yaldiz and N. Basak, Hermite-Hadamard 0s inequalities for fractional integrals and related
fractional inequalities, Mathematical and Computer Modelling, 57 (2013) 2403-2407.
- [11] M. Z. Sarikaya and H. Yaldiz, On generalization integral inequalities for fractional integrals, Nihonkai Math. J.,
Vol.25(2014), 93-104.
- [12] M. Z. Sarikaya, H. Yaldiz and N. Basak, New fractional inequalities of Ostrowski-Grüss type, Le Matematiche, Vol.
LXIX (2014)-Fasc. I, pp. 227-235.
- [13] M. Z. Sarikaya and F. Ertu¼gral, On the generalized Hermite-Hadamard inequalities, Accepted in Annals of the
University of Craiova - Mathematics and Computer Science Series), 2019.
- [14] M. E. Ozdemir, S.S. Dragomir and C. Yildiz, The Hadamards inequality for convex function via fractional integrals,
Acta Mathematica Scientia 2013,33B(5):1293-1299.
- [15] T. Ali, M. A. Khan and Y. Khurshidi, Hermite-Hadamard inequality for fractional integrals via eta-convex functions,
Acta Mathematica Universitatis Comenianae, 86(1), (2017), 153-164.
- [16] M. Kunt and ·I. ·I¸scan, Hermite-Hadamard-Fejér type inequalities for p-convex functions. Arab J. Math. Sci. 23
(2017), no. 2, 215-230.
- [17] M. Kunt and ·I. ·I¸scan, Hermite-Hadamard type inequalities for harmonically ( , m)-convex functions by using
fractional integrals, Konuralp J. Math. 5 (2017), no. 1, 201-213.
- [18] M. Kirane, B. T. Torebek, Hermite-Hadamard, Hermite-Hadamard-Fejer, Dragomir-Agarwal and Pachpatte Type
Inequalities for Convex Functions via Fractional Integrals, arXiv:1701.00092.
- [19] M. Iqbal, M. I. Bhatti, and K. Nazeer, Generalization of Inequalities Analogous to HermiteHadamard Inequality
via Fractional Integrals, Bull. Korean Math. Soc, 52 (2015), No. 3, 707-716.
- [20] S. Mubeen and G. M Habibullah, k-Fractional integrals and application, Int. J. Contemp. Math. Sciences, Vol. 7,
2012, no. 2, 89 - 94.
- [21] G. Farid, A. Rehman and M. Zahra, On Hadamard inequalities for k-fractional integrals, Nonlinear Functional
Analysis and Applications Vol. 21, No. 3 (2016), pp. 463-478.
- [22] R. Hussain, A. Ali, G. Gulshan, A. Latif and M. Muddassar, Generalized co-ordinated integral inequalities for
convex functions by way of k -fractional derivatives, Miskolc Mathematical Notesa Publications of the university
of Miskolc. (Submitted)
- [23] R. Hussain, A. Ali, A. Latif, G. Gulshan, Some kfractional associates of HermiteHadamards inequality for
quasiconvex functions and applications to special means, Fractional Di¤erential Calculus, Volume 7, Number 2
(2017), 301-309.
Year 2021,
Volume: 9 Issue: 1, 112 - 118, 28.04.2021
Mehmet Zeki Sarıkaya
,
Fatih Ata
References
- [1] A. Akkurt, Z. Kacar, H. Yildirim, Generalized Fractional Integral Inequalities for Continuous Random Variables,
Journal of Probability and Statistics 2015(2015), Article ID 958980.
- [2] A. Akkurt, M. E. Yildirim, H. Yildirim, On some integral inequalities for (k,h)-Riemann-Liouville fractional inte-
gral, New Trends in Mathematical Sciences (NTMSCI) 4 (1), 138-146, 2016.
- [3] S. S. Dragomir and R.P. Agarwal, Two inequalities for di¤ erentiable mappings and applications to special means
of real numbers and to trapezoidal formula, Appl. Math. lett., 11(5) (1998), 91-95.
- [4] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional di¤ erential equations,
North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, 2006.
- [5] U. S. Kirmaci, Inequalities for di¤ erentiable mappings and applications to special means of real numbers and to
midpoint formula, Applied Mathematics and Computation 147 (2004) 137-46
- [6] R. Goreno and F. Mainardi, Fractional calculus: integral and di¤ erential equations of fractional order, Springer
Verlag, Wien (1997), 223-276.
- [7] J. Hadamard, Etude sur les proprietes des fonctions entieres et en particulier dune fonction considree par, Rie-
mann, J. Math. Pures. et Appl. 58 (1893), 171-215.
- [8] S. Miller and B. Ross, An introduction to the fractional calculus and fractional di¤ erential equations, John Wiley
& Sons, USA, 1993, p.2.
- [9] R. K. Raina, On generalized Wrights hypergeometric functions and fractional calculus operators, East Asian Math.
J., 21(2) (2005), 191-203.
- [10] M. Z. Sarikaya, E. Set, H. Yaldiz and N. Basak, Hermite-Hadamard 0s inequalities for fractional integrals and related
fractional inequalities, Mathematical and Computer Modelling, 57 (2013) 2403-2407.
- [11] M. Z. Sarikaya and H. Yaldiz, On generalization integral inequalities for fractional integrals, Nihonkai Math. J.,
Vol.25(2014), 93-104.
- [12] M. Z. Sarikaya, H. Yaldiz and N. Basak, New fractional inequalities of Ostrowski-Grüss type, Le Matematiche, Vol.
LXIX (2014)-Fasc. I, pp. 227-235.
- [13] M. Z. Sarikaya and F. Ertu¼gral, On the generalized Hermite-Hadamard inequalities, Accepted in Annals of the
University of Craiova - Mathematics and Computer Science Series), 2019.
- [14] M. E. Ozdemir, S.S. Dragomir and C. Yildiz, The Hadamards inequality for convex function via fractional integrals,
Acta Mathematica Scientia 2013,33B(5):1293-1299.
- [15] T. Ali, M. A. Khan and Y. Khurshidi, Hermite-Hadamard inequality for fractional integrals via eta-convex functions,
Acta Mathematica Universitatis Comenianae, 86(1), (2017), 153-164.
- [16] M. Kunt and ·I. ·I¸scan, Hermite-Hadamard-Fejér type inequalities for p-convex functions. Arab J. Math. Sci. 23
(2017), no. 2, 215-230.
- [17] M. Kunt and ·I. ·I¸scan, Hermite-Hadamard type inequalities for harmonically ( , m)-convex functions by using
fractional integrals, Konuralp J. Math. 5 (2017), no. 1, 201-213.
- [18] M. Kirane, B. T. Torebek, Hermite-Hadamard, Hermite-Hadamard-Fejer, Dragomir-Agarwal and Pachpatte Type
Inequalities for Convex Functions via Fractional Integrals, arXiv:1701.00092.
- [19] M. Iqbal, M. I. Bhatti, and K. Nazeer, Generalization of Inequalities Analogous to HermiteHadamard Inequality
via Fractional Integrals, Bull. Korean Math. Soc, 52 (2015), No. 3, 707-716.
- [20] S. Mubeen and G. M Habibullah, k-Fractional integrals and application, Int. J. Contemp. Math. Sciences, Vol. 7,
2012, no. 2, 89 - 94.
- [21] G. Farid, A. Rehman and M. Zahra, On Hadamard inequalities for k-fractional integrals, Nonlinear Functional
Analysis and Applications Vol. 21, No. 3 (2016), pp. 463-478.
- [22] R. Hussain, A. Ali, G. Gulshan, A. Latif and M. Muddassar, Generalized co-ordinated integral inequalities for
convex functions by way of k -fractional derivatives, Miskolc Mathematical Notesa Publications of the university
of Miskolc. (Submitted)
- [23] R. Hussain, A. Ali, A. Latif, G. Gulshan, Some kfractional associates of HermiteHadamards inequality for
quasiconvex functions and applications to special means, Fractional Di¤erential Calculus, Volume 7, Number 2
(2017), 301-309.