Research Article
BibTex RIS Cite

Comparison of CHA₂DS₂VASc and R₂CHA₂DS₂VASc score estimation of in-hospital mortality among COVID-19 patients

Year 2024, Volume: 16 Issue: 1, 46 - 53, 14.03.2024
https://doi.org/10.18521/ktd.1282982

Abstract

Objectives: This study aims to compare of CHA₂DS₂VASc and R₂CHA₂DS₂VASc score estimation of in-hospital mortality among COVID-19 patients and find a new scoring system that can better predict the hospital mortality by adding some laboratory parameters to the CHA₂DS₂VASc and R₂CHA₂DS₂VASc scores.
Methods: This is a cross-sectional study. A total of 1076 COVID-19 patients with confirmed COVID-19 PCR tests were included from September 2020 to March 2021. Age, sex, comorbidity, laboratory, survival times, and death status of the patients were recorded. The scores CHA₂DS₂VASc and R₂CHA₂DS₂VASc of each patient were calculated. A new mortality prediction score was created to establish the most effective model with logistic regression analysis, including laboratory values.
Results: Of the 1076 patients hospitalized for COVID-19, 15.1% died, while 84.9% survived. There was no significant difference between the two groups in sex. All comorbidities were significantly higher in the deceased than in the survivors (p<0.001). The survivors' hemoglobin, thrombocyte, and eGFR values were significantly higher. The C-reactive protein (CRP), aspartate aminotransferase (AST), and neutrophil-to-lymphocyte ratio (NLR) were found to be associated with mortality, and the CAN-R₂CHA₂DS₂VASc score was created by including these three laboratory parameters. The ROC curves of the scores CHA₂DS₂VASc (AUC=0.810), R₂CHA₂DS₂VASc (AUC=0.824), and CAN-R₂CHA₂DS₂VASc (AUC=0.909) were analyzed. The CAN-R₂CHA₂DS₂VASc score was superior to other scores (p<0.001). The sensitivity and specificity of the CAN-R₂CHA₂DS₂VASc score were 79.8% and 86.5%, respectively, while the criterion was >6 points.
Conclusion: The CAN-R₂CHA₂DS₂VASc score is a useful tool for estimating hospital mortality in COVID-19 patients. The CAN-R₂CHA₂DS₂VASc score was superior to the R₂CHA₂DS₂VASc and CHA₂DS₂VASc score in predicting in-hospital mortality.

References

  • 1. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109:102433.
  • 2. World Health Organization. Coronavirus disease (COVID-19): situation report, 209. 2020.
  • 3. Hu Y, Sun J, Dai Z, Deng H, Li X, Huang Q, et al. Prevalence and severity of corona virus disease 2019 (COVID-19): A systematic review and meta-analysis. J Clin Virol. 2020;127:104371.
  • 4. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.
  • 5. Zerwes S, Steinbauer M, Gosslau Y, Warm T, Hyhlik-Durr A. [COVID-19 infection-Risk of thromboembolic complications]. Gefasschirurgie. 2020;25(6):397-402.
  • 6. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62.
  • 7. Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E, et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75(23):2950-73.
  • 8. Barbosa LC, Goncalves TL, de Araujo LP, Rosario LVO, Ferrer VP. Endothelial cells and SARS-CoV-2: An intimate relationship. Vascul Pharmacol. 2021;137:106829.
  • 9. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-8.
  • 10. Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl Res. 2020;220:1-13.
  • 11. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-2.
  • 12. Piccini JP, Stevens SR, Chang Y, Singer DE, Lokhnygina Y, Go AS, et al. Renal dysfunction as a predictor of stroke and systemic embolism in patients with nonvalvular atrial fibrillation: validation of the R(2)CHADS(2) index in the ROCKET AF (Rivaroxaban Once-daily, oral, direct factor Xa inhibition Compared with vitamin K antagonism for prevention of stroke and Embolism Trial in Atrial Fibrillation) and ATRIA (AnTicoagulation and Risk factors In Atrial fibrillation) study cohorts. Circulation. 2013;127(2):224-32.
  • 13. van Doorn S, Debray TPA, Kaasenbrood F, Hoes AW, Rutten FH, Moons KGM, et al. Predictive performance of the CHA2DS2-VASc rule in atrial fibrillation: a systematic review and meta-analysis. J Thromb Haemost. 2017;15(6):1065-77.
  • 14. Kiliszek M, Szpakowicz A, Filipiak KJ, Koltowski L, Poludniewska D, Szymanski F, et al. CHA2DS2-VASc and R2CHA2DS2-VASc scores have predictive value in patients with acute coronary syndromes. Pol Arch Med Wewn. 2015;125(7-8):545-52.
  • 15. Kim KH, Kim W, Hwang SH, Kang WY, Cho SC, Kim W, et al. The CHA2DS2VASc score can be used to stratify the prognosis of acute myocardial infarction patients irrespective of presence of atrial fibrillation. J Cardiol. 2015;65(2):121-7.
  • 16. Levy D, Gur E, Topaz G, Naser R, Kitay-Cohen Y, Benchetrit S, et al. Mortality prediction using a modified R(2)CHA(2)DS(2)-VASc score among hospitalized COVID-19 patients. Intern Emerg Med. 2022;17(6):1711-7.
  • 17. Cetinkal G, Kocas BB, Ser OS, Kilci H, Keskin K, Ozcan SN, et al. Assessment of the Modified CHA2DS2VASc Risk Score in Predicting Mortality in Patients Hospitalized With COVID-19. Am J Cardiol. 2020;135:143-9.
  • 18. Caro-Codon J, Lip GYH, Rey JR, Iniesta AM, Rosillo SO, Castrejon-Castrejon S, et al. Prediction of thromboembolic events and mortality by the CHADS2 and the CHA2DS2-VASc in COVID-19. Europace. 2021;23(6):937-47.
  • 19. Gansevoort RT, Hilbrands LB. CKD is a key risk factor for COVID-19 mortality. Nat Rev Nephrol. 2020;16(12):705-6.
  • 20. Trabulus S, Karaca C, Balkan, II, Dincer MT, Murt A, Ozcan SG, et al. Kidney function on admission predicts in-hospital mortality in COVID-19. PLoS One. 2020;15(9):e0238680.
  • 21. Katkat F, Karahan S, Varol S, Kalyoncuoglu M, Okuyan E. Mortality prediction with CHA2DS2-VASc, CHA2DS2-VASc-HS and R2CHA2DS2-VASc score in patients hospitalized due to COVID-19. Eur Rev Med Pharmacol Sci. 2021;25(21):6767-74.
  • 22. Velissaris D, Paraskevas T, Oikonomou E, Bizos A, Karamouzos V, Marangos M. Evaluation of four novel prognostic scores on admission for COVID-19 mortality. An experience from a Mediterranean tertiary center. Acta Clin Belg. 2022;77(4):748-52.
  • 23. Knight SR, Ho A, Pius R, Buchan I, Carson G, Drake TM, et al. Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: development and validation of the 4C Mortality Score. BMJ. 2020;370:m3339.
  • 24. Covino M, De Matteis G, Burzo ML, Russo A, Forte E, Carnicelli A, et al. Predicting In-Hospital Mortality in COVID-19 Older Patients with Specifically Developed Scores. J Am Geriatr Soc. 2021;69(1):37-43.
  • 25. Nehring SM, Goyal A, Patel BC. C Reactive Protein. StatPearls. Treasure Island (FL) ineligible companies. Disclosure: Amandeep Goyal declares no relevant financial relationships with ineligible companies. Disclosure: Bhupendra Patel declares no relevant financial relationships with ineligible companies.2024. 26. Giannini EG, Testa R, Savarino V. Liver enzyme alteration: a guide for clinicians. CMAJ. 2005;172(3): 367-79.
  • 27. Man MA, Davidescu L, Motoc NS, Rajnoveanu RM, Bondor CI, Pop CM, et al. Diagnostic Value of the Neutrophil-to-Lymphocyte Ratio (NLR) and Platelet-to-Lymphocyte Ratio (PLR) in Various Respiratory Diseases: A Retrospective Analysis. Diagnostics (Basel). 2021;12(1).
  • 28. Perico L, Benigni A, Casiraghi F, Ng LFP, Renia L, Remuzzi G. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat Rev Nephrol. 2021;17(1):46-64.
  • 29. Choi BJ, Matsuo Y, Aoki T, Kwon TG, Prasad A, Gulati R, et al. Coronary endothelial dysfunction is associated with inflammation and vasa vasorum proliferation in patients with early atherosclerosis. Arterioscler Thromb Vasc Biol. 2014;34(11):2473-7.
  • 30. Widmer RJ, Lerman A. Endothelial dysfunction and cardiovascular disease. Glob Cardiol Sci Pract. 2014;2014(3):291-308. 31. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13. 32. Onder G, Rezza G, Brusaferro S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA. 2020;323(18):1775-6.
  • 33. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9.
  • 34. Chen W, Zheng KI, Liu S, Yan Z, Xu C, Qiao Z. Plasma CRP level is positively associated with the severity of COVID-19. Ann Clin Microbiol Antimicrob. 2020;19(1):18.
  • 35. Huang W, Berube J, McNamara M, Saksena S, Hartman M, Arshad T, et al. Lymphocyte Subset Counts in COVID-19 Patients: A Meta-Analysis. Cytometry A. 2020;97(8):772-6.
  • 36. Lagunas-Rangel FA. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. J Med Virol. 2020;92(10):1733-4.
  • 37. Wang L. C-reactive protein levels in the early stage of COVID-19. Med Mal Infect. 2020;50(4):332-4.
  • 38. Aloisio E, Colombo G, Arrigo C, Dolci A, Panteghini M. Sources and clinical significance of aspartate aminotransferase increases in COVID-19. Clin Chim Acta. 2021;522:88-95.
  • 39. Li G. Aspartate aminotransferase: A prognostic marker rather than a specific liver injury marker in COVID-19. J Infect. 2020;81(2):e155. 40. Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol. 2020;5(5):428-30.

COVID-19 hastalarında hastane içi mortalitenin CHA₂DS₂VASc ve R₂CHA₂DS₂VASc skor tahmininin karşılaştırılması

Year 2024, Volume: 16 Issue: 1, 46 - 53, 14.03.2024
https://doi.org/10.18521/ktd.1282982

Abstract

Amaç: Bu çalışma, COVID-19 hastalarında hastane içi mortalitenin CHA₂DS₂VASc ve R₂CHA₂DS₂VASc skor tahminini karşılaştırmayı ve CHA₂DS₂VASc ve R₂CHA₂DS₂VASc skorlarına bazı laboratuvar parametreleri ekleyerek hastane mortalitesini daha iyi tahmin edebilen yeni bir skorlama sistemi bulmayı amaçlamaktadır.
Method: Bu bir kesitsel çalışmadır. Eylül 2020'den Mart 2021'e kadar COVID-19 PCR testleri doğrulanmış toplam 1076 COVID-19 hastası dahil edildi. Hastaların yaş, cinsiyet, komorbidite, laboratuvar, hayatta kalma süreleri ve ölüm durumları kaydedildi. Her hastanın CHA₂DS₂VASc ve R₂CHA₂DS₂VASc skorları hesaplandı. Laboratuvar değerleri de dahil olmak üzere lojistik regresyon analizi ile en etkili modeli oluşturmak için yeni bir ölüm tahmin skoru oluşturuldu.
Bulgular: COVID-19 nedeniyle hastaneye yatırılan 1076 hastanın %15,1'i öldü, %84,9'u hayatta kaldı. İki grup arasında cinsiyet açısından anlamlı fark yoktu. Ölenlerde tüm komorbiditeler yaşayanlara göre anlamlı derecede yüksekti (p<0.001). Hayatta kalanların hemoglobin, trombosit ve eGFR değerleri anlamlı olarak daha yüksekti. C-reaktif protein (CRP), aspartat aminotransferaz (AST) ve nötrofil-lenfosit oranı (NLR) mortalite ile ilişkili bulundu ve bu üç laboratuvar parametresi dahil edilerek CAN-R₂CHA₂DS₂VASc skoru oluşturuldu. CHA₂DS₂VASc (AUC=0,810), R₂CHA₂DS₂VASc (AUC=0,824) ve CAN-R₂CHA₂DS₂VASc (AUC=0,909) skorlarının ROC eğrileri analiz edildi. CAN-R₂CHA₂DS₂VASc skoru diğer skorlardan üstündü (p<0.001). CAN-R₂CHA₂DS₂VASc skorunun duyarlılığı ve özgüllüğü sırasıyla %79,8 ve %86,5 iken, kriter >6 puandı.
Sonuç: CAN-R₂CHA₂DS₂VASc skoru, COVID-19 hastalarında hastane mortalitesini tahmin etmek için yararlı bir araçtır. CAN-R₂CHA₂DS₂VASc skoru, hastane içi mortaliteyi tahmin etmede R₂CHA₂DS₂VASc ve CHA₂DS₂VASc skorundan üstündü.

References

  • 1. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109:102433.
  • 2. World Health Organization. Coronavirus disease (COVID-19): situation report, 209. 2020.
  • 3. Hu Y, Sun J, Dai Z, Deng H, Li X, Huang Q, et al. Prevalence and severity of corona virus disease 2019 (COVID-19): A systematic review and meta-analysis. J Clin Virol. 2020;127:104371.
  • 4. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.
  • 5. Zerwes S, Steinbauer M, Gosslau Y, Warm T, Hyhlik-Durr A. [COVID-19 infection-Risk of thromboembolic complications]. Gefasschirurgie. 2020;25(6):397-402.
  • 6. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62.
  • 7. Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E, et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75(23):2950-73.
  • 8. Barbosa LC, Goncalves TL, de Araujo LP, Rosario LVO, Ferrer VP. Endothelial cells and SARS-CoV-2: An intimate relationship. Vascul Pharmacol. 2021;137:106829.
  • 9. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-8.
  • 10. Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl Res. 2020;220:1-13.
  • 11. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-2.
  • 12. Piccini JP, Stevens SR, Chang Y, Singer DE, Lokhnygina Y, Go AS, et al. Renal dysfunction as a predictor of stroke and systemic embolism in patients with nonvalvular atrial fibrillation: validation of the R(2)CHADS(2) index in the ROCKET AF (Rivaroxaban Once-daily, oral, direct factor Xa inhibition Compared with vitamin K antagonism for prevention of stroke and Embolism Trial in Atrial Fibrillation) and ATRIA (AnTicoagulation and Risk factors In Atrial fibrillation) study cohorts. Circulation. 2013;127(2):224-32.
  • 13. van Doorn S, Debray TPA, Kaasenbrood F, Hoes AW, Rutten FH, Moons KGM, et al. Predictive performance of the CHA2DS2-VASc rule in atrial fibrillation: a systematic review and meta-analysis. J Thromb Haemost. 2017;15(6):1065-77.
  • 14. Kiliszek M, Szpakowicz A, Filipiak KJ, Koltowski L, Poludniewska D, Szymanski F, et al. CHA2DS2-VASc and R2CHA2DS2-VASc scores have predictive value in patients with acute coronary syndromes. Pol Arch Med Wewn. 2015;125(7-8):545-52.
  • 15. Kim KH, Kim W, Hwang SH, Kang WY, Cho SC, Kim W, et al. The CHA2DS2VASc score can be used to stratify the prognosis of acute myocardial infarction patients irrespective of presence of atrial fibrillation. J Cardiol. 2015;65(2):121-7.
  • 16. Levy D, Gur E, Topaz G, Naser R, Kitay-Cohen Y, Benchetrit S, et al. Mortality prediction using a modified R(2)CHA(2)DS(2)-VASc score among hospitalized COVID-19 patients. Intern Emerg Med. 2022;17(6):1711-7.
  • 17. Cetinkal G, Kocas BB, Ser OS, Kilci H, Keskin K, Ozcan SN, et al. Assessment of the Modified CHA2DS2VASc Risk Score in Predicting Mortality in Patients Hospitalized With COVID-19. Am J Cardiol. 2020;135:143-9.
  • 18. Caro-Codon J, Lip GYH, Rey JR, Iniesta AM, Rosillo SO, Castrejon-Castrejon S, et al. Prediction of thromboembolic events and mortality by the CHADS2 and the CHA2DS2-VASc in COVID-19. Europace. 2021;23(6):937-47.
  • 19. Gansevoort RT, Hilbrands LB. CKD is a key risk factor for COVID-19 mortality. Nat Rev Nephrol. 2020;16(12):705-6.
  • 20. Trabulus S, Karaca C, Balkan, II, Dincer MT, Murt A, Ozcan SG, et al. Kidney function on admission predicts in-hospital mortality in COVID-19. PLoS One. 2020;15(9):e0238680.
  • 21. Katkat F, Karahan S, Varol S, Kalyoncuoglu M, Okuyan E. Mortality prediction with CHA2DS2-VASc, CHA2DS2-VASc-HS and R2CHA2DS2-VASc score in patients hospitalized due to COVID-19. Eur Rev Med Pharmacol Sci. 2021;25(21):6767-74.
  • 22. Velissaris D, Paraskevas T, Oikonomou E, Bizos A, Karamouzos V, Marangos M. Evaluation of four novel prognostic scores on admission for COVID-19 mortality. An experience from a Mediterranean tertiary center. Acta Clin Belg. 2022;77(4):748-52.
  • 23. Knight SR, Ho A, Pius R, Buchan I, Carson G, Drake TM, et al. Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: development and validation of the 4C Mortality Score. BMJ. 2020;370:m3339.
  • 24. Covino M, De Matteis G, Burzo ML, Russo A, Forte E, Carnicelli A, et al. Predicting In-Hospital Mortality in COVID-19 Older Patients with Specifically Developed Scores. J Am Geriatr Soc. 2021;69(1):37-43.
  • 25. Nehring SM, Goyal A, Patel BC. C Reactive Protein. StatPearls. Treasure Island (FL) ineligible companies. Disclosure: Amandeep Goyal declares no relevant financial relationships with ineligible companies. Disclosure: Bhupendra Patel declares no relevant financial relationships with ineligible companies.2024. 26. Giannini EG, Testa R, Savarino V. Liver enzyme alteration: a guide for clinicians. CMAJ. 2005;172(3): 367-79.
  • 27. Man MA, Davidescu L, Motoc NS, Rajnoveanu RM, Bondor CI, Pop CM, et al. Diagnostic Value of the Neutrophil-to-Lymphocyte Ratio (NLR) and Platelet-to-Lymphocyte Ratio (PLR) in Various Respiratory Diseases: A Retrospective Analysis. Diagnostics (Basel). 2021;12(1).
  • 28. Perico L, Benigni A, Casiraghi F, Ng LFP, Renia L, Remuzzi G. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat Rev Nephrol. 2021;17(1):46-64.
  • 29. Choi BJ, Matsuo Y, Aoki T, Kwon TG, Prasad A, Gulati R, et al. Coronary endothelial dysfunction is associated with inflammation and vasa vasorum proliferation in patients with early atherosclerosis. Arterioscler Thromb Vasc Biol. 2014;34(11):2473-7.
  • 30. Widmer RJ, Lerman A. Endothelial dysfunction and cardiovascular disease. Glob Cardiol Sci Pract. 2014;2014(3):291-308. 31. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13. 32. Onder G, Rezza G, Brusaferro S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA. 2020;323(18):1775-6.
  • 33. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9.
  • 34. Chen W, Zheng KI, Liu S, Yan Z, Xu C, Qiao Z. Plasma CRP level is positively associated with the severity of COVID-19. Ann Clin Microbiol Antimicrob. 2020;19(1):18.
  • 35. Huang W, Berube J, McNamara M, Saksena S, Hartman M, Arshad T, et al. Lymphocyte Subset Counts in COVID-19 Patients: A Meta-Analysis. Cytometry A. 2020;97(8):772-6.
  • 36. Lagunas-Rangel FA. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. J Med Virol. 2020;92(10):1733-4.
  • 37. Wang L. C-reactive protein levels in the early stage of COVID-19. Med Mal Infect. 2020;50(4):332-4.
  • 38. Aloisio E, Colombo G, Arrigo C, Dolci A, Panteghini M. Sources and clinical significance of aspartate aminotransferase increases in COVID-19. Clin Chim Acta. 2021;522:88-95.
  • 39. Li G. Aspartate aminotransferase: A prognostic marker rather than a specific liver injury marker in COVID-19. J Infect. 2020;81(2):e155. 40. Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol. 2020;5(5):428-30.
There are 36 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Faruk Boyacı 0000-0002-3125-9328

Mustafa Kürşat Şahin 0000-0002-3490-6009

Yankı Boyacı 0000-0002-4046-8922

Ahmet Yanık 0000-0003-3488-5372

Gökhan Aksan 0000-0002-9637-1820

Publication Date March 14, 2024
Acceptance Date February 22, 2024
Published in Issue Year 2024 Volume: 16 Issue: 1

Cite

APA Boyacı, F., Şahin, M. K., Boyacı, Y., Yanık, A., et al. (2024). Comparison of CHA₂DS₂VASc and R₂CHA₂DS₂VASc score estimation of in-hospital mortality among COVID-19 patients. Konuralp Medical Journal, 16(1), 46-53. https://doi.org/10.18521/ktd.1282982
AMA Boyacı F, Şahin MK, Boyacı Y, Yanık A, Aksan G. Comparison of CHA₂DS₂VASc and R₂CHA₂DS₂VASc score estimation of in-hospital mortality among COVID-19 patients. Konuralp Medical Journal. March 2024;16(1):46-53. doi:10.18521/ktd.1282982
Chicago Boyacı, Faruk, Mustafa Kürşat Şahin, Yankı Boyacı, Ahmet Yanık, and Gökhan Aksan. “Comparison of CHA₂DS₂VASc and R₂CHA₂DS₂VASc Score Estimation of in-Hospital Mortality Among COVID-19 Patients”. Konuralp Medical Journal 16, no. 1 (March 2024): 46-53. https://doi.org/10.18521/ktd.1282982.
EndNote Boyacı F, Şahin MK, Boyacı Y, Yanık A, Aksan G (March 1, 2024) Comparison of CHA₂DS₂VASc and R₂CHA₂DS₂VASc score estimation of in-hospital mortality among COVID-19 patients. Konuralp Medical Journal 16 1 46–53.
IEEE F. Boyacı, M. K. Şahin, Y. Boyacı, A. Yanık, and G. Aksan, “Comparison of CHA₂DS₂VASc and R₂CHA₂DS₂VASc score estimation of in-hospital mortality among COVID-19 patients”, Konuralp Medical Journal, vol. 16, no. 1, pp. 46–53, 2024, doi: 10.18521/ktd.1282982.
ISNAD Boyacı, Faruk et al. “Comparison of CHA₂DS₂VASc and R₂CHA₂DS₂VASc Score Estimation of in-Hospital Mortality Among COVID-19 Patients”. Konuralp Medical Journal 16/1 (March 2024), 46-53. https://doi.org/10.18521/ktd.1282982.
JAMA Boyacı F, Şahin MK, Boyacı Y, Yanık A, Aksan G. Comparison of CHA₂DS₂VASc and R₂CHA₂DS₂VASc score estimation of in-hospital mortality among COVID-19 patients. Konuralp Medical Journal. 2024;16:46–53.
MLA Boyacı, Faruk et al. “Comparison of CHA₂DS₂VASc and R₂CHA₂DS₂VASc Score Estimation of in-Hospital Mortality Among COVID-19 Patients”. Konuralp Medical Journal, vol. 16, no. 1, 2024, pp. 46-53, doi:10.18521/ktd.1282982.
Vancouver Boyacı F, Şahin MK, Boyacı Y, Yanık A, Aksan G. Comparison of CHA₂DS₂VASc and R₂CHA₂DS₂VASc score estimation of in-hospital mortality among COVID-19 patients. Konuralp Medical Journal. 2024;16(1):46-53.