Research Article
BibTex RIS Cite

Küçük ve mikro ölçekli enerji yatırımı için hibrit enerji modeli

Year 2019, Volume: 25 Issue: 1, 1 - 6, 26.02.2019

Abstract

Türkiye
çatı üstü güneş ve küçük ölçekli rüzgâr türbinleri gibi farklı olasılıklarda
yeni düzenlemelere 2017 yılında gitmiştir. Her iki teknoloji için de ayrı
çalışmalar yapılmış olmasına rağmen henüz hibrit sistem değerlendirme
metodolojisi ve sonuçları ülke çapında yaygın değildir. Bu çalışma, verilen
tesis alanın mikro ölçekli rüzgâr ve güneş esaslı toplam enerji kapasitesine
göre iki kaynaktan üretilen enerjiyi azami noktaya ulaştırmak için önerilmiş,
Hibrit Optimizasyon Aracı

(Hybrid Otpimization Tool)-HOT-olarak isimlendirilmiş bir model içerir. Son
kullanıcının basit aylık bilgileri girerek yıllık üretim tahmini yapmasına
olanak verir.  Modelin karşılaştırılması
yaygınca kullanılan ve ticari yazılım HOMER ile yapılmıştır. Sonuçta yapılan
tahminlerin mikro sistemlerin ekonomik modelini tehlikeye atmayacak
belirsizlikte çalışarak fizibilite çalışmalarında ön-analiz için
kullanılabileceği sonucuna ulaşılmıştır.

References

  • Global Wind Energy Council (GWEC). “Global Wind Statistics Report”, Brussels, Belgium, Technical Report, 4, 2018.
  • Turkish Wind Energy Association. “Turkish Wind Energy Statistics Summary Report”. Ankara, Turkey, 44, 2018.
  • Strateji Geliştirme Başkanlığı. “Dünya ve Ülkemiz Enerji ve Tabii Kaynaklar Görünümü”. Enerji ve Tabii Kaynaklar Bakanlığı, Ankara, Türkiye, 84, 2016.
  • Solar Power Europe. “Global Market Outlook 2017-2021”, Brussels, Belgium, Technical Report, 82, 2017.
  • Enerji ve Tabii Kaynaklar Bakanlığı. “Güneş Enerjisine Dayalı Elektrik Üretimi Başvurularının Teknik Değerlendirmesi Hakkında Yönetmelik. Birinci Bölüm”. Ankara, Turkey, 49, 2017.
  • Abbasi, T, Abbasi SA. Renewable Energy Sources: Their Impact On Global Warming and Pollution. 1st ed. New Delhi, India, PHI Learning Pvt. Ltd., 2010.
  • Enerji Piyasası Düzenleme Kurumu. “Elektrik Piyasasında Lisanssız Elektrik Üretimine İlişkin Yönetmelik”. Ankara, Türkiye, 30, 2013.
  • Borowy BS, Salameh ZM. "Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system". IEEE Transactions on Energy Conversion, 11(2), 367-375, 1996.
  • Barley, CD, Debra JL, Lawrence TF. Sizing wind/photovoltaic hybrids for households in inner Mongolia. National Renewable Energy Laboratory, 1997.
  • Vick BD, Clark R, Ling J, Ling S. “Remote solar, wind and hybrid solar/wind energy systems for purifying water”. Journal of Solar Energy Engineering, 125(1), 107-111, 2003.
  • Zhou W, Yang H, Fang Z. "Battery behavior prediction and battery working states analysis of a hybrid solar-wind power generation system". Renewable Energy, 33(6), 1413-1423, 2008.
  • Hocaoğlu FO, Gerek ÖN, Kurban M. “A novel hybrid (wind-photovoltaic) system sizing procedure”. Solar Energy, 83(11), 2019-2028, 2009.
  • Engin M. "Sizing and Simulation of PV-Wind Hybrid Power System". International Journal of Photoenergy, 13, 85-98, 2013.
  • Li J, Wei W, Xiang J. "A Simple sizing algorithm for stand-alone PV/Wind/Battery hybrid microgrids". Energies, 5(12), 5307-5323, 2012.
  • Matthew Z. "Dual- source energy storage-control and performance, advantages in advanced vehicles". EVS-20, Long Beach, California, 15-19 November 2003.
  • Diaf S, Diaf D, Belhamel M, Haddadi M, Louche A. “A methodology for optimal sizing of autonomous hybrid PV/wind system”. Energy Policy, 35(11), 5708-5718, 2007.
  • Yang H, Wei Z, Chengzhi L. "Optimal design and techno-economic analysis of a hybrid solar-wind power generation system". Applied Energy, 86(2), 163-169, 2009.
  • Nfah EM, Ngundam JM, Tchinda R. "Modelling of solar/diesel/battery hybrid power systems for far-north Cameroon". Renewable Energy, 32(5), 832-844, 2007.
  • Nfah EM, Ngundam JM. "Modelling of wind/Diesel/battery hybrid power systems for far North Cameroon". Energy Conversion and Management, 49(6), 1295-1301, 2008.
  • Rehman S, Sahin AZ., "A wind-solar PV hybrid power system with battery backup for water pumping in remote localities". International Journal of Green Energy, 13(11), 1075-1083, 2012.
  • Bayod-Rújula ÁA, Haro-Larrodé ME, Martínez-Gracia A., "Sizing criteria of hybrid photovoltaic-wind systems with battery storage and self-consumption considering interaction with the grid". Solar Energy, 98(C), 582-591, 2013.
  • Nogueira CE, Vidotto ML, Niedzialkoski SK, Melegari de Souza SN, Chaves LI, Edwiges T, Bentes dos Santos D, Werncke I. "Sizing and simulation of a photovoltaic-wind energy system using batteries, applied for a small rural property located in the south of Brazil". Renewable and Sustainable Energy Reviews, 29, 151-157, 2014.
  • Belmili H, Haddadi M, Bacha S, Almi MF, Bendib B, "Sizing stand-alone photovoltaic-wind hybrid system: Techno-economic analysis and optimization". Renewable and Sustainable Energy Reviews, 30, 821-832, 2014.
  • Mokheimer, Esmail MA, et al., "A New Study for Hybrid PV/Windoff-Grid Power Generation Systems with the Comparison of Results from Homer". International Journal of Green Energy, 12(5), 526-542, 2015.
  • Yang, Hongxing, Lin Lu, and WeiZhou., "A novel optimization sizing model for hybrid solar-wind power generation system". Solar Energy, 81(1), 76-84, 2007.
  • Meteoroloji Genel Müdürlüğü. Rüzgar ve Güneş Enerjisine Dayalı Lisans Başvurularına İlişkin Ölçüm Standardı Tebliği. Orman ve Su İşleri Bakanlığı, Ankara, Türkiye, 2012.
  • Seguro JV, Lambert TW, "Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis". Journal of Wind Engineering and Industrial Aerodynamics, 85(1), 75-84, 2000.
  • Troen I, Petersen, EL. European Wind Atlas, Risø National Laboratory, Roskilde, 1989.
  • Hansen, MOL, Aerodynamics of Wind Turbines. 2nd ed. Lyngby, Denmark, T&F Group, 2000.
  • Polaris America LLC, Power Curve-P25-100, 2005.
  • Panasonic Electric Works Europe AG. Photo voltaic module HIT® VBHN330SJ47/VBHN325SJ47. 2016.

Hybrid energy model for small and micro scale energy investments

Year 2019, Volume: 25 Issue: 1, 1 - 6, 26.02.2019

Abstract

Turkey
has announced the new regulations regarding roof-top solar and small-scale wind
turbines in 2017. Although there are different studies conducted for both
technologies, there is not a clear methodology to assess hybrid energy systems.
This study includes a calculation model, named as Hybrid Optimization Tool
abbreviated as HOT, proposed to get maximum amount of energy produced by micro
scale wind-solar hybrid energy system, based on the total installed capacity of
these two resources for the specified location. It provides the end user to
estimate annual energy production via simple inputs. It has been compared with
well-known commercial software; HOMER. As a result, it has been found that the
model is able to predict results which can be used for the pre-analysis stage
on the feasibility studies of micro scale hybrid systems, working with acceptable
uncertainties which do not endanger the economic model.

References

  • Global Wind Energy Council (GWEC). “Global Wind Statistics Report”, Brussels, Belgium, Technical Report, 4, 2018.
  • Turkish Wind Energy Association. “Turkish Wind Energy Statistics Summary Report”. Ankara, Turkey, 44, 2018.
  • Strateji Geliştirme Başkanlığı. “Dünya ve Ülkemiz Enerji ve Tabii Kaynaklar Görünümü”. Enerji ve Tabii Kaynaklar Bakanlığı, Ankara, Türkiye, 84, 2016.
  • Solar Power Europe. “Global Market Outlook 2017-2021”, Brussels, Belgium, Technical Report, 82, 2017.
  • Enerji ve Tabii Kaynaklar Bakanlığı. “Güneş Enerjisine Dayalı Elektrik Üretimi Başvurularının Teknik Değerlendirmesi Hakkında Yönetmelik. Birinci Bölüm”. Ankara, Turkey, 49, 2017.
  • Abbasi, T, Abbasi SA. Renewable Energy Sources: Their Impact On Global Warming and Pollution. 1st ed. New Delhi, India, PHI Learning Pvt. Ltd., 2010.
  • Enerji Piyasası Düzenleme Kurumu. “Elektrik Piyasasında Lisanssız Elektrik Üretimine İlişkin Yönetmelik”. Ankara, Türkiye, 30, 2013.
  • Borowy BS, Salameh ZM. "Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system". IEEE Transactions on Energy Conversion, 11(2), 367-375, 1996.
  • Barley, CD, Debra JL, Lawrence TF. Sizing wind/photovoltaic hybrids for households in inner Mongolia. National Renewable Energy Laboratory, 1997.
  • Vick BD, Clark R, Ling J, Ling S. “Remote solar, wind and hybrid solar/wind energy systems for purifying water”. Journal of Solar Energy Engineering, 125(1), 107-111, 2003.
  • Zhou W, Yang H, Fang Z. "Battery behavior prediction and battery working states analysis of a hybrid solar-wind power generation system". Renewable Energy, 33(6), 1413-1423, 2008.
  • Hocaoğlu FO, Gerek ÖN, Kurban M. “A novel hybrid (wind-photovoltaic) system sizing procedure”. Solar Energy, 83(11), 2019-2028, 2009.
  • Engin M. "Sizing and Simulation of PV-Wind Hybrid Power System". International Journal of Photoenergy, 13, 85-98, 2013.
  • Li J, Wei W, Xiang J. "A Simple sizing algorithm for stand-alone PV/Wind/Battery hybrid microgrids". Energies, 5(12), 5307-5323, 2012.
  • Matthew Z. "Dual- source energy storage-control and performance, advantages in advanced vehicles". EVS-20, Long Beach, California, 15-19 November 2003.
  • Diaf S, Diaf D, Belhamel M, Haddadi M, Louche A. “A methodology for optimal sizing of autonomous hybrid PV/wind system”. Energy Policy, 35(11), 5708-5718, 2007.
  • Yang H, Wei Z, Chengzhi L. "Optimal design and techno-economic analysis of a hybrid solar-wind power generation system". Applied Energy, 86(2), 163-169, 2009.
  • Nfah EM, Ngundam JM, Tchinda R. "Modelling of solar/diesel/battery hybrid power systems for far-north Cameroon". Renewable Energy, 32(5), 832-844, 2007.
  • Nfah EM, Ngundam JM. "Modelling of wind/Diesel/battery hybrid power systems for far North Cameroon". Energy Conversion and Management, 49(6), 1295-1301, 2008.
  • Rehman S, Sahin AZ., "A wind-solar PV hybrid power system with battery backup for water pumping in remote localities". International Journal of Green Energy, 13(11), 1075-1083, 2012.
  • Bayod-Rújula ÁA, Haro-Larrodé ME, Martínez-Gracia A., "Sizing criteria of hybrid photovoltaic-wind systems with battery storage and self-consumption considering interaction with the grid". Solar Energy, 98(C), 582-591, 2013.
  • Nogueira CE, Vidotto ML, Niedzialkoski SK, Melegari de Souza SN, Chaves LI, Edwiges T, Bentes dos Santos D, Werncke I. "Sizing and simulation of a photovoltaic-wind energy system using batteries, applied for a small rural property located in the south of Brazil". Renewable and Sustainable Energy Reviews, 29, 151-157, 2014.
  • Belmili H, Haddadi M, Bacha S, Almi MF, Bendib B, "Sizing stand-alone photovoltaic-wind hybrid system: Techno-economic analysis and optimization". Renewable and Sustainable Energy Reviews, 30, 821-832, 2014.
  • Mokheimer, Esmail MA, et al., "A New Study for Hybrid PV/Windoff-Grid Power Generation Systems with the Comparison of Results from Homer". International Journal of Green Energy, 12(5), 526-542, 2015.
  • Yang, Hongxing, Lin Lu, and WeiZhou., "A novel optimization sizing model for hybrid solar-wind power generation system". Solar Energy, 81(1), 76-84, 2007.
  • Meteoroloji Genel Müdürlüğü. Rüzgar ve Güneş Enerjisine Dayalı Lisans Başvurularına İlişkin Ölçüm Standardı Tebliği. Orman ve Su İşleri Bakanlığı, Ankara, Türkiye, 2012.
  • Seguro JV, Lambert TW, "Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis". Journal of Wind Engineering and Industrial Aerodynamics, 85(1), 75-84, 2000.
  • Troen I, Petersen, EL. European Wind Atlas, Risø National Laboratory, Roskilde, 1989.
  • Hansen, MOL, Aerodynamics of Wind Turbines. 2nd ed. Lyngby, Denmark, T&F Group, 2000.
  • Polaris America LLC, Power Curve-P25-100, 2005.
  • Panasonic Electric Works Europe AG. Photo voltaic module HIT® VBHN330SJ47/VBHN325SJ47. 2016.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Mustafa Yıldız 0000-0003-0619-3731

Ferhat Bingöl 0000-0002-8071-3814

Publication Date February 26, 2019
Published in Issue Year 2019 Volume: 25 Issue: 1

Cite

APA Yıldız, M., & Bingöl, F. (2019). Küçük ve mikro ölçekli enerji yatırımı için hibrit enerji modeli. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(1), 1-6.
AMA Yıldız M, Bingöl F. Küçük ve mikro ölçekli enerji yatırımı için hibrit enerji modeli. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. February 2019;25(1):1-6.
Chicago Yıldız, Mustafa, and Ferhat Bingöl. “Küçük Ve Mikro ölçekli Enerji yatırımı için Hibrit Enerji Modeli”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25, no. 1 (February 2019): 1-6.
EndNote Yıldız M, Bingöl F (February 1, 2019) Küçük ve mikro ölçekli enerji yatırımı için hibrit enerji modeli. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25 1 1–6.
IEEE M. Yıldız and F. Bingöl, “Küçük ve mikro ölçekli enerji yatırımı için hibrit enerji modeli”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 25, no. 1, pp. 1–6, 2019.
ISNAD Yıldız, Mustafa - Bingöl, Ferhat. “Küçük Ve Mikro ölçekli Enerji yatırımı için Hibrit Enerji Modeli”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25/1 (February 2019), 1-6.
JAMA Yıldız M, Bingöl F. Küçük ve mikro ölçekli enerji yatırımı için hibrit enerji modeli. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25:1–6.
MLA Yıldız, Mustafa and Ferhat Bingöl. “Küçük Ve Mikro ölçekli Enerji yatırımı için Hibrit Enerji Modeli”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 25, no. 1, 2019, pp. 1-6.
Vancouver Yıldız M, Bingöl F. Küçük ve mikro ölçekli enerji yatırımı için hibrit enerji modeli. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25(1):1-6.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif