Technical Brief
BibTex RIS Cite
Year 2024, Volume: 42 Issue: 1, 306 - 311, 27.02.2024

Abstract

References

  • REFERENCES
  • [1] Hoang AT, Ong HC, Fattah IR, Chong CT, Ok YS. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Process Technol 2021;223:106997. [CrossRef]
  • [2] Kumar S, Soomro SA, Harijan K, Uqaili MA, Kumar L. Advancements of biochar-based catalyst for improved production of biodiesel: a comprehensive review. Energies 2023;16:644. [CrossRef]
  • [3] Bhushan S, Jayakrishnan U, Shree B, Bhatt P, Eshkabilov S, Simsek H. Biological pretreatment for algal biomass feedstock for biofuel production. J Environ Chem Eng 2023;11:109870. [CrossRef]
  • [4] Siddique M, Jatoi AS, Soomro SA, Mengal AN, Ayat M, Mandokhail SJ, et al. Effective utilization of cow dung with distillery waste water as substrate in microbial fuel cell for electricity generation. J Appl Emerg Sci 2019;8:138145. [CrossRef]
  • [5] du Pasquier J, Paës G, Perré P. Principal factors affecting the yield of dilute acid pretreatment of lignocellulosic biomass: a critical review. Bioresour Technol 2023;369:128439. [CrossRef]
  • [6] Jatoi AS, Ahmed J, Akhter F, Sultan SH, Chandio GS, Ahmed S, et al. Recent advances and treatment of emerging contaminants through the bio-assisted method: a comprehensive review. Water Air Soil Pollut 2023;234:115. [CrossRef]
  • [7] Yoo CG, Meng X, Pu Y, Ragauskas AJ. The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review. Bioresour Technol 2020;301:122784. [CrossRef]
  • [8] Siddique M, Soomro SA, Aziz S. Lignin rich energy recovery from lignocellulosic plant biomass into biofuel production. J Nat Appl Res 2021;1:5770.
  • [9] Siddique M, Soomro SA, Aziz S, Akhter F. An overview of recent advances and novel synthetic approaches for lignocellulosic derived biofuels. J Kejuruteran 2021;33:165173. [CrossRef]
  • [10] Suri SUK, Siddique M. Effect of blending ratio on co-combustion of coal and biomass through emission analysis. Quaid-E-Awam Univ Res J Eng Sci Technol 2020;18:5862. [CrossRef]
  • [11] Naik GP, Poonia AK, Chaudhari PK. Pretreatment of lignocellulosic agricultural waste for delignification, rapid hydrolysis, and enhanced biogas production: A review. J Indian Chem Soc 2021;98:100147. [CrossRef]
  • [12] Van Duren I, Voinov A, Arodudu O, Firrisa MT. Where to produce rapeseed biodiesel and why? Mapping European rapeseed energy efficiency. Renew Energy 2015;74:4959. [CrossRef]
  • [13] Siddique M, Soomro SA, Ahmad. A comprehensive review of lignocellulosic biomass and potential production of bioenergy as a renewable resource in Pakistan. J Chem Nutr Biochem 2021;2:4658. [CrossRef]
  • [14] David AJ, Abinandan S, Vaidyanathan VK, Xu CC, Krishnamurthi T. A critical review on current status and environmental sustainability of pre-treatment methods for bioethanol production from lignocellulose feedstocks. Biotech 2023;13:233. [CrossRef]
  • [15] Pimentel D, Burgess M. An environmental, energetic and economic comparison of organic and conventional farming systems. In Integrated Pest Management. Springer. 2014:141166. [CrossRef]
  • [16] Galbe M, Zacchi G. Pretreatment of lignocellulosic materials for efficient bioethanol production. Biofuels 2007:4165. [CrossRef]
  • [17] Mendu V, Shearin T, Campbell JE Jr, Stork J, Jae J, Crocker M, et al. Global bioenergy potential from high-lignin agricultural residue. Proc Natl Acad Sci 2012;10:40144019. [CrossRef]
  • [18] Stigka EK, Paravantis JA, Mihalakakou GK. Social acceptance of renewable energy sources: A review of contingent valuation applications. Renew Sustain Energy Rev 2014;32:100106. [CrossRef]
  • [19] Siddique M, Soomro SA, Aziz S, Suri SUK, Akhter F, Qaisrani ZN. Potential techniques for conversion of lignocellulosic biomass into biofuels. Pak J Anal Environ Chem 2022;23:2131. [CrossRef]
  • [20] Siddique M, Soomro SA, Aziz S. Characterization and optimization of lignin extraction from lignocellulosic biomass via green nanocatalyst. Biomass Convers Biorefinery 2022:19. [CrossRef]
  • [21] Yiin CL, Yap KL, Ku AZE, Chin BLF, Lock SSM, Cheah KW, et al. Recent advances in green solvents for lignocellulosic biomass pretreatment: potential of choline chloride (ChCl) based solvents. Bioresour Technol 2021;333:125195. [CrossRef]
  • [22] Qin Z, Zhuang Q, Zhu X, Cai X, Zhang X. Carbon consequences and agricultural implications of growing biofuel crops on marginal agricultural lands in China. Environ Sci Technol 2011;45:1076510772. [CrossRef]
  • [23] Soomro SA, Siddique M, Aftab A, Qaisrani ZN, Jatoi AS, Khan A, et al. Comparative study of coal and biomass co-combustion with coal burning separately through emissions analysis. Pak J Anal Environ Chem 2016;17:5. [CrossRef]
  • [24] Arifin Y, Tanudjaja E, Dimyati A, Pinontoan R. A second generation biofuel from cellulosic agricultural by-product fermentation using clostridium species for electricity generation. Energy Proced 2014;47:310315. [CrossRef]
  • [25] Akhter F, Soomro SA, Jamali AR, Chandio ZA, Siddique M, Ahmed M. Rice husk ash as green and sustainable biomass waste for construction and renewable energy applications: a review. Biomass Convers Biorefinery 2021;111. [CrossRef]
  • [26] Hao H, Zhang L, Wang W, Zeng S. Facile modification of titania with nickel sulfide and sulfate species for the photoreformation of cellulose into hydrogen. ChemSusChem 2018;16:28102817. [CrossRef]
  • [27] Jatoi AS, Abbasi SA, Hashmi Z, Shah AK, Alam MS, Bhatti ZA, et al. Recent trends and future perspectives of lignocellulose biomass for biofuel production: a comprehensive review. Biomass Convers Biorefinery 2021:113. [CrossRef] [28] Baloch HA, Nizamuddin S, Siddiqui MTH, Riaz S, Jatoi AS, Dumbre DK, et al. Recent advances in production and upgrading of bio-oil from biomass: A critical overview. J Environ Chem Eng 2018;6:51015118. [CrossRef]
  • [29] Akhter F, Soomro SA, Siddique M, Ahmed M. Plant and non-plant based polymeric coagulants for wastewater treatment: A review. J Kejuruteraan 2021;33:175181. [CrossRef]
  • [30] Woodrooffe J, Blower D, Flannagan CAC, Bogard SE, Bao S. Effectiveness of a current commercial vehicle forward collision avoidance and mitigation systems. SAE Tech Paper, 2013. [CrossRef]
  • [31] Siddique M, Soomro SA, Aziz S, Jatoi AS, Mengal A. Removal of turbidity from turbid water by bio-coagulant prepared from walnut shell. J Appl Emerg Sci 2016;6:6668.
  • [32] Louis ACF, Venkatachalam S. Energy efficient process for valorization of corn cob as a source for nanocrystalline cellulose and hemicellulose production. Int J Biol Macromol 2020;163:260269. [CrossRef]
  • [33] Curran LMLK, Sale KL, Simmons BA. Review of advances in the development of laccases for the valorization of lignin to enable the production of lignocellulosic biofuels and bioproducts. Biotechnol Adv 2022;54:107809. [CrossRef]
  • [34] Thanigaivel S, Priya AK, Dutta K, Rajendran S, Sekar K, Jalil AA, et al. Role of nanotechnology for the conversion of lignocellulosic biomass into biopotent energy: A bio refinery approach for waste to value-added products. Fuel 2022;322:124236.
  • [35] Velvizhi G, Balakumar K, Shetti NP, Ahmad E, Pant KK, Aminabhavi TM. Integrated biorefinery processes for conversion of lignocellulosic biomass to value added materials: Paving a path towards circular economy. Bioresour Technol 2022;343:126151. [CrossRef]
  • [36] Dey N, Kumar G, Vickram AS, Mohan M, Singhania RR, Patel AK, et al. Nanotechnology-assisted production of value-added biopotent energy-yielding products from lignocellulosic biomass refinery–a review. Bioresour Technol 2022;344:126171. [CrossRef]
  • [37] Bandgar PS, Jain S, Panwar NL. A comprehensive review on optimization of anaerobic digestion technologies for lignocellulosic biomass available in India. Biomass Bioenergy 2022;161:106479. [CrossRef]

Evaluation and composition of lignin content to enable the production of lignocellulosic biomass pretreatment into sustainable biofuel: A review

Year 2024, Volume: 42 Issue: 1, 306 - 311, 27.02.2024

Abstract

Biomass wastes have a significant deal of promise for usage as a non-depleting source of re-newable energy and for the creation of goods with benefit. The world’s attempts to valorize surplus lignocellulose biomass wastes depend on the pretreatment procedure to remove the lignocellulose material’s refractory barrier for access to valuable substrates. Finding an appropriate unit operation for the conversion of biomass into value-added goods. There are many different pretreatment methods available, and research into more affordable, efficient, and ecologically friendly procedures is ongoing. Various studies have shown that a good pretreatment method can reduce the network of strong chemical linkages between the cel-lulose, hemicellulose, and lignin in the biomass. Using high heat and pressure to dissolve the structure, hydrothermal pretreatment is emphasized as a valuable technique in the recovery of lignin. The need for a flexible strategy to meet rising global energy demands has led many academics to concentrate on renewable biofuel made from sustainable resources. There are many challenges that need to be resolved before lignocellulose biomass can be transformed into commercially viable biofuels and bio products. This study also emphasizes the signifi-cance of bioethanol production in light of worries about climate change, technical advances, and prospects for the future.

References

  • REFERENCES
  • [1] Hoang AT, Ong HC, Fattah IR, Chong CT, Ok YS. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Process Technol 2021;223:106997. [CrossRef]
  • [2] Kumar S, Soomro SA, Harijan K, Uqaili MA, Kumar L. Advancements of biochar-based catalyst for improved production of biodiesel: a comprehensive review. Energies 2023;16:644. [CrossRef]
  • [3] Bhushan S, Jayakrishnan U, Shree B, Bhatt P, Eshkabilov S, Simsek H. Biological pretreatment for algal biomass feedstock for biofuel production. J Environ Chem Eng 2023;11:109870. [CrossRef]
  • [4] Siddique M, Jatoi AS, Soomro SA, Mengal AN, Ayat M, Mandokhail SJ, et al. Effective utilization of cow dung with distillery waste water as substrate in microbial fuel cell for electricity generation. J Appl Emerg Sci 2019;8:138145. [CrossRef]
  • [5] du Pasquier J, Paës G, Perré P. Principal factors affecting the yield of dilute acid pretreatment of lignocellulosic biomass: a critical review. Bioresour Technol 2023;369:128439. [CrossRef]
  • [6] Jatoi AS, Ahmed J, Akhter F, Sultan SH, Chandio GS, Ahmed S, et al. Recent advances and treatment of emerging contaminants through the bio-assisted method: a comprehensive review. Water Air Soil Pollut 2023;234:115. [CrossRef]
  • [7] Yoo CG, Meng X, Pu Y, Ragauskas AJ. The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review. Bioresour Technol 2020;301:122784. [CrossRef]
  • [8] Siddique M, Soomro SA, Aziz S. Lignin rich energy recovery from lignocellulosic plant biomass into biofuel production. J Nat Appl Res 2021;1:5770.
  • [9] Siddique M, Soomro SA, Aziz S, Akhter F. An overview of recent advances and novel synthetic approaches for lignocellulosic derived biofuels. J Kejuruteran 2021;33:165173. [CrossRef]
  • [10] Suri SUK, Siddique M. Effect of blending ratio on co-combustion of coal and biomass through emission analysis. Quaid-E-Awam Univ Res J Eng Sci Technol 2020;18:5862. [CrossRef]
  • [11] Naik GP, Poonia AK, Chaudhari PK. Pretreatment of lignocellulosic agricultural waste for delignification, rapid hydrolysis, and enhanced biogas production: A review. J Indian Chem Soc 2021;98:100147. [CrossRef]
  • [12] Van Duren I, Voinov A, Arodudu O, Firrisa MT. Where to produce rapeseed biodiesel and why? Mapping European rapeseed energy efficiency. Renew Energy 2015;74:4959. [CrossRef]
  • [13] Siddique M, Soomro SA, Ahmad. A comprehensive review of lignocellulosic biomass and potential production of bioenergy as a renewable resource in Pakistan. J Chem Nutr Biochem 2021;2:4658. [CrossRef]
  • [14] David AJ, Abinandan S, Vaidyanathan VK, Xu CC, Krishnamurthi T. A critical review on current status and environmental sustainability of pre-treatment methods for bioethanol production from lignocellulose feedstocks. Biotech 2023;13:233. [CrossRef]
  • [15] Pimentel D, Burgess M. An environmental, energetic and economic comparison of organic and conventional farming systems. In Integrated Pest Management. Springer. 2014:141166. [CrossRef]
  • [16] Galbe M, Zacchi G. Pretreatment of lignocellulosic materials for efficient bioethanol production. Biofuels 2007:4165. [CrossRef]
  • [17] Mendu V, Shearin T, Campbell JE Jr, Stork J, Jae J, Crocker M, et al. Global bioenergy potential from high-lignin agricultural residue. Proc Natl Acad Sci 2012;10:40144019. [CrossRef]
  • [18] Stigka EK, Paravantis JA, Mihalakakou GK. Social acceptance of renewable energy sources: A review of contingent valuation applications. Renew Sustain Energy Rev 2014;32:100106. [CrossRef]
  • [19] Siddique M, Soomro SA, Aziz S, Suri SUK, Akhter F, Qaisrani ZN. Potential techniques for conversion of lignocellulosic biomass into biofuels. Pak J Anal Environ Chem 2022;23:2131. [CrossRef]
  • [20] Siddique M, Soomro SA, Aziz S. Characterization and optimization of lignin extraction from lignocellulosic biomass via green nanocatalyst. Biomass Convers Biorefinery 2022:19. [CrossRef]
  • [21] Yiin CL, Yap KL, Ku AZE, Chin BLF, Lock SSM, Cheah KW, et al. Recent advances in green solvents for lignocellulosic biomass pretreatment: potential of choline chloride (ChCl) based solvents. Bioresour Technol 2021;333:125195. [CrossRef]
  • [22] Qin Z, Zhuang Q, Zhu X, Cai X, Zhang X. Carbon consequences and agricultural implications of growing biofuel crops on marginal agricultural lands in China. Environ Sci Technol 2011;45:1076510772. [CrossRef]
  • [23] Soomro SA, Siddique M, Aftab A, Qaisrani ZN, Jatoi AS, Khan A, et al. Comparative study of coal and biomass co-combustion with coal burning separately through emissions analysis. Pak J Anal Environ Chem 2016;17:5. [CrossRef]
  • [24] Arifin Y, Tanudjaja E, Dimyati A, Pinontoan R. A second generation biofuel from cellulosic agricultural by-product fermentation using clostridium species for electricity generation. Energy Proced 2014;47:310315. [CrossRef]
  • [25] Akhter F, Soomro SA, Jamali AR, Chandio ZA, Siddique M, Ahmed M. Rice husk ash as green and sustainable biomass waste for construction and renewable energy applications: a review. Biomass Convers Biorefinery 2021;111. [CrossRef]
  • [26] Hao H, Zhang L, Wang W, Zeng S. Facile modification of titania with nickel sulfide and sulfate species for the photoreformation of cellulose into hydrogen. ChemSusChem 2018;16:28102817. [CrossRef]
  • [27] Jatoi AS, Abbasi SA, Hashmi Z, Shah AK, Alam MS, Bhatti ZA, et al. Recent trends and future perspectives of lignocellulose biomass for biofuel production: a comprehensive review. Biomass Convers Biorefinery 2021:113. [CrossRef] [28] Baloch HA, Nizamuddin S, Siddiqui MTH, Riaz S, Jatoi AS, Dumbre DK, et al. Recent advances in production and upgrading of bio-oil from biomass: A critical overview. J Environ Chem Eng 2018;6:51015118. [CrossRef]
  • [29] Akhter F, Soomro SA, Siddique M, Ahmed M. Plant and non-plant based polymeric coagulants for wastewater treatment: A review. J Kejuruteraan 2021;33:175181. [CrossRef]
  • [30] Woodrooffe J, Blower D, Flannagan CAC, Bogard SE, Bao S. Effectiveness of a current commercial vehicle forward collision avoidance and mitigation systems. SAE Tech Paper, 2013. [CrossRef]
  • [31] Siddique M, Soomro SA, Aziz S, Jatoi AS, Mengal A. Removal of turbidity from turbid water by bio-coagulant prepared from walnut shell. J Appl Emerg Sci 2016;6:6668.
  • [32] Louis ACF, Venkatachalam S. Energy efficient process for valorization of corn cob as a source for nanocrystalline cellulose and hemicellulose production. Int J Biol Macromol 2020;163:260269. [CrossRef]
  • [33] Curran LMLK, Sale KL, Simmons BA. Review of advances in the development of laccases for the valorization of lignin to enable the production of lignocellulosic biofuels and bioproducts. Biotechnol Adv 2022;54:107809. [CrossRef]
  • [34] Thanigaivel S, Priya AK, Dutta K, Rajendran S, Sekar K, Jalil AA, et al. Role of nanotechnology for the conversion of lignocellulosic biomass into biopotent energy: A bio refinery approach for waste to value-added products. Fuel 2022;322:124236.
  • [35] Velvizhi G, Balakumar K, Shetti NP, Ahmad E, Pant KK, Aminabhavi TM. Integrated biorefinery processes for conversion of lignocellulosic biomass to value added materials: Paving a path towards circular economy. Bioresour Technol 2022;343:126151. [CrossRef]
  • [36] Dey N, Kumar G, Vickram AS, Mohan M, Singhania RR, Patel AK, et al. Nanotechnology-assisted production of value-added biopotent energy-yielding products from lignocellulosic biomass refinery–a review. Bioresour Technol 2022;344:126171. [CrossRef]
  • [37] Bandgar PS, Jain S, Panwar NL. A comprehensive review on optimization of anaerobic digestion technologies for lignocellulosic biomass available in India. Biomass Bioenergy 2022;161:106479. [CrossRef]
There are 37 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Technical Note
Authors

Mohammad Siddique 0000-0001-5772-3064

Suhail Ahmed Soomro This is me 0000-0002-8622-7382

Shaheen Azız This is me 0000-0003-3205-4639

Luqman Ali Khan This is me 0000-0003-0568-6753

Kamran Khan 0000-0002-2768-2852

Namatullah Jaffar This is me 0000-0002-1950-9646

Publication Date February 27, 2024
Submission Date December 10, 2021
Published in Issue Year 2024 Volume: 42 Issue: 1

Cite

Vancouver Siddique M, Soomro SA, Azız S, Khan LA, Khan K, Jaffar N. Evaluation and composition of lignin content to enable the production of lignocellulosic biomass pretreatment into sustainable biofuel: A review. SIGMA. 2024;42(1):306-11.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/