Research Article
BibTex RIS Cite

Exponential Estimators Under Non-Response Cases

Year 2025, Volume: 10 Issue: 1, 60 - 72, 29.06.2025
https://doi.org/10.33484/sinopfbd.1569245

Abstract

This study proposes new families of estimators for the estimation of the population mean using the Hansen-Hurwitz method. This method is examined in two cases, referred to as Case I and Case II. According to both cases, the expressions for the proposed family of estimators are derived. After theoretical comparisons, a new data set on the magnitude and a simulation study are conducted to support these theoretical results. As a consequence of this study, the proposed families of estimators perform well under the obtained conditions for both non-response schemes and can be used successfully in the field of seismology.

Supporting Institution

Scientific and Technological Research Council of Turkey (TUBITAK)

Project Number

121F208

Thanks

This publication is a part of PhD thesis of the first author. The authors are very grateful to the blinded reviewers for their valuable comments and to Dr. Lovleen Kumar Grover for providing us all required information. This study was supported by Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant Number 121F208. The authors thank to TUBITAK for their supports. The authors also thank to Assoc. Prof. Dr. Senem Tekin and Assoc. Prof. Dr. Tuba Eroğlu Azak for preparing the data set and thank to Prof. Dr. Tolga Çan for his valuable advice.

References

  • Solanki, R. S., Singh, H. P., & Rathour, A. (2012). An alternative estimator for estimating the finite population mean using auxiliary information in sample surveys. International Scholarly Research Notices, 1-14. https://doi.org/10.5402/2012/657682
  • Oncel Cekim, H., & Kadilar, C. (2018). New families of unbiased estimators in stratified random sampling. Journal of Statistics and Management Systems, 21(8), 1481-1499. https://doi.org/10.1080/09720510.2018.1530176
  • Zaman, T., & Kadilar, C. (2020). On estimating the population mean using auxiliary character in stratified random sampling. Journal of Statistics and Management Systems, 23(8), 1415-1426. https://doi.org/10.1080/09720510.2020.1723924
  • Dansawad, N. (2019). A class of exponential estimator to estimate the population mean in the presence of non-response. Naresuan University Journal: Science and Technology, 27(4), 20-26.
  • Hansen, M., & Hurwitz, N. (1946). The problem of non-response in sample surveys. Journal of the American Statistical Association, 41(236), 517-529. https://doi.org/10.1080/01621459.1946.10501894
  • Kumar, S., Kour, S. P., & Sharma, V. (2022). Modified exponential estimators using auxiliary information under response and non-response. Revista Investigación Operacional, 43(4), 491-504
  • Jaiswal, A. K., Singh, G. N., & Pandey, A. K. (2022). Improved procedures for mean estimation under non-response. Alexandria Engineering Journal, 61(12), 12813-12828. https://doi.org/10.1016/j.aej.2022.06.031
  • Singh, H. P., Yadav, A., & Pal, S. K. (2021). An exponential approach for estimating population mean using two auxiliary variables in stratified random sampling. Revista Investigación Operacional, 42(4), 456-468.
  • Singh, A. K., & Singh, V. K. (2022). A family of estimators for population mean under model approach in presence of non-response. Journal of Reliability and Statistical Studies, 15(1), 1-20. https://doi.org/10.13052/jrss0974-8024.1511
  • Singh, G. N., & Usman, M. (2021). Efficient combination of various estimators in the presence of non-response. Communications in Statistics-Simulation and Computation, 50(8), 2432-2466. https://doi.org/10.1080/03610918.2019.1614618
  • Pandey, A. K., Usman, M., & Singh, G. N. (2021). Optimality of ratio and regression type estimators using dual of auxiliary variable under non-response. Alexandria Engineering Journal, 60(5), 4461–4471. https://doi.org/10.1016/j.aej.2021.03.031
  • Singh, H. P., & Nigam, P. (2021). Efficient method of estimating the finite population mean based on two auxiliary variables in the presence of non-response under stratified sampling. Journal of Reliability and Statistical Studies, 14(1), 223–242. https://doi.org/10.13052/jrss0974-8024.14111
  • Khalid, M., & Singh, G. N. (2022). Some imputation methods to deal with the issue of missing data problems due to random non-response in two-occasion successive sampling. Communications in Statistics-Simulation and Computation, 51(12), 7266–7286. https://doi.org/10.1080/03610918.2020.1828920
  • Hussain, M., Zaman, Q., Khan, L., Metawa, A. E., Awwad, F. A., Ismail, E. A. A., Wasim, D., & Ahmad, H. (2024). Improved exponential type mean estimators for non-response case using two concomitant variables in simple random sampling. Heliyon, 10(6), e27535. https://doi.org/10.1016/j.heliyon.2024.e27535
  • Rao, P. S. R. S. (1986). Ratio estimation with sub sampling the non-respondents. Survey Methodology, 12(2), 217–230.
  • Singh, R.., Kumar, M., Chaudhary, M. K., & Smarandache, F. (2009). Estimation of mean in presence of non-response using exponential estimator. Multispace & Multistructure. Neutrosophic Transdisciplinarity 100 Collected Papers of Sciences, North-European Scientific Publishers, 2010, 758-768.
  • Cochran, W. G. (1977). Sampling Techniques, John Wiley and Sons, New-York.
  • Grover, L. K., & Kaur, P. (2014). A generalized class of ratio type exponential estimators of population mean under linear transformation of auxiliary variable. Communications in Statistics-Simulation and Computation, 43(7), 1552-1574. https://doi.org/10.1080/03610918.2012.736579
  • TUBITAK 1001. (2021). The Scientific and Technological Research Projects Funding Program. Artificial Intelligence and Probabilistic Model Based Earthquake Hazard Map, Project Number: 121F208.

Cevapsızlık Durumunda Üstel Tip Tahmin Ediciler

Year 2025, Volume: 10 Issue: 1, 60 - 72, 29.06.2025
https://doi.org/10.33484/sinopfbd.1569245

Abstract

Bu çalışma, Hansen-Hurwitz yöntemini kullanarak kitle ortalamasının tahmini için yeni tahmin edici aileleri önermektedir. Bu yöntem, Durum I ve Durum II olarak adlandırılan farklı iki durumda incelenmiştir. Her iki duruma göre de önerilen tahmin edici aileleri için teorik çıkarsamalar elde edilmiştir. Yapılan teorik karşılaştırmalardan sonra, bu sonuçları desteklemek amacıyla deprem ile alakalı gerçek veri seti uygulaması ve simülasyon çalışması gerçekleştirilmiştir. Bu çalışma ile önerilen tahmin edici aileleri elde edilen koşullar altında karşılaştırılan tahmin edicilere göre daha iyi performans göstermekte olduğu ve bu tahmin edici ailelerinin deprem alanında da kullanılabileceği sonucuna ulaşılmıştır.

Project Number

121F208

References

  • Solanki, R. S., Singh, H. P., & Rathour, A. (2012). An alternative estimator for estimating the finite population mean using auxiliary information in sample surveys. International Scholarly Research Notices, 1-14. https://doi.org/10.5402/2012/657682
  • Oncel Cekim, H., & Kadilar, C. (2018). New families of unbiased estimators in stratified random sampling. Journal of Statistics and Management Systems, 21(8), 1481-1499. https://doi.org/10.1080/09720510.2018.1530176
  • Zaman, T., & Kadilar, C. (2020). On estimating the population mean using auxiliary character in stratified random sampling. Journal of Statistics and Management Systems, 23(8), 1415-1426. https://doi.org/10.1080/09720510.2020.1723924
  • Dansawad, N. (2019). A class of exponential estimator to estimate the population mean in the presence of non-response. Naresuan University Journal: Science and Technology, 27(4), 20-26.
  • Hansen, M., & Hurwitz, N. (1946). The problem of non-response in sample surveys. Journal of the American Statistical Association, 41(236), 517-529. https://doi.org/10.1080/01621459.1946.10501894
  • Kumar, S., Kour, S. P., & Sharma, V. (2022). Modified exponential estimators using auxiliary information under response and non-response. Revista Investigación Operacional, 43(4), 491-504
  • Jaiswal, A. K., Singh, G. N., & Pandey, A. K. (2022). Improved procedures for mean estimation under non-response. Alexandria Engineering Journal, 61(12), 12813-12828. https://doi.org/10.1016/j.aej.2022.06.031
  • Singh, H. P., Yadav, A., & Pal, S. K. (2021). An exponential approach for estimating population mean using two auxiliary variables in stratified random sampling. Revista Investigación Operacional, 42(4), 456-468.
  • Singh, A. K., & Singh, V. K. (2022). A family of estimators for population mean under model approach in presence of non-response. Journal of Reliability and Statistical Studies, 15(1), 1-20. https://doi.org/10.13052/jrss0974-8024.1511
  • Singh, G. N., & Usman, M. (2021). Efficient combination of various estimators in the presence of non-response. Communications in Statistics-Simulation and Computation, 50(8), 2432-2466. https://doi.org/10.1080/03610918.2019.1614618
  • Pandey, A. K., Usman, M., & Singh, G. N. (2021). Optimality of ratio and regression type estimators using dual of auxiliary variable under non-response. Alexandria Engineering Journal, 60(5), 4461–4471. https://doi.org/10.1016/j.aej.2021.03.031
  • Singh, H. P., & Nigam, P. (2021). Efficient method of estimating the finite population mean based on two auxiliary variables in the presence of non-response under stratified sampling. Journal of Reliability and Statistical Studies, 14(1), 223–242. https://doi.org/10.13052/jrss0974-8024.14111
  • Khalid, M., & Singh, G. N. (2022). Some imputation methods to deal with the issue of missing data problems due to random non-response in two-occasion successive sampling. Communications in Statistics-Simulation and Computation, 51(12), 7266–7286. https://doi.org/10.1080/03610918.2020.1828920
  • Hussain, M., Zaman, Q., Khan, L., Metawa, A. E., Awwad, F. A., Ismail, E. A. A., Wasim, D., & Ahmad, H. (2024). Improved exponential type mean estimators for non-response case using two concomitant variables in simple random sampling. Heliyon, 10(6), e27535. https://doi.org/10.1016/j.heliyon.2024.e27535
  • Rao, P. S. R. S. (1986). Ratio estimation with sub sampling the non-respondents. Survey Methodology, 12(2), 217–230.
  • Singh, R.., Kumar, M., Chaudhary, M. K., & Smarandache, F. (2009). Estimation of mean in presence of non-response using exponential estimator. Multispace & Multistructure. Neutrosophic Transdisciplinarity 100 Collected Papers of Sciences, North-European Scientific Publishers, 2010, 758-768.
  • Cochran, W. G. (1977). Sampling Techniques, John Wiley and Sons, New-York.
  • Grover, L. K., & Kaur, P. (2014). A generalized class of ratio type exponential estimators of population mean under linear transformation of auxiliary variable. Communications in Statistics-Simulation and Computation, 43(7), 1552-1574. https://doi.org/10.1080/03610918.2012.736579
  • TUBITAK 1001. (2021). The Scientific and Technological Research Projects Funding Program. Artificial Intelligence and Probabilistic Model Based Earthquake Hazard Map, Project Number: 121F208.
There are 19 citations in total.

Details

Primary Language English
Subjects Theory of Sampling
Journal Section Research Articles
Authors

Ceren Ünal 0000-0002-9357-1771

Cem Kadılar 0000-0003-4950-9660

Project Number 121F208
Publication Date June 29, 2025
Submission Date October 18, 2024
Acceptance Date January 23, 2025
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Ünal, C., & Kadılar, C. (2025). Exponential Estimators Under Non-Response Cases. Sinop Üniversitesi Fen Bilimleri Dergisi, 10(1), 60-72. https://doi.org/10.33484/sinopfbd.1569245


Articles published in Sinopjns are licensed under CC BY-NC 4.0.