Research Article
BibTex RIS Cite

Capnodis tenebrionis L.'den izole edilen bakterilerin izolasyonu, karakterizasyonu ve bazı böcek zararlılarına karşı biyolojik mücadele potansiyelleri

Year 2023, Volume: 14 Issue: 2, 85 - 104, 15.01.2024
https://doi.org/10.31019/tbmd.1311645

Abstract

Capnodis tenebrionis L. (Coleoptera: Buprestidae), Türkiye'nin de dahil olduğu birçok ülkede sert çekirdekli meyve bahçelerinin en yıkıcı zararlılarından biridir. Bu çalışmada C. tenebrionis'in larva ve erginlerinden 21 bakteri izolatı izole edilmiş, morfolojik, fizyolojik, biyokimyasal ve moleküler özellikleri belirlenmiştir. Buna göre C. tenebrionis'in kültürlenebilir bakteri florası; Bacillus cereus, B. mycoides, B. pumilus, Paenibacillus xylanilyticus, B. flexus, B. simplex, Raoultella terrigena, Enterobacter cloacae, Klebsiella oxytoca, B. safensis, B. amyloliquefaciens ve B. aryabhattai olarak saptanmıştır. Bu bakteri izolatlarının farklı zararlı böcek türlerinin larvalarına karşı biyolojik mücadele potansiyelleri; Karaağaç yaprak böceği (Pyrrhalta luteola M.), Petek güvesi (Galleria mellonella L.) ve Un kurdu (Tenebrio molitor Ludwig) üzerinde incelenmiştir. Bacillus cereus izolatları bu zararlı böcekler üzerinde en yüksek etkiyi göstermiş ve hedeflenen zararlıların biyolojik mücadelesinde kullanılabilecek potansiyel bir etmen olarak saptanmıştır.

References

  • Abbott W.S., 1925. A method of computing of effectiveness of insecticide. Journal of Economic Entomology, 18:265−267.
  • Ambrosini A., F.H. Sant’Anna, R.de Souza, M. Tadra-Sfeir, H. Faoro, S.M. Alvarenga, F.O. Pedrosa, E.M. Souza & L.M.P. Passaglia, 2015. Genome sequence of Bacillus mycoides B38V, a growth-promoting bacterium of sunflower. Genome Announcement, 3:e00245-15.
  • Bargabus R., N. Zidack, J. Sherwood & B. Jacobsen, 2002. Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiological and Molecular Plant Pathology, 61:289–298.
  • Beegle C.C. & T. Yamamoto, 1992. Invitation Paper (C.P. Alexander Fund): History of Bacillus thuringiensis Berliner research and development, Canadian Entomologist, 124: 587- 616.
  • Ben-Dov E., S. Boussiba & A. Zaritsky, 1995. Mosquito larvicidal activity of Escherichia coli with combinations of genes from Bacillus thuringiensis subsp. israelensis. Journal of Bacteriology, 177: 2851–2857.
  • Ben-Dov E., A. Zaritsky, E. Dahan, Z. Barak, R. Sinai, R. Manasherob, A. Khameraev, E. Troitskaya, A. Dubitsky, N. Berezina & Y. Margalith, 1997. Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Applied Environmental Microbiology, 63:4883-4890.
  • Benson H.J., 1985. Microbiological Applications, a Laboratory Manuel in General Microbiology, Brock, Fourth Edition, Wm C. Brown Publishers, Dubuque, Iowa.
  • Ben-Yehuda S., A. Assal & Z. Mendel, 2000. Improved chemical control of Capnodis tenebrionis and C. carbonaria in stone-fruit plantations in Israel. Phyto parasitica, 28:27–41.
  • Bradford M.M., 1976. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72:248–254.
  • Bronskill J.K., 1961. A cage to simplify the rearing of the greater wax moth, Galleria mellonella (Pyralidae). Journal of the Lepidopterists’ Society, 15: 102-104.
  • Burges H.D. & J.A. Hurst, 1977. Ecology of Bacillus thuringiensis in storage moths. Journal of Invertebrate Pathology, 30: 131-139.
  • Caldeira A.T., S.S. Feio, J.M.S. Arteiro, A.V. Coelho & J.C. Roseiro, 2007. Environmental dynamics of Bacillus amyloquefaciens CCMI 1051 anti-fungal activity under different nitrogen patterns. Journal of Applied Microbiology, 104:806-816.
  • Cappuccino J. G. & N. Sherman, 1992. Microbiology, a Laboratory Manual, Third Edition, Rockland Community College, Suffern, New York.
  • Carozzi N.B., V.C. Kramer, G.W. Warren, S. Evola & M.G. Koziel, 1991. Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profilles. Applied and Environmental Microbiology, 57: 3057 3061.
  • Claus M. 1992. A standardized Gram staining procedure. World Journal of Microbiology and Biotechnology, 8:451–452.
  • Daane L.L., I. Harjono, S.M. Barns, L.A. Launen, N.J. Palleroni & M.M. Häggblom, 2002. PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. International Journal Systematic and Evolutionary Microbiology, 52:131–139.
  • Dantur K.I., R. Enrique, B. Welin & A.P. Castagnaro, 2015. Isolation of cellulolytic bacteria from the intestine of Diatraea saccharalis larvae and evaluation of their capacity to degrade sugarcane biomass. AMB Express, 25 (5): 15. Demeli M., Z. Demirbağ & K. Sezen, 2014. Isolation and characterization of Bacillus from some warehouses in Trabzon. Journal of Applied Biological Sciences, 8(2):69-80.
  • De Souza P.C., A.T. Morey, G.M. Castanheira, K.P. Bocate, L.A. Panagio, F.A. Ito, M.C. Furlaneto, S.F. Yamada-Ogatta, I.N. Costa, H.M. Mora-Montes & R.S. Almeida, 2015. Tenebrio molitor (Coleoptera: Tenebrionidae) as an alternative host to study fungal infections. Journal of Microbiological Methods, 118: 182–6.
  • Ertürk O., M. Yaman & I. Aslan, 2008. Effects of four Bacillus ssp. of soil origin on the Colorado potato beetle Leptinotarsa decemlineata (Say). Entomological Research, 38: 135–138.
  • Eski A., F. Özkan Çakıcı, M. Güllü, H. Muratoğlu, Z. Demirbağ & İ. Demir, 2015. Identification and pathogenicity of bacteria in the Mediterranean corn borer Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae), Turkish Journal of Biology, 39: 31–48.
  • Gao H., G. Qi, R. Yin, H. Zhang, C. Li & X. Zhao, 2016. Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine. Scientific Reports, 6: 28756.
  • Grau T., A. Vilcinskas & G. Joop, 2017. Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed. Zeitschrift für Naturforschung C, 72 (9–10): 337–349.
  • Hall TA., 1999. Bio Edit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/Nt. Nucleic Acids Symposium, 41: 95–98.
  • İnce I A, H. Katı, H. Yılmaz, İ. Demir & Z. Demirbağ. 2008. Isolation and identification of bacteria from Thaumetapoea pityocampa Den. And Schiff. (Lep., Thaumetapoeidae) and determination of their biocontrol potential. World Journal of Microbiology and Biotechnology, 24: 3005-3015.
  • Kaelin P., P. Morel, & F. Gadani, 1994. Isolation of Bacillus thuringiensis from stored tobacco and Lasioderma serricorne (F.), Applied Environmental Microbiology, 60: 19-25.
  • Katı H., K. Sezen, R. Nalcacioglu & Z. Demirbag, 2007. A highly pathogenic strain of Bacillus thuringiensis serovar kurstaki in lepidopteran pests. The Journal of Microbiology, 45: 553–557.
  • Laemmli U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680– 685.
  • Lipa J.J. & E. Wiland, 1972. Bacteria isolated from cutworms and their infectivity to Agrotis spp. Acta Microbiologica Polonica, 4: 127–140. Morales-Jiménez J., A. Vera-Ponce de León & A. García-Domínguez, 2013. Nitrogen-fixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae). Microbial Ecology, 66: 200-210.
  • Muratoğlu H., K. Sezen & Z. Demirbağ, 2011. Determination and pathogenicity of the bacterial flora associated with the spruce bark beetle, Ips typographus (L.) (Coleoptera: Curculionidae: Scolytinae). Turkish Journal of Biology, 35: 19–20.
  • Neher O.T., M.R. Johnston, N.K. Zidack & B.J. Jacobsen, 2009. Evaluation of Bacillus mycoides isolate BmJ and B. mojavensis isolate 203-7 for the control of anthracnose of cucurbits caused by Glomerella cingulata var. orbiculare. Biological Control, 48: 140–146.
  • Perchat S., C. Buisson, J. Chaufaux, V. Sanchis, D. Lereclus & M. Gohar, 2005. Bacillus cereus produces several non proteinaceous insecticidal exotoxins. Journal of Invertebrate Pathology, 90: 131–133.
  • Poinar G.O. & G.M. Thomas, 1978. Diagnostic Manual for the Identification of Insect Pathogens. New York, NY, USA: Plenum Press.
  • Prescott L.M., J.P. Harley & D.A. Klein, 1996. Microbiology. Dubuque, IA, USA: William C. Brown Publishers. Ramasubburayan R., S. Titus, P. Kumar, G. Immanuel & A. Palavesam, 2017. Antifouling activity of marine epibiotic bacterium Bacillus flexus APGI isolated from Kanyakumari Coast, Tamilnadu, India. Indian Journal of Geo-Marine Sciences, 46 (07): 1396-1400.
  • Ruiu L., G. Falchi, I. Floris, M.G. Marche, M.E. Mura & A. Satta, 2015. Pathogenicity and characterization of a novel Bacillus cereus sensu lato isolate toxic to the Mediterranean fruit fly Ceratitis capitata Wied. Journal of Invertebrate Pathology, 126: 71–77.
  • Sacchi C.T., A.M. Whitney, L.W. Mayer, R. Morey, A. Steigerwalt, A. Boras, R.S. Weyant & T. Popovic, 2002. Sequencing of 16S rRNA gene: a rapid tool for identification of Bacillus anthracis, Emerging Infectious Diseases, 8: 1117–1123.
  • Sari S.L.A., A. Pangastuti, A. Susilowati, T.j. Purwoko, E. Mahajoeno, W. Hidayat, I. Mardhena, D.F. Panuntun, D. Kurniawati & R. Anitasari, 2016. Cellulolytic and hemicellulolytic bacteria from the gut of Oryctes rhinoceros larvae. Biodiversitas Journal of Biological Diversity, 17: 78–83.
  • Satomi M., M.T. La Duc & K. Venkateswaran, 2006. Bacillus safensissp. nov., isolated from spacecraft and assembly-facility surfaces. International Journal of Systematic and Evolutionary Microbiology, 56: 1735–1740.
  • Sevim A., Z. Demirbağ & İ. Demir, 2010. A new study on the bacteria of Agrotis segetum Schiff. (Lepidoptera: Noctuidae) and the insecticidal activities. Turkish Journal of Agriculture and Forestry, 34: 333–342.
  • Sezen K., İ. Demir & Z. Demirbağ, 2001. Identification and insecticidal effects of bacteria isolated from pests of hazelnut, Proceedings of the 1st Eurasian Congress on Molecular Biotechnology, 17-20 Sep, Trabzon, Turkey, 146–148. Sezen K., Ş. İşçi, H. Muratoğlu, K. İnan & Z. Demirbağ, 2013. Identification and pathogenicity of bacteria from Gryllotalpa gryllotalpa L. (Orthoptera: Gryllotalpidae). Turkish Journal of Biological Control, 4 (2): 89-108.
  • Shaerif F.A. & N.G. Alaeddinoğlu, 1988. A rapid and simple method for staining of the crystal protein of Bacillus thuringiensis. Journal of Industrial Microbiology, 3: 227–229.
  • Sneath P.H.A., N.S. Mair, M.E. Sharpe & J.G. Holt, 1986. Regular, nonsporing gram-positive rods (Editors: Kandler O., Weiss N.,) Bergey’s Manual of Systematic Bacteriology. Baltimore, MD, USA: Williams and Wilkins, 1208–1260. Steinhaus E.A., 1947. Insect Microbiology. Comstock Publishing Co. Inc., Ithaca, New York, 768 s.
  • Tamura K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar, 2011. MEGA5: Molecular evolution are genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28: 2731–2739.
  • Tomova I., I. Lazarkevich, A. Tomova, M. Kambourova & E.V. Tonkova, 2013. Diversity and biosynthetic potential of culturable aerobic heterotrophic bacteria isolated from Magura Cave, Bulgaria. International Journal of Speleology, 42 (1): 65-67.
  • Vilas-Boas G., V. Sanchis, D. Lereclus, M.V.F. Lemos & D. Bourguet, 2002. Genetic differentiation between sympatric populations of Bacillus cereus and Bacillus thuringiensis, Applied and Environmental Microbiology, 68: 1414–1424.
  • Vit K., 2004. Fauna Europaea: Buprestidae. In: Alonso-Zarazaga M.A. (ed.) Fauna Europaea: Coleoptera. Fauna Europaea version 1.1. http://www.faunaeur.org.
  • Wang X. & H. Zhao, 2013. Isolation and characterization of a Bacillus flexus strain used in alkaline wastewater treatment. Advanced Materials Research,750-752: 1381–1384.
  • Watanabe K. & M. Sato, 1998. Plasmid-mediated gene transfer between insect-resident bacteria, Enterobacter cloacae, and plant-epiphytic bacteria, Erwinia herbicola inguts of silkworm larvae. Current Microbiology, 37: 352–355.
  • Weisburg W.G., S.M. Barns, D.A. Pelletier & D.J. Lane, 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173: 697–703.

The isolation and characterization of bacteria isolated from Capnodis tenebrionis L. and their biological control potential against some insect pests

Year 2023, Volume: 14 Issue: 2, 85 - 104, 15.01.2024
https://doi.org/10.31019/tbmd.1311645

Abstract

Capnodis tenebrionis L. (Coleoptera: Buprestidae) is one of the most destructive pests of stone fruit orchards in several countries, including Türkiye. In the present study, 21 bacterial isolates were isolated from the larvae and adults of C. tenebrionis. The morphological, physiological, biochemical and molecular characteristics of the bacterial isolates were determined. The bacterial flora isolated from C. tenebrionis was as follows: Bacillus cereus, B. mycoides, B. pumilus, Paenibacillus xylanilyticus, B. flexus, B. simplex, Raoultella terrigena, Enterobacter cloacae, Klebsiella oxytoca, B. safensis, B. amyloliquefaciens and B. aryabhattai. The biological control potential of these bacterial isolates against the larvae of several economic pest species, the elm leaf beetle (Pyrrhalta luteola (M.)), the honeycomb moth (Galleria mellonella L.), and the mealworm (Tenebrio molitor Ludwig), was investigated. The isolates of B. cereus showed the highest efficacy against these insect pests.

References

  • Abbott W.S., 1925. A method of computing of effectiveness of insecticide. Journal of Economic Entomology, 18:265−267.
  • Ambrosini A., F.H. Sant’Anna, R.de Souza, M. Tadra-Sfeir, H. Faoro, S.M. Alvarenga, F.O. Pedrosa, E.M. Souza & L.M.P. Passaglia, 2015. Genome sequence of Bacillus mycoides B38V, a growth-promoting bacterium of sunflower. Genome Announcement, 3:e00245-15.
  • Bargabus R., N. Zidack, J. Sherwood & B. Jacobsen, 2002. Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiological and Molecular Plant Pathology, 61:289–298.
  • Beegle C.C. & T. Yamamoto, 1992. Invitation Paper (C.P. Alexander Fund): History of Bacillus thuringiensis Berliner research and development, Canadian Entomologist, 124: 587- 616.
  • Ben-Dov E., S. Boussiba & A. Zaritsky, 1995. Mosquito larvicidal activity of Escherichia coli with combinations of genes from Bacillus thuringiensis subsp. israelensis. Journal of Bacteriology, 177: 2851–2857.
  • Ben-Dov E., A. Zaritsky, E. Dahan, Z. Barak, R. Sinai, R. Manasherob, A. Khameraev, E. Troitskaya, A. Dubitsky, N. Berezina & Y. Margalith, 1997. Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Applied Environmental Microbiology, 63:4883-4890.
  • Benson H.J., 1985. Microbiological Applications, a Laboratory Manuel in General Microbiology, Brock, Fourth Edition, Wm C. Brown Publishers, Dubuque, Iowa.
  • Ben-Yehuda S., A. Assal & Z. Mendel, 2000. Improved chemical control of Capnodis tenebrionis and C. carbonaria in stone-fruit plantations in Israel. Phyto parasitica, 28:27–41.
  • Bradford M.M., 1976. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72:248–254.
  • Bronskill J.K., 1961. A cage to simplify the rearing of the greater wax moth, Galleria mellonella (Pyralidae). Journal of the Lepidopterists’ Society, 15: 102-104.
  • Burges H.D. & J.A. Hurst, 1977. Ecology of Bacillus thuringiensis in storage moths. Journal of Invertebrate Pathology, 30: 131-139.
  • Caldeira A.T., S.S. Feio, J.M.S. Arteiro, A.V. Coelho & J.C. Roseiro, 2007. Environmental dynamics of Bacillus amyloquefaciens CCMI 1051 anti-fungal activity under different nitrogen patterns. Journal of Applied Microbiology, 104:806-816.
  • Cappuccino J. G. & N. Sherman, 1992. Microbiology, a Laboratory Manual, Third Edition, Rockland Community College, Suffern, New York.
  • Carozzi N.B., V.C. Kramer, G.W. Warren, S. Evola & M.G. Koziel, 1991. Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profilles. Applied and Environmental Microbiology, 57: 3057 3061.
  • Claus M. 1992. A standardized Gram staining procedure. World Journal of Microbiology and Biotechnology, 8:451–452.
  • Daane L.L., I. Harjono, S.M. Barns, L.A. Launen, N.J. Palleroni & M.M. Häggblom, 2002. PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. International Journal Systematic and Evolutionary Microbiology, 52:131–139.
  • Dantur K.I., R. Enrique, B. Welin & A.P. Castagnaro, 2015. Isolation of cellulolytic bacteria from the intestine of Diatraea saccharalis larvae and evaluation of their capacity to degrade sugarcane biomass. AMB Express, 25 (5): 15. Demeli M., Z. Demirbağ & K. Sezen, 2014. Isolation and characterization of Bacillus from some warehouses in Trabzon. Journal of Applied Biological Sciences, 8(2):69-80.
  • De Souza P.C., A.T. Morey, G.M. Castanheira, K.P. Bocate, L.A. Panagio, F.A. Ito, M.C. Furlaneto, S.F. Yamada-Ogatta, I.N. Costa, H.M. Mora-Montes & R.S. Almeida, 2015. Tenebrio molitor (Coleoptera: Tenebrionidae) as an alternative host to study fungal infections. Journal of Microbiological Methods, 118: 182–6.
  • Ertürk O., M. Yaman & I. Aslan, 2008. Effects of four Bacillus ssp. of soil origin on the Colorado potato beetle Leptinotarsa decemlineata (Say). Entomological Research, 38: 135–138.
  • Eski A., F. Özkan Çakıcı, M. Güllü, H. Muratoğlu, Z. Demirbağ & İ. Demir, 2015. Identification and pathogenicity of bacteria in the Mediterranean corn borer Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae), Turkish Journal of Biology, 39: 31–48.
  • Gao H., G. Qi, R. Yin, H. Zhang, C. Li & X. Zhao, 2016. Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine. Scientific Reports, 6: 28756.
  • Grau T., A. Vilcinskas & G. Joop, 2017. Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed. Zeitschrift für Naturforschung C, 72 (9–10): 337–349.
  • Hall TA., 1999. Bio Edit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/Nt. Nucleic Acids Symposium, 41: 95–98.
  • İnce I A, H. Katı, H. Yılmaz, İ. Demir & Z. Demirbağ. 2008. Isolation and identification of bacteria from Thaumetapoea pityocampa Den. And Schiff. (Lep., Thaumetapoeidae) and determination of their biocontrol potential. World Journal of Microbiology and Biotechnology, 24: 3005-3015.
  • Kaelin P., P. Morel, & F. Gadani, 1994. Isolation of Bacillus thuringiensis from stored tobacco and Lasioderma serricorne (F.), Applied Environmental Microbiology, 60: 19-25.
  • Katı H., K. Sezen, R. Nalcacioglu & Z. Demirbag, 2007. A highly pathogenic strain of Bacillus thuringiensis serovar kurstaki in lepidopteran pests. The Journal of Microbiology, 45: 553–557.
  • Laemmli U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680– 685.
  • Lipa J.J. & E. Wiland, 1972. Bacteria isolated from cutworms and their infectivity to Agrotis spp. Acta Microbiologica Polonica, 4: 127–140. Morales-Jiménez J., A. Vera-Ponce de León & A. García-Domínguez, 2013. Nitrogen-fixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae). Microbial Ecology, 66: 200-210.
  • Muratoğlu H., K. Sezen & Z. Demirbağ, 2011. Determination and pathogenicity of the bacterial flora associated with the spruce bark beetle, Ips typographus (L.) (Coleoptera: Curculionidae: Scolytinae). Turkish Journal of Biology, 35: 19–20.
  • Neher O.T., M.R. Johnston, N.K. Zidack & B.J. Jacobsen, 2009. Evaluation of Bacillus mycoides isolate BmJ and B. mojavensis isolate 203-7 for the control of anthracnose of cucurbits caused by Glomerella cingulata var. orbiculare. Biological Control, 48: 140–146.
  • Perchat S., C. Buisson, J. Chaufaux, V. Sanchis, D. Lereclus & M. Gohar, 2005. Bacillus cereus produces several non proteinaceous insecticidal exotoxins. Journal of Invertebrate Pathology, 90: 131–133.
  • Poinar G.O. & G.M. Thomas, 1978. Diagnostic Manual for the Identification of Insect Pathogens. New York, NY, USA: Plenum Press.
  • Prescott L.M., J.P. Harley & D.A. Klein, 1996. Microbiology. Dubuque, IA, USA: William C. Brown Publishers. Ramasubburayan R., S. Titus, P. Kumar, G. Immanuel & A. Palavesam, 2017. Antifouling activity of marine epibiotic bacterium Bacillus flexus APGI isolated from Kanyakumari Coast, Tamilnadu, India. Indian Journal of Geo-Marine Sciences, 46 (07): 1396-1400.
  • Ruiu L., G. Falchi, I. Floris, M.G. Marche, M.E. Mura & A. Satta, 2015. Pathogenicity and characterization of a novel Bacillus cereus sensu lato isolate toxic to the Mediterranean fruit fly Ceratitis capitata Wied. Journal of Invertebrate Pathology, 126: 71–77.
  • Sacchi C.T., A.M. Whitney, L.W. Mayer, R. Morey, A. Steigerwalt, A. Boras, R.S. Weyant & T. Popovic, 2002. Sequencing of 16S rRNA gene: a rapid tool for identification of Bacillus anthracis, Emerging Infectious Diseases, 8: 1117–1123.
  • Sari S.L.A., A. Pangastuti, A. Susilowati, T.j. Purwoko, E. Mahajoeno, W. Hidayat, I. Mardhena, D.F. Panuntun, D. Kurniawati & R. Anitasari, 2016. Cellulolytic and hemicellulolytic bacteria from the gut of Oryctes rhinoceros larvae. Biodiversitas Journal of Biological Diversity, 17: 78–83.
  • Satomi M., M.T. La Duc & K. Venkateswaran, 2006. Bacillus safensissp. nov., isolated from spacecraft and assembly-facility surfaces. International Journal of Systematic and Evolutionary Microbiology, 56: 1735–1740.
  • Sevim A., Z. Demirbağ & İ. Demir, 2010. A new study on the bacteria of Agrotis segetum Schiff. (Lepidoptera: Noctuidae) and the insecticidal activities. Turkish Journal of Agriculture and Forestry, 34: 333–342.
  • Sezen K., İ. Demir & Z. Demirbağ, 2001. Identification and insecticidal effects of bacteria isolated from pests of hazelnut, Proceedings of the 1st Eurasian Congress on Molecular Biotechnology, 17-20 Sep, Trabzon, Turkey, 146–148. Sezen K., Ş. İşçi, H. Muratoğlu, K. İnan & Z. Demirbağ, 2013. Identification and pathogenicity of bacteria from Gryllotalpa gryllotalpa L. (Orthoptera: Gryllotalpidae). Turkish Journal of Biological Control, 4 (2): 89-108.
  • Shaerif F.A. & N.G. Alaeddinoğlu, 1988. A rapid and simple method for staining of the crystal protein of Bacillus thuringiensis. Journal of Industrial Microbiology, 3: 227–229.
  • Sneath P.H.A., N.S. Mair, M.E. Sharpe & J.G. Holt, 1986. Regular, nonsporing gram-positive rods (Editors: Kandler O., Weiss N.,) Bergey’s Manual of Systematic Bacteriology. Baltimore, MD, USA: Williams and Wilkins, 1208–1260. Steinhaus E.A., 1947. Insect Microbiology. Comstock Publishing Co. Inc., Ithaca, New York, 768 s.
  • Tamura K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar, 2011. MEGA5: Molecular evolution are genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28: 2731–2739.
  • Tomova I., I. Lazarkevich, A. Tomova, M. Kambourova & E.V. Tonkova, 2013. Diversity and biosynthetic potential of culturable aerobic heterotrophic bacteria isolated from Magura Cave, Bulgaria. International Journal of Speleology, 42 (1): 65-67.
  • Vilas-Boas G., V. Sanchis, D. Lereclus, M.V.F. Lemos & D. Bourguet, 2002. Genetic differentiation between sympatric populations of Bacillus cereus and Bacillus thuringiensis, Applied and Environmental Microbiology, 68: 1414–1424.
  • Vit K., 2004. Fauna Europaea: Buprestidae. In: Alonso-Zarazaga M.A. (ed.) Fauna Europaea: Coleoptera. Fauna Europaea version 1.1. http://www.faunaeur.org.
  • Wang X. & H. Zhao, 2013. Isolation and characterization of a Bacillus flexus strain used in alkaline wastewater treatment. Advanced Materials Research,750-752: 1381–1384.
  • Watanabe K. & M. Sato, 1998. Plasmid-mediated gene transfer between insect-resident bacteria, Enterobacter cloacae, and plant-epiphytic bacteria, Erwinia herbicola inguts of silkworm larvae. Current Microbiology, 37: 352–355.
  • Weisburg W.G., S.M. Barns, D.A. Pelletier & D.J. Lane, 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173: 697–703.
There are 48 citations in total.

Details

Primary Language English
Subjects Plant Protection (Other)
Journal Section Articles
Authors

Ebru Güney Aydın 0000-0001-9347-0359

Kazım Sezen 0000-0002-2903-0460

Early Pub Date December 21, 2023
Publication Date January 15, 2024
Submission Date June 9, 2023
Published in Issue Year 2023 Volume: 14 Issue: 2

Cite

APA Güney Aydın, E., & Sezen, K. (2024). The isolation and characterization of bacteria isolated from Capnodis tenebrionis L. and their biological control potential against some insect pests. Türkiye Biyolojik Mücadele Dergisi, 14(2), 85-104. https://doi.org/10.31019/tbmd.1311645
AMA Güney Aydın E, Sezen K. The isolation and characterization of bacteria isolated from Capnodis tenebrionis L. and their biological control potential against some insect pests. Türk. biyo. müc. derg. January 2024;14(2):85-104. doi:10.31019/tbmd.1311645
Chicago Güney Aydın, Ebru, and Kazım Sezen. “The Isolation and Characterization of Bacteria Isolated from Capnodis Tenebrionis L. And Their Biological Control Potential Against Some Insect Pests”. Türkiye Biyolojik Mücadele Dergisi 14, no. 2 (January 2024): 85-104. https://doi.org/10.31019/tbmd.1311645.
EndNote Güney Aydın E, Sezen K (January 1, 2024) The isolation and characterization of bacteria isolated from Capnodis tenebrionis L. and their biological control potential against some insect pests. Türkiye Biyolojik Mücadele Dergisi 14 2 85–104.
IEEE E. Güney Aydın and K. Sezen, “The isolation and characterization of bacteria isolated from Capnodis tenebrionis L. and their biological control potential against some insect pests”, Türk. biyo. müc. derg, vol. 14, no. 2, pp. 85–104, 2024, doi: 10.31019/tbmd.1311645.
ISNAD Güney Aydın, Ebru - Sezen, Kazım. “The Isolation and Characterization of Bacteria Isolated from Capnodis Tenebrionis L. And Their Biological Control Potential Against Some Insect Pests”. Türkiye Biyolojik Mücadele Dergisi 14/2 (January 2024), 85-104. https://doi.org/10.31019/tbmd.1311645.
JAMA Güney Aydın E, Sezen K. The isolation and characterization of bacteria isolated from Capnodis tenebrionis L. and their biological control potential against some insect pests. Türk. biyo. müc. derg. 2024;14:85–104.
MLA Güney Aydın, Ebru and Kazım Sezen. “The Isolation and Characterization of Bacteria Isolated from Capnodis Tenebrionis L. And Their Biological Control Potential Against Some Insect Pests”. Türkiye Biyolojik Mücadele Dergisi, vol. 14, no. 2, 2024, pp. 85-104, doi:10.31019/tbmd.1311645.
Vancouver Güney Aydın E, Sezen K. The isolation and characterization of bacteria isolated from Capnodis tenebrionis L. and their biological control potential against some insect pests. Türk. biyo. müc. derg. 2024;14(2):85-104.