Research Article
BibTex RIS Cite

Bağda Kurşuni Küf Hastalığı (Botrytis cinerea Pers.)’na karşı antagonist bakterilerle biyolojik mücadele

Year 2023, Volume: 14 Issue: 2, 121 - 140, 15.01.2024
https://doi.org/10.31019/tbmd.1331441

Abstract

Bu çalışmada; Manisa ili Sarıgöl ilçesi bağ alanlarından antagonist bakterilerin izolasyonu ve Kurşuni Küf Hastalığına (Botrytis cinerea) karşı biyolojik mücadelede kullanılabilme olanakları araştırılmıştır. In-vitro ve in-vivo çalışmalarla biyolojik etkinliği araştırılan antagonistlerin ayrıca azoxystrobin ve cyprodinil + fludioxonil etkili maddeli fungisitler ile uyumluluğuna da bakılmıştır. Çalışmada 11 adet B. cinerea izolatı elde edilmiş ve en virülent B33 izolatı çalışmanın tamamında hastalık etmeni olarak kullanılmıştır. Sağlıklı bitkilerden 160 antagonist adayı bakteri izole edilmiştir. Aday bakteri izolatlar arasından 17 bakteri izolatı in-vitro ikili kültür testlerinde fungal etmenin misel gelişimini %6.8-%80.1 arasında engellemiştir. Antagonist bakteri izolatları Bacillus halotolerans, B. licheniformis, B. safensis, B. subtilis, B. velezensis, Kosakonia cowanii ve Pseudomonas aeruginosa olarak tanılanmıştır. On yedi antagonistten 13 tanesi Bacillus türleriyken, 7 tanesinin B. velezensis olduğu belirlenmiştir. A7Len4, A1Len4 ve A8Len1 izolatları ile yapılan bitki çalışmalarında, B. cinerea’a karşı %71.43-%80.96 arasında etki saptanmıştır. Bu üç antagonistin de azoxystrobin etkili fungisit ile arazi dozunun iki katına kadar uyumlu olduğu bulunmuştur.

Supporting Institution

Aydın Adnan Menderes Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

ZRF-22012

Thanks

Bu çalışma Aydın Adnan Menderes Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimince desteklenmiştir. Proje Numarası: ZRF-22012.

References

  • Abbott W. S., 1925. A Method of Computing the Effectiveness of an Insecticide. Journal of Economic Entomology, 18(2), 265–267. https://doi.org/10.1093/jee/18.2.265a
  • Ait Barka E., A. Belarbi, C. Hachet, J. Nowak & J. C., 2000. Enhancement of in vitro growth and resistance to gray mould of Vitis vinifera co-cultured with plant growth-promoting rhizobacteria . FEMS Microbiology Letters, 186(1), 91–95. https://doi.org/10.1111/j. 1574-6968.2000.tb09087.x
  • Akça A. & E. Tozlu, 2022. Investigation of the Biocontrol Effectiveness of Some Bacterial Strains on Eggplant Gray Mold Disease (Botrytis cinerea) in in-vitro and in-vivo conditions. KSU J. Agric Nat, 25(5), 1098–1108. https://doi.org/10.18016/ ksutarimdoga.vi
  • Anonymous, 2008. Bağda Kurşuni Küf. In Zirai mücadele teknik talimatları (pp. 273–275). Gıda Tarım ve hayvancılık bakanlığı tarımsal araştırmalar ve politikalar genel müdürlüğü bitki sağlığı araştırmaları daire başkanlığı.
  • Bavaresco L., D. Petegolli, E. Cantù, M. Fergoni, G. Chiusa, & M. Trevisan, 1997. Elicitation and accumulation of stilbene phytoalexins in grapevine berries infected by Botrytis cinerea. VITIS - Journal of Grapevine Research, 36(2), 77–83. https://doi.org/10.5073/ VITIS.1997.36.77-83.
  • Benlioğlu, K. & S. Benlioğlu, 1998. Pseudomonas syringae pv tomato’ya Karşı Bakır Dayanıklılığı Üzerinde Çalışmalar. Conference: Türkiye VIII. Fitopatoloji Kongresi Bildirileri, 21-25 Eylül 1998, Ankara, 52–56.
  • Berg G., A. Fritze, N. Roskot & K. Smalla, 2001. Evaluation of potential biocontrol rhizobacteria from different host plants of Verticillium dahliae Kleb. J Appl Microbiol, 91(May), 963–971. https://doi.org/1462 [pii]
  • Berg G., S. Kurze, A. Buchner, E. M. Wellington & K. Smalla, 2000. Successful strategy for the selection of new strawberry-associated rhizobacteria antagonistic to Verticillium wilt. Canadian Journal of Microbiology, 46, 1128–1137. https://doi.org/10.1139/w00-101
  • Bolívar-Anillo H. J., C. Garrido & I. G. Collado, 2020. Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea. Phytochemistry Reviews, 19(3), 721–740. https://doi.org/10.1007/s11101-019-09603-5
  • Bonaterra A., E. Badosa, N. Daranas, J. Francés, G. Roselló & E. Montesinos, 2022. Bacteria as Biological Control Agents of Plant Diseases. Microorganisms, 10(9). https://doi.org/10.3390/MICROORGANISMS10091759
  • Boubakri H., A. Hadj-Brahim, C. Schmitt, I. Soustre-Gacougnolle & A. Mliki, 2015. Biocontrol potential of chenodeoxycholic acid (CDCA) and endophytic Bacillus subtilis strains against the most destructive grapevine pathogens. New Zealand Journal of Crop and Horticultural Science, 43(4), 261–274. https://doi.org/10.1080/01140671. 2015.1049620
  • Bradbury J. F., 1970. Isolation and preliminary study of bacteria from plant. Rev. Pl. Path., 49(5), 213–218. Buhur N. & Ü. Özyılmaz, 2013. Biberde kök boğazı yanıklığı hastalığının patojenisitesinin belirlenmesinde farklı yöntemler ve biyolojik mücadelesi üzerine çalışmalar. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 10(1), 25–29.
  • Burçak A. A. & Delen N., 2000. Bağlardan izole edilen kurşuni küf (Botrytis cinerea Pers.) izolatlarının bazı fungisitlere duyarlılıkları üzerinde araştırmalar. Bitki Koruma Bülteni, 40(3–4), 153–167.
  • Calvo-Garrido C., J. Roudet, N. Aveline, L. Davidou, S. Dupin & M. Fermaud, 2019. Microbial antagonism toward Botrytis bunch rot of grapes in multiple field tests using one Bacillus ginsengihumi strain and formulated biological control products. Frontiers in Plant Science, 10(February). https://doi.org/10.3389/fpls.2019.00105
  • Cha J. S., C. Pujol & C. I. Kado, 1997. Identification and characterization of a Pantoea citrea gene encoding glucose dehydrogenase that is essential for causing pink disease of pineapple. Applied and Environmental Microbiology, 63(1), 71–76. https://doi.org/ 10.1128/aem.63.1.71-76.1997
  • Compant S., G. Brader, S. Muzammil, A. Sessitsch, A. Lebrihi & F. Mathieu, 2013. Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases. BioControl, 58(4), 435–455. https://doi.org/10.1007/s10526-012-9479-6
  • Çelik B. G. & F. Yıldız, 2021. Biological Control Studies of Gray Mold Disease on Strawberry. The Journal of Turkish Phytopathology, 50(2–3), 35–44.
  • de Mendiburu F., 2021. agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.3-5, Https://CRAN.R-Project.Org/Package=agricolae.
  • ECMA, 2023. Standart ECMA-262, ECMAScript 2023 Language Specification, 14th edition. Ecma International.
  • Elad Y. & A. Stewart, 2007. Microbial Control of Botrytis spp. (Editör: Elad Y., B. Williamson, P. Tudzynski & N. Delen, Botrytis: Biology, Pathology and Control pp. 223–241). Springer.
  • Eljounaidi K., S. K. Lee & H. Bae, 2016. Bacterial endophytes as potential biocontrol agents of vascular wilt diseases – Review and future prospects. Biological Control, 103, 62–68. https://doi.org/10.1016/J.BIOCONTROL.2016.07.013
  • Elmer P. A. G. & T. Reglinski, 2006. Biosuppression of Botrytis cinerea in grapes. Plant Pathology, 55(2), 155–177. https://doi.org/10.1111/J.1365-3059.2006.01348.X
  • Espinosa G., J. Hernández Gómez, J. Martínez, Y. Flores Gallardo, F. J Pacheco Aguilar, J. R. Ramos López, M. A Arvizu Gómez, J. L. Saldaña Gutierrez, C Rodríguez Morales, J. A. García Gutiérrez, J. González Espinosa, Y. Fernanda Hernández Gómez, Y. Javier Martínez, F. J. Flores Gallardo, J. R. Pacheco Aguilar, M. A. Ramos López, J. Lizzeta, A. Gómez, C. Saldaña Gutierrez & J. Campos Guillén, 2023. Kosakonia cowanii Ch1 Isolated from Mexican Chili Powder Reveals Growth Inhibition of Phytopathogenic Fungi. Microorganisms 2023, Vol. 11, Page 1758, 11(7), 1758. https://doi.org/10.3390/MICROORGANISMS11071758
  • Ferreira J. H. S., 1990. In vitro evaluation of epiphytic bacteria from table grapes for the suppression of Botrytis cinerea. South African Journal of Enology and Viticulture, 11(1), 38–41.
  • Foughalia A., Y. Bouaoud, C. Chandeysson, M. Djedidi, M. Tahirine, K. Aissat & P. Nicot, 2022. Acinetobacter calcoaceticus SJ19 and Bacillus safensis SJ4, two Algerian rhizobacteria protecting tomato plants against Botrytis cinerea and promoting their growth. Egyptian Journal of Biological Pest Control, 32(1), 1–8. https://doi.org/10.1186/S41938-022-00511-Z/TABLES/2
  • Fravel D. R., 1988. Role Of Antibiosis In The Biocontrol Of Plant Diseases. Annual Review of Phytopathology, 26(1), 75–91. https://doi.org/10.1146/annurev.phyto.26.1.75
  • Furuya S., M. Mochizuki, Y. Aoki, H. Kobayashi, T. Takayanagi, M. Shimizu & S. Suzuki, 2011. Isolation and characterization of Bacillus subtilis KS1 for the biocontrol of grapevine fungal diseases. Biocontrol Science and Technology, 21(6), 705–720. https://doi.org/10.1080/09583157.2011.574208
  • Genç Kesici T. & M. F. Dönmez, 2022. Çilekte Botrytis cinerea’ya Karşı Bakterilerin Antagonist Etkilerinin In-vitro Koşullarda Belirlenmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(3), 535–547. https://doi.org/10.53433/yyufbed.1089390
  • Gruau C., P. Trotel-Aziz, S. Villaume, F. Rabenoelina, C. Clement, F. Baillieul & A. Aziz, 2015. Pseudomonas fluorescens PTA-CT2 triggers local and systemic immune response against Botrytis cinerea in grapevine. Molecular Plant-Microbe Interactions, 28(10), 1117–1129. https://doi.org/10.1094/MPMI-04-15-0092-R
  • Haidar R., C. Calvo-Garrido, J. Roudet, T. Gautier, A. Deschamps & M. Fermaud, 2016a. In vitro and in vivo screening of antagonistic bacterial strains from vineyards to control Botrytis cinerea in grapevine tissues. Acta Horticulturae, 1144, 85–92. https://doi.org/10.17660/ActaHortic.2016.1144.12
  • Haidar R., M. Fermaud, C. Calvo-Garrido, J. Roudet, J. & A. Deschamps, 2016b. Modes of action for biological control of Botrytis cinerea by antagonistic bacteria. Phytopathologia Mediterranea, 55(3), 301–322. https://doi.org/10.14601/Phytopathol_Mediterr-18079
  • Hanuman L. N. & G. Bindu Madhavi, 2018. Compatibility of Pseudomonas fluorescens with Pesticides in vitro. International Journal of Current Microbiology and Applied Sciences, 7(03), 3310–3315. https://doi.org/10.20546/ijcmas.2018.703.381
  • Jeffries C. D., D. F. Holtmann & D. G. Guse, 1957. Rapid method for determining the activity of microorganisms on nucleic acid. J. Bact., 590–591.
  • Kai M., 2020. Diversity and Distribution of Volatile Secondary Metabolites Throughout Bacillus subtilis Isolates. Frontiers in Microbiology, 11, 478645. https://doi.org/10.3389/FMICB.2020.00559/BIBTEX
  • Kasfi K., P. Taheri, B. Jafarpour & S. Tarighi, 2018. Identification of epiphytic yeasts and bacteria with potential for biocontrol of grey mold disease on table grapes caused by Botrytis cinerea. Spanish Journal of Agricultural Research, 16(1), 1–16. https://doi.org/10.5424/sjar/2018161-11378
  • Khan M. S., J. Gao, X. Chen, M. Zhang, F. Yang, Y. Du, T. S. Moe, I. Munir, J Xue & X. Zhang, 2020. The Endophytic Bacteria Bacillus velezensis Lle-9, Isolated from Lilium leucanthum, Harbors Antifungal Activity and Plant Growth-Promoting Effects. Journal of Microbiology and Biotechnology, 30(5), 668. https://doi.org/10.4014/JMB.1910.10021
  • Kızılırmak S., 2019. Alternaria türlerindeki genetik varyasyonların tespit edilmesinde RAPD-PCR tekniğinin kullanımı. Yüksek Lisans Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 74 s.
  • Kim H. J., S. H. Lee, C. S. Kim, E. K. Lim, K. H. Choi, H. G. Kong, D. W. Kim, S. W. Lee & B. J. Moon, 2007. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. In Journal of Microbiology and Biotechnology, 17(3), 438–444).
  • King E. O., M. K. Ward & D. E. Raney, 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med., 44(2), 301–307.
  • Klement Z., 1968. Pathogenicity factors in regard to relationships of phytopathogenic bacteria. Phytopathology, 58, 1218–1222.
  • Krechel A., A. Faupel, J. Hallmann, A. Ulrich & G. Berg, 2002. Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Canadian Journal of Microbiology, 48(9), 772–786. https://doi.org/10.1139/W02-071
  • Kurt Ş., 2016. Bitki fungal hastalıkları. Akademisyen kitabevi, Ankara.
  • Lane D. J., 1991. 16S/23S rRNA sequencing. (Editör: Stackebrandt E. & M. Goodfellow, Nucleic Acid Techniques in Bacterial Systematics). John Wiley and Sons Chichester.
  • Lee J. P., S. W. Lee, C.S. Kim, J. H. Son, J. H. Song, K. Y. Lee, H. J. Kim, S. J. Jung & B. J. Moon, 2006. Evaluation of formulations of Bacillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea. Biological Control, 37(3), 329–337. https://doi.org/10.1016/J.BIOCONTROL.2006.01.001
  • Leroux P., 2007. Chemical Control of Botrytis and its Resistance to Chemical Fungicides. (Editör: Elad Y., B. Williamson, P. Tudzynski & N. Delen, Botrytis: Biology, Pathology and Control). Springer.
  • Li Z., J. Li, M Yu, P. Quandahor, T. Tian & T. Shen, 2023. Bacillus velezensis FX-6 suppresses the infection of Botrytis cinerea and increases the biomass of tomato plants. PLOS ONE, 18(6), e0286971. https://doi.org/10.1371/JOURNAL.PONE.0286971
  • Loqman S., E. A. Barka, C. Clément & Y. Ouhdouch, 2009. Antagonistic actinomycetes from Moroccan soil to control the grapevine gray mold. World Journal of Microbiology and Biotechnology, 25(1), 81–91. https://doi.org/10.1007/s11274-008-9864-6
  • Maachia B., E. Rafik, F. Cherif, P. Nandal, T. Mohapatra & P. Bernard, 2015. Biological control of the grapevine diseases “grey mold” and “powdery mildew” by Bacillus B27 and B29 strains. Indian J Exp Biol., 53(2), 109–115.
  • Magnin-Robert M., P. Trotel-Aziz, D. Quantinet, S. Biagianti & A. Aziz, 2007. Biological control of Botrytis cinerea by selected grapevine-associated bacteria and stimulation of chitinase and β-1,3 glucanase activities under field conditions. European Journal of Plant Pathology, 118(1), 43–57. https://doi.org/10.1007/s10658-007-9111-2
  • Mohiddin F. A. & M. R. Khan, 2013. Tolerance of fungal and bacterial biocontrol agents to six pesticides commonly used in the control of soil borne plant pathogens. Journal of African Agricultural Research, 8(43), 5331–5334. https://doi.org/10.5897/AJAR11.677
  • Moradali M. F., S. Ghods & B. H. A. Rehm, 2017. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Frontiers in Cellular and Infection Microbiology, 7(FEB), 249785. https://doi.org/10.3389/FCIMB.2017.00039/BIBTEX
  • Morgulis A., G. Coulouris, Y. Raytselis, T. L. Madden, R. Agarwala & A. A. Schäffer, 2008. Database indexing for production MegaBLAST searches. Bioinformatics, 24(16), 1757–1764. https://doi.org/10.1093/bioinformatics/btn322
  • Müller H., R. Meincke & G. Berg, 2004. Serratia plymuthica HRO-C48: Strategy to control Verticillium dahliae in oilseed rape and effects on the microbial community. IOBC/WPRS Bulletin, 27, 399–404.
  • Nağme S., 2005. Sofralık sultani üzüm çeşidinde hasat sonrası fungal çürüklerin epifitik mayalarla biyolojik kontrolü. Doktora tezi, Ege Üniversitesi, Fen Bilimleri Enstitüsü, Bitki Koruma Ana Bilim Dalı, İzmir, 170 s.
  • Nigris S., E. Baldan, A. Tondello, F. Zanella, N. Vitulo, G. Favaro, V. Guidolin, N. Bordin, A. Telatin, E. Barizza, S. Marcato, M. Zottini, A. Squartini, G. Valle & B. Baldan, 2018. Biocontrol traits of Bacillus licheniformis GL174, a culturable endophyte of Vitis vinifera cv. Glera. BMC Microbiology, 18(1). https://doi.org/10.1186/S12866-018-1306-5
  • Özyılmaz Ü., 2007. Aydın ilinde çilek kök hastalıklarına karşı antagonist bakterilerle biyolojik savaş. Doktora tezi, Aydın Adnan Menderes Üniversitesi, 128 s.
  • Özyılmaz Ü., 2018. Bitki Hastalıklarına Karşı Biyolojik Mücadele Çalışmalarında Kullanılan Mikroorganizmaların İnsan Sağlığı açısından Taşıdığı Riskler. Uluslararası Tarım, Çevre ve Sağlık Kongresi / 26-28 Ekim 2018, Aydın, 55–55.
  • Özyılmaz Ü., 2019. Biberde Phytophthora Yanıklığına Karşı Antagonist Bakterilerle Biyolojik Mücadele. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 652–661. https://doi.org/10.29133/yyutbd.597443
  • Pal K. K. & B. Mc Spadden Gardener, 2006. Biological Control of Plant Pathogens. The Plant Health Instructor, DOI: 10.1094/PHI-A-2006-1117-02. http://dx.doi.org/10.1094/phi-a-2006-1117-02
  • Paul B., A. Chereyathmanjiyil, I. Masih, L. Chapuis & A. Benoît, 1998. Biological control of Botrytis cinerea causing grey mould disease of grapevine and elicitation of stilbene phytoalexin (resveratrol) by a soil bacterium. FEMS Microbiology Letters, 165(1), 65–70. https://doi.org/10.1016/S0378-1097(98)00259-6
  • R Core Team., 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-Project.org/.
  • Rabosto X., M. Carrau, A. Paz, E. Boido, E. Dellacassa & F. M. Carrau, 2006. Grapes and vineyard soils as sources of microorganisms for biological control of Botrytis cinerea. American Journal of Enology and Viticulture, 57(3), 332–338.
  • Sang M. K., S. C. Chun & K. D. Kim, 2008. Biological control of Phytophthora blight of pepper by antagonistic rhizobacteria selected from a sequential screening procedure. Biological Control, 46, 424–433. https://doi.org/10.1016/j.biocontrol.2008.03.017
  • Sharrar A. M., A. Crits-Christoph, R. Méheust, S. Diamond, E. P. Starr & J. F. Banfield, 2020. Bacterial secondary metabolite biosynthetic potential in soil varies with phylum, depth, and vegetation type. MBio, 11(3), 1–17. https://doi.org/10.1128/MBIO.00416-20/SUPPL_FILE/MBIO.00416-20-ST004.XLSX
  • Şahin F. & M. Turan, 2020. Üzüm bitkisi verim ve fizyolojik parametreleri üzerine bitki büyümesini teşvik eden kök bakterisi Bacillus megaterium (M3)’un etkileri. Bitki Sağlığında Dost Mikroorganizmalar Çalıştayı, Aralık, 17–30.
  • Tekeli F., 2014. Amerikan asma anaçlarında köklenmeyi artırıcı bazı uygulamalar. Yüksek lisans tezi, Süleyman Demirel Üniversitesi, 87 s.
  • Tekiner N., E. Tozlu, R. Kotan & F. Dadasoglu, 2020. Biological Control of Botrytis cinerea and Alternaria Alternata with Bioagent Bacteria and Fungi under In-vitro Conditions. Fresenius Environmental Bulletin, 29(01), 640–649.
  • Towsend G. R. & J. W. Heuberger, 1943. Methods for estimating losses caused by disease in fungicide experiments. Plant Dısease Reporter. https://worldveg.tind.io/record/45569
  • Törün B., 2018. Aydın ve Mersin illerinden toplanan çileklerde Botrytis cinerea populasyonlarındaki transpozon sıklığı ve fungusit dirençliliği. Doktora tezi, Aydın Adnan Menderes Üniversitesi, Fen Bilimleri Enstitüsü, Aydın, 141 s.
  • Trotel-Aziz P., M. Couderchet, S. Biagianti & A. Aziz, 2008. Characterization of new bacterial biocontrol agents Acinetobacter, Bacillus, Pantoea and Pseudomonas spp. mediating grapevine resistance against Botrytis cinerea. Environmental and Experimental Botany, 64(1), 21–32. https://doi.org/10.1016/j.envexpbot.2007.12.009
  • Wang F., J. Xiao, Y. Zhang, R. Li, L. Liu & Deng, 2021. Biocontrol ability and action mechanism of Bacillus halotolerans against Botrytis cinerea causing grey mould in postharvest strawberry fruit. Postharvest Biology and Technology, 174, 111456. https://doi.org/10.1016/J.POSTHARVBIO.2020.111456
  • Whiteman S. A. & A. Stewart, 1998. Suppression of Botrytis cinerea sporulation on irradiated grape leaf tissue by the antagonistic bacterium Serratia liquefaciens. New Zealand Journal of Crop and Horticultural Science, 26(4), 325–330. https://doi.org/10. 1080/01140671.1998.9514071
  • Yang X. J., S. Wang, J. M. Cao & J. H. Hou, 2018. Complete genome sequence of human pathogen Kosakonia cowanii type strain 888-76T. Brazilian Journal of Microbiology, 49(1), 16–17. https://doi.org/10.1016/J.BJM.2017.03.010
  • Yıldız F., 1991. In-vitro Investigations on the Antagonistic Effects of several Isolates Against Botrytis cinerea. J.Turk. Phytopath., 20(1), 11–22.
  • Yıldız F., 2000. Studies on the Biological Control of Gray Mold Disease (Botrytis cinerea Pers.) of the Greenhouse Grown Tomatoes. J. Turk. Phytopath., 29(2–3), 95–103.
  • Yıldız F., M. Yıldız, N. Delen, A. Coşkuntuna, P. Kınay & H. Türküsay, 2007. The Effects of Biological and Chemical Treatment on Gray Mold Disease in Tomatoes Grown under Greenhouse Conditions. Turk J Agric For, 31(5), 319–325.
  • Yıldız F., M. Yıldız, N. Delen, P. Kınay, M. Topuzoğlu & A. Akar, 2009. Sofralık Sultani Üzümlerde Nitelikli ve Güvenli Ürün Eldesinde Uygun Savaşım Programlarının Geliştirilmesi. TÜBİTAK TOVAG 106O767 sonuç raporu.
  • Zhang Z., S. Schwartz, L. Wagner & W. Miller, 2000. A Greedy Algorithm for Aligning DNA Sequences. Journal of Computational Biology, 7(1–2), 203–214. https://doi.org/10.1089/10665270050081478

Biological control of Gray Mold Disease (Botrytis cinerea Pers.) of grapevine by antagonistic bacteria

Year 2023, Volume: 14 Issue: 2, 121 - 140, 15.01.2024
https://doi.org/10.31019/tbmd.1331441

Abstract

This study focused on isolating antagonistic bacteria from vineyard areas in Sarigol/Manisa Province and using them for biological control against Gray Mold Disease caused by Botrytis cinerea. Biological efficiencies of antagonists were investigated by in-vitro and in-vivo studies. The compatibilities of the antagonists with azoxystrobin and cyprodinil + fludioxonil, which are active ingredients of fungicides, were also examined. A total of 11 B. cinerea strains were isolated, and the B33 isolate was used as the most virulent disease isolate across the study. A total of 160 putative antagonistic bacterial isolates were obtained from healthy grape plants. Among them, 17 bacterial isolates inhibited mycelial growth of the fungal agent by between 6.8% and 80.1% in in-vitro dual culture tests. The antagonistic bacteria were Bacillus halotolerans, B. licheniformis, B. safensis, B. subtilis, B. velezensis, Kosakonia cowanii and Pseudomonas aeruginosa. Of the 17 antagonists, 13 were Bacillus species, while seven of them were strains of B. velezensis. In plant studies conducted with the A7Len4, A1Len4 and A8Len1 isolates, an efficacy of between 71.43% and 80.96% against the disease was determined. All three antagonists werecompatible with up to two applications of azoxystrobin.

Project Number

ZRF-22012

References

  • Abbott W. S., 1925. A Method of Computing the Effectiveness of an Insecticide. Journal of Economic Entomology, 18(2), 265–267. https://doi.org/10.1093/jee/18.2.265a
  • Ait Barka E., A. Belarbi, C. Hachet, J. Nowak & J. C., 2000. Enhancement of in vitro growth and resistance to gray mould of Vitis vinifera co-cultured with plant growth-promoting rhizobacteria . FEMS Microbiology Letters, 186(1), 91–95. https://doi.org/10.1111/j. 1574-6968.2000.tb09087.x
  • Akça A. & E. Tozlu, 2022. Investigation of the Biocontrol Effectiveness of Some Bacterial Strains on Eggplant Gray Mold Disease (Botrytis cinerea) in in-vitro and in-vivo conditions. KSU J. Agric Nat, 25(5), 1098–1108. https://doi.org/10.18016/ ksutarimdoga.vi
  • Anonymous, 2008. Bağda Kurşuni Küf. In Zirai mücadele teknik talimatları (pp. 273–275). Gıda Tarım ve hayvancılık bakanlığı tarımsal araştırmalar ve politikalar genel müdürlüğü bitki sağlığı araştırmaları daire başkanlığı.
  • Bavaresco L., D. Petegolli, E. Cantù, M. Fergoni, G. Chiusa, & M. Trevisan, 1997. Elicitation and accumulation of stilbene phytoalexins in grapevine berries infected by Botrytis cinerea. VITIS - Journal of Grapevine Research, 36(2), 77–83. https://doi.org/10.5073/ VITIS.1997.36.77-83.
  • Benlioğlu, K. & S. Benlioğlu, 1998. Pseudomonas syringae pv tomato’ya Karşı Bakır Dayanıklılığı Üzerinde Çalışmalar. Conference: Türkiye VIII. Fitopatoloji Kongresi Bildirileri, 21-25 Eylül 1998, Ankara, 52–56.
  • Berg G., A. Fritze, N. Roskot & K. Smalla, 2001. Evaluation of potential biocontrol rhizobacteria from different host plants of Verticillium dahliae Kleb. J Appl Microbiol, 91(May), 963–971. https://doi.org/1462 [pii]
  • Berg G., S. Kurze, A. Buchner, E. M. Wellington & K. Smalla, 2000. Successful strategy for the selection of new strawberry-associated rhizobacteria antagonistic to Verticillium wilt. Canadian Journal of Microbiology, 46, 1128–1137. https://doi.org/10.1139/w00-101
  • Bolívar-Anillo H. J., C. Garrido & I. G. Collado, 2020. Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea. Phytochemistry Reviews, 19(3), 721–740. https://doi.org/10.1007/s11101-019-09603-5
  • Bonaterra A., E. Badosa, N. Daranas, J. Francés, G. Roselló & E. Montesinos, 2022. Bacteria as Biological Control Agents of Plant Diseases. Microorganisms, 10(9). https://doi.org/10.3390/MICROORGANISMS10091759
  • Boubakri H., A. Hadj-Brahim, C. Schmitt, I. Soustre-Gacougnolle & A. Mliki, 2015. Biocontrol potential of chenodeoxycholic acid (CDCA) and endophytic Bacillus subtilis strains against the most destructive grapevine pathogens. New Zealand Journal of Crop and Horticultural Science, 43(4), 261–274. https://doi.org/10.1080/01140671. 2015.1049620
  • Bradbury J. F., 1970. Isolation and preliminary study of bacteria from plant. Rev. Pl. Path., 49(5), 213–218. Buhur N. & Ü. Özyılmaz, 2013. Biberde kök boğazı yanıklığı hastalığının patojenisitesinin belirlenmesinde farklı yöntemler ve biyolojik mücadelesi üzerine çalışmalar. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 10(1), 25–29.
  • Burçak A. A. & Delen N., 2000. Bağlardan izole edilen kurşuni küf (Botrytis cinerea Pers.) izolatlarının bazı fungisitlere duyarlılıkları üzerinde araştırmalar. Bitki Koruma Bülteni, 40(3–4), 153–167.
  • Calvo-Garrido C., J. Roudet, N. Aveline, L. Davidou, S. Dupin & M. Fermaud, 2019. Microbial antagonism toward Botrytis bunch rot of grapes in multiple field tests using one Bacillus ginsengihumi strain and formulated biological control products. Frontiers in Plant Science, 10(February). https://doi.org/10.3389/fpls.2019.00105
  • Cha J. S., C. Pujol & C. I. Kado, 1997. Identification and characterization of a Pantoea citrea gene encoding glucose dehydrogenase that is essential for causing pink disease of pineapple. Applied and Environmental Microbiology, 63(1), 71–76. https://doi.org/ 10.1128/aem.63.1.71-76.1997
  • Compant S., G. Brader, S. Muzammil, A. Sessitsch, A. Lebrihi & F. Mathieu, 2013. Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases. BioControl, 58(4), 435–455. https://doi.org/10.1007/s10526-012-9479-6
  • Çelik B. G. & F. Yıldız, 2021. Biological Control Studies of Gray Mold Disease on Strawberry. The Journal of Turkish Phytopathology, 50(2–3), 35–44.
  • de Mendiburu F., 2021. agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.3-5, Https://CRAN.R-Project.Org/Package=agricolae.
  • ECMA, 2023. Standart ECMA-262, ECMAScript 2023 Language Specification, 14th edition. Ecma International.
  • Elad Y. & A. Stewart, 2007. Microbial Control of Botrytis spp. (Editör: Elad Y., B. Williamson, P. Tudzynski & N. Delen, Botrytis: Biology, Pathology and Control pp. 223–241). Springer.
  • Eljounaidi K., S. K. Lee & H. Bae, 2016. Bacterial endophytes as potential biocontrol agents of vascular wilt diseases – Review and future prospects. Biological Control, 103, 62–68. https://doi.org/10.1016/J.BIOCONTROL.2016.07.013
  • Elmer P. A. G. & T. Reglinski, 2006. Biosuppression of Botrytis cinerea in grapes. Plant Pathology, 55(2), 155–177. https://doi.org/10.1111/J.1365-3059.2006.01348.X
  • Espinosa G., J. Hernández Gómez, J. Martínez, Y. Flores Gallardo, F. J Pacheco Aguilar, J. R. Ramos López, M. A Arvizu Gómez, J. L. Saldaña Gutierrez, C Rodríguez Morales, J. A. García Gutiérrez, J. González Espinosa, Y. Fernanda Hernández Gómez, Y. Javier Martínez, F. J. Flores Gallardo, J. R. Pacheco Aguilar, M. A. Ramos López, J. Lizzeta, A. Gómez, C. Saldaña Gutierrez & J. Campos Guillén, 2023. Kosakonia cowanii Ch1 Isolated from Mexican Chili Powder Reveals Growth Inhibition of Phytopathogenic Fungi. Microorganisms 2023, Vol. 11, Page 1758, 11(7), 1758. https://doi.org/10.3390/MICROORGANISMS11071758
  • Ferreira J. H. S., 1990. In vitro evaluation of epiphytic bacteria from table grapes for the suppression of Botrytis cinerea. South African Journal of Enology and Viticulture, 11(1), 38–41.
  • Foughalia A., Y. Bouaoud, C. Chandeysson, M. Djedidi, M. Tahirine, K. Aissat & P. Nicot, 2022. Acinetobacter calcoaceticus SJ19 and Bacillus safensis SJ4, two Algerian rhizobacteria protecting tomato plants against Botrytis cinerea and promoting their growth. Egyptian Journal of Biological Pest Control, 32(1), 1–8. https://doi.org/10.1186/S41938-022-00511-Z/TABLES/2
  • Fravel D. R., 1988. Role Of Antibiosis In The Biocontrol Of Plant Diseases. Annual Review of Phytopathology, 26(1), 75–91. https://doi.org/10.1146/annurev.phyto.26.1.75
  • Furuya S., M. Mochizuki, Y. Aoki, H. Kobayashi, T. Takayanagi, M. Shimizu & S. Suzuki, 2011. Isolation and characterization of Bacillus subtilis KS1 for the biocontrol of grapevine fungal diseases. Biocontrol Science and Technology, 21(6), 705–720. https://doi.org/10.1080/09583157.2011.574208
  • Genç Kesici T. & M. F. Dönmez, 2022. Çilekte Botrytis cinerea’ya Karşı Bakterilerin Antagonist Etkilerinin In-vitro Koşullarda Belirlenmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(3), 535–547. https://doi.org/10.53433/yyufbed.1089390
  • Gruau C., P. Trotel-Aziz, S. Villaume, F. Rabenoelina, C. Clement, F. Baillieul & A. Aziz, 2015. Pseudomonas fluorescens PTA-CT2 triggers local and systemic immune response against Botrytis cinerea in grapevine. Molecular Plant-Microbe Interactions, 28(10), 1117–1129. https://doi.org/10.1094/MPMI-04-15-0092-R
  • Haidar R., C. Calvo-Garrido, J. Roudet, T. Gautier, A. Deschamps & M. Fermaud, 2016a. In vitro and in vivo screening of antagonistic bacterial strains from vineyards to control Botrytis cinerea in grapevine tissues. Acta Horticulturae, 1144, 85–92. https://doi.org/10.17660/ActaHortic.2016.1144.12
  • Haidar R., M. Fermaud, C. Calvo-Garrido, J. Roudet, J. & A. Deschamps, 2016b. Modes of action for biological control of Botrytis cinerea by antagonistic bacteria. Phytopathologia Mediterranea, 55(3), 301–322. https://doi.org/10.14601/Phytopathol_Mediterr-18079
  • Hanuman L. N. & G. Bindu Madhavi, 2018. Compatibility of Pseudomonas fluorescens with Pesticides in vitro. International Journal of Current Microbiology and Applied Sciences, 7(03), 3310–3315. https://doi.org/10.20546/ijcmas.2018.703.381
  • Jeffries C. D., D. F. Holtmann & D. G. Guse, 1957. Rapid method for determining the activity of microorganisms on nucleic acid. J. Bact., 590–591.
  • Kai M., 2020. Diversity and Distribution of Volatile Secondary Metabolites Throughout Bacillus subtilis Isolates. Frontiers in Microbiology, 11, 478645. https://doi.org/10.3389/FMICB.2020.00559/BIBTEX
  • Kasfi K., P. Taheri, B. Jafarpour & S. Tarighi, 2018. Identification of epiphytic yeasts and bacteria with potential for biocontrol of grey mold disease on table grapes caused by Botrytis cinerea. Spanish Journal of Agricultural Research, 16(1), 1–16. https://doi.org/10.5424/sjar/2018161-11378
  • Khan M. S., J. Gao, X. Chen, M. Zhang, F. Yang, Y. Du, T. S. Moe, I. Munir, J Xue & X. Zhang, 2020. The Endophytic Bacteria Bacillus velezensis Lle-9, Isolated from Lilium leucanthum, Harbors Antifungal Activity and Plant Growth-Promoting Effects. Journal of Microbiology and Biotechnology, 30(5), 668. https://doi.org/10.4014/JMB.1910.10021
  • Kızılırmak S., 2019. Alternaria türlerindeki genetik varyasyonların tespit edilmesinde RAPD-PCR tekniğinin kullanımı. Yüksek Lisans Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 74 s.
  • Kim H. J., S. H. Lee, C. S. Kim, E. K. Lim, K. H. Choi, H. G. Kong, D. W. Kim, S. W. Lee & B. J. Moon, 2007. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. In Journal of Microbiology and Biotechnology, 17(3), 438–444).
  • King E. O., M. K. Ward & D. E. Raney, 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med., 44(2), 301–307.
  • Klement Z., 1968. Pathogenicity factors in regard to relationships of phytopathogenic bacteria. Phytopathology, 58, 1218–1222.
  • Krechel A., A. Faupel, J. Hallmann, A. Ulrich & G. Berg, 2002. Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Canadian Journal of Microbiology, 48(9), 772–786. https://doi.org/10.1139/W02-071
  • Kurt Ş., 2016. Bitki fungal hastalıkları. Akademisyen kitabevi, Ankara.
  • Lane D. J., 1991. 16S/23S rRNA sequencing. (Editör: Stackebrandt E. & M. Goodfellow, Nucleic Acid Techniques in Bacterial Systematics). John Wiley and Sons Chichester.
  • Lee J. P., S. W. Lee, C.S. Kim, J. H. Son, J. H. Song, K. Y. Lee, H. J. Kim, S. J. Jung & B. J. Moon, 2006. Evaluation of formulations of Bacillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea. Biological Control, 37(3), 329–337. https://doi.org/10.1016/J.BIOCONTROL.2006.01.001
  • Leroux P., 2007. Chemical Control of Botrytis and its Resistance to Chemical Fungicides. (Editör: Elad Y., B. Williamson, P. Tudzynski & N. Delen, Botrytis: Biology, Pathology and Control). Springer.
  • Li Z., J. Li, M Yu, P. Quandahor, T. Tian & T. Shen, 2023. Bacillus velezensis FX-6 suppresses the infection of Botrytis cinerea and increases the biomass of tomato plants. PLOS ONE, 18(6), e0286971. https://doi.org/10.1371/JOURNAL.PONE.0286971
  • Loqman S., E. A. Barka, C. Clément & Y. Ouhdouch, 2009. Antagonistic actinomycetes from Moroccan soil to control the grapevine gray mold. World Journal of Microbiology and Biotechnology, 25(1), 81–91. https://doi.org/10.1007/s11274-008-9864-6
  • Maachia B., E. Rafik, F. Cherif, P. Nandal, T. Mohapatra & P. Bernard, 2015. Biological control of the grapevine diseases “grey mold” and “powdery mildew” by Bacillus B27 and B29 strains. Indian J Exp Biol., 53(2), 109–115.
  • Magnin-Robert M., P. Trotel-Aziz, D. Quantinet, S. Biagianti & A. Aziz, 2007. Biological control of Botrytis cinerea by selected grapevine-associated bacteria and stimulation of chitinase and β-1,3 glucanase activities under field conditions. European Journal of Plant Pathology, 118(1), 43–57. https://doi.org/10.1007/s10658-007-9111-2
  • Mohiddin F. A. & M. R. Khan, 2013. Tolerance of fungal and bacterial biocontrol agents to six pesticides commonly used in the control of soil borne plant pathogens. Journal of African Agricultural Research, 8(43), 5331–5334. https://doi.org/10.5897/AJAR11.677
  • Moradali M. F., S. Ghods & B. H. A. Rehm, 2017. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Frontiers in Cellular and Infection Microbiology, 7(FEB), 249785. https://doi.org/10.3389/FCIMB.2017.00039/BIBTEX
  • Morgulis A., G. Coulouris, Y. Raytselis, T. L. Madden, R. Agarwala & A. A. Schäffer, 2008. Database indexing for production MegaBLAST searches. Bioinformatics, 24(16), 1757–1764. https://doi.org/10.1093/bioinformatics/btn322
  • Müller H., R. Meincke & G. Berg, 2004. Serratia plymuthica HRO-C48: Strategy to control Verticillium dahliae in oilseed rape and effects on the microbial community. IOBC/WPRS Bulletin, 27, 399–404.
  • Nağme S., 2005. Sofralık sultani üzüm çeşidinde hasat sonrası fungal çürüklerin epifitik mayalarla biyolojik kontrolü. Doktora tezi, Ege Üniversitesi, Fen Bilimleri Enstitüsü, Bitki Koruma Ana Bilim Dalı, İzmir, 170 s.
  • Nigris S., E. Baldan, A. Tondello, F. Zanella, N. Vitulo, G. Favaro, V. Guidolin, N. Bordin, A. Telatin, E. Barizza, S. Marcato, M. Zottini, A. Squartini, G. Valle & B. Baldan, 2018. Biocontrol traits of Bacillus licheniformis GL174, a culturable endophyte of Vitis vinifera cv. Glera. BMC Microbiology, 18(1). https://doi.org/10.1186/S12866-018-1306-5
  • Özyılmaz Ü., 2007. Aydın ilinde çilek kök hastalıklarına karşı antagonist bakterilerle biyolojik savaş. Doktora tezi, Aydın Adnan Menderes Üniversitesi, 128 s.
  • Özyılmaz Ü., 2018. Bitki Hastalıklarına Karşı Biyolojik Mücadele Çalışmalarında Kullanılan Mikroorganizmaların İnsan Sağlığı açısından Taşıdığı Riskler. Uluslararası Tarım, Çevre ve Sağlık Kongresi / 26-28 Ekim 2018, Aydın, 55–55.
  • Özyılmaz Ü., 2019. Biberde Phytophthora Yanıklığına Karşı Antagonist Bakterilerle Biyolojik Mücadele. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 652–661. https://doi.org/10.29133/yyutbd.597443
  • Pal K. K. & B. Mc Spadden Gardener, 2006. Biological Control of Plant Pathogens. The Plant Health Instructor, DOI: 10.1094/PHI-A-2006-1117-02. http://dx.doi.org/10.1094/phi-a-2006-1117-02
  • Paul B., A. Chereyathmanjiyil, I. Masih, L. Chapuis & A. Benoît, 1998. Biological control of Botrytis cinerea causing grey mould disease of grapevine and elicitation of stilbene phytoalexin (resveratrol) by a soil bacterium. FEMS Microbiology Letters, 165(1), 65–70. https://doi.org/10.1016/S0378-1097(98)00259-6
  • R Core Team., 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-Project.org/.
  • Rabosto X., M. Carrau, A. Paz, E. Boido, E. Dellacassa & F. M. Carrau, 2006. Grapes and vineyard soils as sources of microorganisms for biological control of Botrytis cinerea. American Journal of Enology and Viticulture, 57(3), 332–338.
  • Sang M. K., S. C. Chun & K. D. Kim, 2008. Biological control of Phytophthora blight of pepper by antagonistic rhizobacteria selected from a sequential screening procedure. Biological Control, 46, 424–433. https://doi.org/10.1016/j.biocontrol.2008.03.017
  • Sharrar A. M., A. Crits-Christoph, R. Méheust, S. Diamond, E. P. Starr & J. F. Banfield, 2020. Bacterial secondary metabolite biosynthetic potential in soil varies with phylum, depth, and vegetation type. MBio, 11(3), 1–17. https://doi.org/10.1128/MBIO.00416-20/SUPPL_FILE/MBIO.00416-20-ST004.XLSX
  • Şahin F. & M. Turan, 2020. Üzüm bitkisi verim ve fizyolojik parametreleri üzerine bitki büyümesini teşvik eden kök bakterisi Bacillus megaterium (M3)’un etkileri. Bitki Sağlığında Dost Mikroorganizmalar Çalıştayı, Aralık, 17–30.
  • Tekeli F., 2014. Amerikan asma anaçlarında köklenmeyi artırıcı bazı uygulamalar. Yüksek lisans tezi, Süleyman Demirel Üniversitesi, 87 s.
  • Tekiner N., E. Tozlu, R. Kotan & F. Dadasoglu, 2020. Biological Control of Botrytis cinerea and Alternaria Alternata with Bioagent Bacteria and Fungi under In-vitro Conditions. Fresenius Environmental Bulletin, 29(01), 640–649.
  • Towsend G. R. & J. W. Heuberger, 1943. Methods for estimating losses caused by disease in fungicide experiments. Plant Dısease Reporter. https://worldveg.tind.io/record/45569
  • Törün B., 2018. Aydın ve Mersin illerinden toplanan çileklerde Botrytis cinerea populasyonlarındaki transpozon sıklığı ve fungusit dirençliliği. Doktora tezi, Aydın Adnan Menderes Üniversitesi, Fen Bilimleri Enstitüsü, Aydın, 141 s.
  • Trotel-Aziz P., M. Couderchet, S. Biagianti & A. Aziz, 2008. Characterization of new bacterial biocontrol agents Acinetobacter, Bacillus, Pantoea and Pseudomonas spp. mediating grapevine resistance against Botrytis cinerea. Environmental and Experimental Botany, 64(1), 21–32. https://doi.org/10.1016/j.envexpbot.2007.12.009
  • Wang F., J. Xiao, Y. Zhang, R. Li, L. Liu & Deng, 2021. Biocontrol ability and action mechanism of Bacillus halotolerans against Botrytis cinerea causing grey mould in postharvest strawberry fruit. Postharvest Biology and Technology, 174, 111456. https://doi.org/10.1016/J.POSTHARVBIO.2020.111456
  • Whiteman S. A. & A. Stewart, 1998. Suppression of Botrytis cinerea sporulation on irradiated grape leaf tissue by the antagonistic bacterium Serratia liquefaciens. New Zealand Journal of Crop and Horticultural Science, 26(4), 325–330. https://doi.org/10. 1080/01140671.1998.9514071
  • Yang X. J., S. Wang, J. M. Cao & J. H. Hou, 2018. Complete genome sequence of human pathogen Kosakonia cowanii type strain 888-76T. Brazilian Journal of Microbiology, 49(1), 16–17. https://doi.org/10.1016/J.BJM.2017.03.010
  • Yıldız F., 1991. In-vitro Investigations on the Antagonistic Effects of several Isolates Against Botrytis cinerea. J.Turk. Phytopath., 20(1), 11–22.
  • Yıldız F., 2000. Studies on the Biological Control of Gray Mold Disease (Botrytis cinerea Pers.) of the Greenhouse Grown Tomatoes. J. Turk. Phytopath., 29(2–3), 95–103.
  • Yıldız F., M. Yıldız, N. Delen, A. Coşkuntuna, P. Kınay & H. Türküsay, 2007. The Effects of Biological and Chemical Treatment on Gray Mold Disease in Tomatoes Grown under Greenhouse Conditions. Turk J Agric For, 31(5), 319–325.
  • Yıldız F., M. Yıldız, N. Delen, P. Kınay, M. Topuzoğlu & A. Akar, 2009. Sofralık Sultani Üzümlerde Nitelikli ve Güvenli Ürün Eldesinde Uygun Savaşım Programlarının Geliştirilmesi. TÜBİTAK TOVAG 106O767 sonuç raporu.
  • Zhang Z., S. Schwartz, L. Wagner & W. Miller, 2000. A Greedy Algorithm for Aligning DNA Sequences. Journal of Computational Biology, 7(1–2), 203–214. https://doi.org/10.1089/10665270050081478
There are 78 citations in total.

Details

Primary Language Turkish
Subjects Phytopathology
Journal Section Articles
Authors

Mehmet Yıldız 0000-0003-3193-3324

Ümit Özyılmaz 0000-0003-2314-9118

Project Number ZRF-22012
Early Pub Date December 21, 2023
Publication Date January 15, 2024
Submission Date July 23, 2023
Published in Issue Year 2023 Volume: 14 Issue: 2

Cite

APA Yıldız, M., & Özyılmaz, Ü. (2024). Bağda Kurşuni Küf Hastalığı (Botrytis cinerea Pers.)’na karşı antagonist bakterilerle biyolojik mücadele. Türkiye Biyolojik Mücadele Dergisi, 14(2), 121-140. https://doi.org/10.31019/tbmd.1331441
AMA Yıldız M, Özyılmaz Ü. Bağda Kurşuni Küf Hastalığı (Botrytis cinerea Pers.)’na karşı antagonist bakterilerle biyolojik mücadele. Türk. biyo. müc. derg. January 2024;14(2):121-140. doi:10.31019/tbmd.1331441
Chicago Yıldız, Mehmet, and Ümit Özyılmaz. “Bağda Kurşuni Küf Hastalığı (Botrytis Cinerea Pers.)’na karşı Antagonist Bakterilerle Biyolojik mücadele”. Türkiye Biyolojik Mücadele Dergisi 14, no. 2 (January 2024): 121-40. https://doi.org/10.31019/tbmd.1331441.
EndNote Yıldız M, Özyılmaz Ü (January 1, 2024) Bağda Kurşuni Küf Hastalığı (Botrytis cinerea Pers.)’na karşı antagonist bakterilerle biyolojik mücadele. Türkiye Biyolojik Mücadele Dergisi 14 2 121–140.
IEEE M. Yıldız and Ü. Özyılmaz, “Bağda Kurşuni Küf Hastalığı (Botrytis cinerea Pers.)’na karşı antagonist bakterilerle biyolojik mücadele”, Türk. biyo. müc. derg, vol. 14, no. 2, pp. 121–140, 2024, doi: 10.31019/tbmd.1331441.
ISNAD Yıldız, Mehmet - Özyılmaz, Ümit. “Bağda Kurşuni Küf Hastalığı (Botrytis Cinerea Pers.)’na karşı Antagonist Bakterilerle Biyolojik mücadele”. Türkiye Biyolojik Mücadele Dergisi 14/2 (January 2024), 121-140. https://doi.org/10.31019/tbmd.1331441.
JAMA Yıldız M, Özyılmaz Ü. Bağda Kurşuni Küf Hastalığı (Botrytis cinerea Pers.)’na karşı antagonist bakterilerle biyolojik mücadele. Türk. biyo. müc. derg. 2024;14:121–140.
MLA Yıldız, Mehmet and Ümit Özyılmaz. “Bağda Kurşuni Küf Hastalığı (Botrytis Cinerea Pers.)’na karşı Antagonist Bakterilerle Biyolojik mücadele”. Türkiye Biyolojik Mücadele Dergisi, vol. 14, no. 2, 2024, pp. 121-40, doi:10.31019/tbmd.1331441.
Vancouver Yıldız M, Özyılmaz Ü. Bağda Kurşuni Küf Hastalığı (Botrytis cinerea Pers.)’na karşı antagonist bakterilerle biyolojik mücadele. Türk. biyo. müc. derg. 2024;14(2):121-40.