Research Article
BibTex RIS Cite

Investigating the Potential Pharmacological Applications of 5-Hydroxy-2 (hydroxymethyl)-4H pyran-4 one through Electronic Characterization and MM-GBSA Studies for Oxidative Stress and Tyrosinase Inhibition: A Quantum Chemical Approach

Year 2024, Volume: 8 Issue: 2, 80 - 100, 21.05.2024
https://doi.org/10.33435/tcandtc.1381982

Abstract

The study thoroughly examines the possible applications of 5 Hydroxy – 2 (hydroxymethyl) – 4 H pyran – 4 one. Through Quantum chemical analysis, the research rigorously evaluates the compound's properties, including its optoelectronics, geometrical structure, and intermolecular interactions. The geometrical structure parameters were optimized using a 6–311++G(d,p) basis set in the DFT/B3LYP method, and the resulting geometrical factors were then scaled to calculate probable vibrational wavenumbers. The Mulliken charges and MEP map were used to locate electrophilic, nucleophilic regions, and chemical reactivity was described using FMOs and Fukui function assessments. The multiwfn was employed to investigate topological analysis (surface distance projection and Hirshfeld maps). The UV-visible spectrum was used to estimate the absorption of maximum wavelengths, which was then correlated with the TD-DFT, DOS, and band structure investigations. The study also calculated parameters, including Total Energies, ZPE, Entropy, Dipole moment, and Heat Capacity for monomeric and dimeric units. Pharmacokinetics were used to determine the biological characteristics of the compound. The MM-GBSA simulation was performed, and the results suggest that this compound has the potential to be an enhancing anti-oxidant protection agent due to its high binding affinity and intermolecular interactions. These findings are crucial in developing therapeutic agents with pharmacological effects and potential toxicities.

References

  • [1]Chakrabarti, S. S., Saso, L., Bala, S., Saha, S., Profumo, E., Buttari, B., & Chakrabarti, S. (2024). Role of oxidative stress in the pathogenesis of metabolic syndrome. In Metabolic Syndrome (pp. 143-156).
  • [2]Moretto, J. G., Vargas, J. E., da Silva, J. S., Pasinato, A. Z., Kunz, J. L., Marengo, P., & Barcelos, R. P. (2024). A Novel Multi-Supplement Based on Guarana, Selenium, and L-Carnitine Reduces Organ-Specific Oxidative Stress But Not Oxidative Stress-Induced Anxiety. Revista Brasileira de Farmacognosia, 1-9.
  • [3]Al Ati, G., Chkirate, K., El-Guourrami, O., Chakchak, H., Tüzün, B., Mague, J. T., & Essassi, E. M. (2024). Schiff base compounds constructed from pyrazole–acetamide: Synthesis, spectroscopic characterization, crystal structure, DFT, molecular docking and antioxidant activity. Journal of Molecular Structure, 1295, 136637.
  • [4]Aytemir MD, Karakaya G, Ekinci D. Kojic acid derivatives: INTECH Open Access Publisher; 2012.
  • [5]Rho HS, Lee CS, Ahn SM, Hong YD, Shin SS, Park Y-H, et al. (2011). Studies on tyrosinase inhibitory and antioxidant activities of benzoic acid derivatives containing kojic acid moiety. Bulletin of the Korean Chemical Society. 32(12):4411-4.
  • [6]Saeedi, M., Morteza-Semnani, K., Akbari, J., Rahimnia, S. M., Babaei, A., Eghbali, M., & Omidi, M. (2023). Eco-friendly preparation, characterization, evaluation of anti-melanogenesis/antioxidant effect and in vitro/in vivo safety profile of kojic acid loaded niosome as skin lightener preparation. Journal of Biomaterials Science, Polymer Edition, 1-29.
  • [7]Mohammadsadeghi, N., Mahdavi, A., Saadati, F., & Mohammadi, F. (2023). In silico and in vitro studies of novel derivatives of tyrosol and raspberry ketone as the mushroom tyrosinase inhibitors. Food Chemistry, 424, 136413.
  • [8]Kubaib, A., Imran, P. M., & Basha, A. A. (2022). Applications of the Vienna Ab initio simulation package, DFT and molecular interaction studies for investigating the electrochemical stability and solvation performance of non-aqueous NaMF6 electrolytes for sodium-ion batteries. Computational and Theoretical Chemistry, 1217, 113934.
  • [9]Kamat, V., Barretto, D. A., Poojary, B., Kumar, A., Patil, V. B., & Hamzad, S. (2024). In vitro α-amylase and α-glucosidase inhibition study of dihydropyrimidinones synthesized via one-pot Biginelli reaction in the presence of a green catalyst. Bioorganic Chemistry, 143, 107085.
  • [10]Filimonov, D. A., & Poroikov, V. V. (1996). PASS: Computerized prediction of biological activity spectra for chemical substances. Bioactive Compound Design: Possibilities for Industrial Use, 47-56.
  • [11]Gloriozova, T. A., Filimonov, D. A., Lagunin, A. A., & Poroikov, V. V. (1998). Evaluation of computer system for prediction of biological activity PASS on the set of new chemical compounds. Chim.-Pharm. J.(Rus), 32(12), 32-39.
  • [12]Poroikov, V., & Filimonov, D. (2001). Computer-aided prediction of biological activity spectra. Application for finding and optimization of new leads. Rational Approaches to Drug Design, 403-407.
  • [13]Armaković, S., Armaković, S. J., & Koziel, S. (2017). Optoelectronic properties of curved carbon systems. Carbon, 111, 371-379.
  • [14]Stuart, J. G., & Jebaraj, J. W. (2023). Synthesis, characterisation, in silico molecular docking and DFT studies of 2, 6-bis (4-hydroxy-3-methoxyphenyl)-3, 5-dimethylpiperidin-4-one.
  • [15]Darugar, V., Vakili, M., Tayyari, S. F., & Kamounah, F. S. (2021). Validation of potential energy distribution by VEDA in vibrational assignment some of β-diketones; comparison of theoretical predictions and experimental vibration shifts upon deutration. Journal of Molecular Graphics and Modelling, 107, 107976.
  • [16]Bhavani, R., Kanagathara, N., Marchewka, M. K., Janczak, J., Senthilkumar, K., & Azam, M. (2024). Single crystal analysis and DFT studies of the novel hybrid material-based on 2-hydroxypyridine and selenic acid. Results in Chemistry, 7, 101239.
  • [17]Saikia, J., Devi, T. G., & Karlo, T. (2023). DFT calculations, spectroscopic investigations, and molecular docking study of Methylprednisolone with some selective cancer proteins. Materials Today: Proceedings.
  • [18]Basha, A. A., Kubaib, A., & Azam, M. (2024). Exploring the antiviral potency of γ-FP and PA compounds: Electronic characterization, non-covalent interaction analysis and docking profiling with emphasis on QTAIM aspects. Computational and Theoretical Chemistry, 1231, 114412.
  • [19]Hadi, H., Chouchen, B., Nasr, S., Bouzid, G., Chérif, I., Basha, A., & Ayachi, S. (2024). Exploring High-Performance Functionalized Corannulene Dimers: A DFT-Based Investigation for Novel Photovoltaic Applications. Synthetic Metals, 117543.
  • [20]Lu, T., & Chen, F. (2012). Multiwfn: A multifunctional wavefunction analyzer. Journal of computational chemistry, 33(5), 580-592.
  • [21]Kubaib, A., & Imran, P. M. (2023). Fabrication of Li, Na and K electrolytes with doping elements for improved efficiency based on MOT and symmetry. Journal of the Indian Chemical Society, 100(1), 100804.
  • [22]Mason, J. S., Good, A. C., & Martin, E. J. (2001). 3-D pharmacophores in drug discovery. Current pharmaceutical design, 7(7), 567-597.
  • [23]Basha, A. A., Khan, F. L. A., Muthu, S., Imran, P. M., & Kubaib, A. (2023). Dielectric relaxation, dipole moment, electronic characterization and non-covalent interaction behavior of valeramide and halo-phenol in non-polar liquid: A density functional theory-based approach. Journal of Molecular Liquids, 370, 121027.
  • [24]Saranya, G., Devendraprasad, K., Shanmugapriya, P., & Bhuvaneshwari, N. (2023). DFT calculations, molecular docking, in vitro antimicrobial and antidiabetic studies of green synthesized Schiff bases: as Covid-19 inhibitor. Journal of biomolecular structure & dynamics, 1-18.
  • [25]Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7(1), 42717.
  • [26]Release, S. (2018). 4: Jaguar. Schrödinger, LLC, New York, NY.
  • [27]Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of chemical theory and computation, 6(5), 1509-1519.
  • [28]Fatima, A., Khanum, G., Sharma, A., Siddiqui, N., Muthu, S., Butcher, R. J., & Javed, S. (2022). Synthesis, single crystal X-ray, DFT, Hirshfeld surface and molecular docking studies of 9-(2, 4-dichlorophenyl)-4a-hydroxy-tetramethyl-octahydro-1H-xanthene-1, 8 (2H)-dione. Journal of Molecular Structure, 1268, 133613.
  • [29]Yurdakul, Ş., & Polat, T. (2010). FT-IR, FT-Raman spectra, density functional computations of the vibrational spectra and molecular geometry of 2-hydroxyquinoxaline. Journal of Molecular Structure, 963(2-3), 194-201.
  • [30]Ganesan, T. S., Elangovan, N., Vanmathi, V., Sowrirajan, S., Chandrasekar, S., Murthy, K. S., & Thomas, R. (2022). Spectroscopic, Computational (DFT), Quantum mechanical studies and protein-ligand interaction of Schiff base 6, 6-((1, 2-phenylenebis (azaneylylidene)) bis (methaneylylidene)) bis (2-methoxyphenol) from o-phenylenediamine and 3-methoxysalicylaldehyde. Journal of the Indian Chemical Society, 99(10), 100713.
  • [31]Hilary, H. J. L., Prabakar, P. J., Vijayakumar, G., Rejith, S. G., Divya, J., & Sathana, V. (2023). Investigation on the growth, characterization and computational analysis of 2-Amino-2-thiazoline single crystals. Chemical Physics Impact, 6, 100187.
  • [32]Rifana, B. A., Prasana, J. C., Muthu, S., Anuradha, A., & Irfan, A. (2023). Experimental spectroscopy, eco-friendly solvents effect on transitions, reactive sites and biological research on methyl gallate–MTT assay (cytotoxicity). Journal of Molecular Liquids, 371, 121092.
  • [33]Abirami, V., Pari, S., Sumithanandhi, S., Muthupandi, S., Selvam, L. A., & Prathap, S. (2023, May). Quantum chemical studies on the molecular structure and optical properties of 2-amino-5-bromo benzaldehyde compound based on DFT calculations. In AIP Conference Proceedings (Vol. 2770, No. 1). AIP Publishing.
  • [34]Mishma, J. C., Jothy, V. B., Narayana, B., Kodlady, S. N., Alharbi, N. S., Abbas, G., & Muthu, S. (2023). Synthesis, DFT, solvent effect and biological attributes of NLO active 4-bromo-2-((2-(2, 4-Dinitrophenyl) hydrazono) methyl) phenol-Potent drug anti-brain cancer. Journal of Molecular Structure, 1289, 135839.
  • [35]Reeda, V. J., Divya, P., Suja, R., Rathika, A., & Jothy, V. B. (2023). Synthesis, Spectroscopic Investigations, Topological Non-Covalent Interactions, Chemical Reactivity, Molecular Docking and Molecular Dynamic Simulation on Piperazine Succinate-A Potential Antimicrobial Compound. Journal of Molecular Structure, 136179.
  • [36]Basha, A. A., Khan, F. L. A., Muzammil, P., & Fasiuddin, G. S. (2022). Dielectric relaxation and dipole moment studies of hydrogen bonded complexes for enanthamide and valeramide with halogenated phenols using J-band microwave frequency. Materials Research Express, 9(7), 075303.
  • [37]Selvakumaran, M., Imran, P. M., Kubaib, A., Azam, M., Basha, A. A., & Al-Resayes, S. I. (2024). Investigations into the anti-inflammatory and anti-diabetic activity of newly synthesized derivatives of 4AP2BOB utilizing DFT, molecular docking and spectroscopic characterization. Journal of Molecular Liquids, 123983.
  • [38]Chamorro, E., Guerra, C., Ayarde-Henríquez, L., Duque-Noreña, M., Pérez, P., & Rincón, E. (2023). New insights from a bonding evolution theory based on the topological analysis of the electron localization function. Chemical Reactivity, 465-481.
  • [39]Yadav, N. P., Vishwkarma, A. K., Maddheshiya, A. K., Yadav, T., Moharana, S., Kumar, R.,& Tripathi, P. K. (2023). Molecular geometries, vibrational spectra and electronic properties of biphenyl nematic liquid crystals: a quantum chemical analysis. Molecular Physics, e2210957.
  • [40]M. Yeo , P.M. Niamien , E.B.A. Bilé, A. Trokourey , (2018). Thiamine Hydrochloride as a Potential Inhibitor for Aluminium Corrosion in 1.0 M HCl: mass Loss and DFT Studies, Journal of Computational Methods in Molecular Design 8 (1) 13–25.
  • [41]Alam, A., Jawaid, T., & Alam, P. (2021). In vitro antioxidant and anti-inflammatory activities of green cardamom essential oil and in silico molecular docking of its major bioactives. Journal of Taibah University for Science, 15(1), 757-768.
  • [42]Noumi, E., Ahmad, I., Adnan, M., Merghni, A., Patel, H., Haddaji, N., & De Feo, V. (2023). GC/MS Profiling, Antibacterial, Anti-Quorum Sensing, and Antibiofilm Properties of Anethum graveolens L. Essential Oil: Molecular Docking Study and In-Silico ADME Profiling. Plants, 12(10), 1997.
  • [43]Mujafarkani, N., Ojong, M. A., Ahamed, A. J., Benjamin, I., Ngana, O. C., Akor, F. O.,& Louis, H. (2023). Spectroscopic characterization, polar solvation effects, DFT studies, and the antiviral inhibitory potency of a novel terpolymer based on p-Phenylenediamine–Guanidine–Formaldehyde (PGF) ligand. Journal of Molecular Structure, 136049.
  • [44]Alzahrani, A. Y. A., Ullah, H., Bhat, M. A., Rahim, F., Al-Wesabi, E. O., & Alanazi, T. Y. (2024). Design, synthesis, in vitro acetylcholinesterase, butyrylcholinesterase activities, and in silico molecular docking study of oxindole-oxadiazole hybrid analogues. Journal of Molecular Structure, 1299, 137167.
  • [45]Praveen, M., Ullah, I., Buendia, R., Khan, I. A., Sayed, M. G., Kabir, R., & Yaseen, M. (2024). Exploring Potentilla nepalensis Phytoconstituents: Integrated Strategies of Network Pharmacology, Molecular Docking, Dynamic Simulations, and MMGBSA Analysis for Cancer Therapeutic Targets Discovery. Pharmaceuticals, 17(1), 134.
  • [46]Tomar, R., Naaz, T., Pandit, S., Mathuriya, A. S., & Jadhav, D. A. (2024). Exploring the potential of metal-doped perovskite-oxides as oxygen reduction catalyst for enhancing the performance of microbial desalination cells. Fuel, 356, 129451.
Year 2024, Volume: 8 Issue: 2, 80 - 100, 21.05.2024
https://doi.org/10.33435/tcandtc.1381982

Abstract

References

  • [1]Chakrabarti, S. S., Saso, L., Bala, S., Saha, S., Profumo, E., Buttari, B., & Chakrabarti, S. (2024). Role of oxidative stress in the pathogenesis of metabolic syndrome. In Metabolic Syndrome (pp. 143-156).
  • [2]Moretto, J. G., Vargas, J. E., da Silva, J. S., Pasinato, A. Z., Kunz, J. L., Marengo, P., & Barcelos, R. P. (2024). A Novel Multi-Supplement Based on Guarana, Selenium, and L-Carnitine Reduces Organ-Specific Oxidative Stress But Not Oxidative Stress-Induced Anxiety. Revista Brasileira de Farmacognosia, 1-9.
  • [3]Al Ati, G., Chkirate, K., El-Guourrami, O., Chakchak, H., Tüzün, B., Mague, J. T., & Essassi, E. M. (2024). Schiff base compounds constructed from pyrazole–acetamide: Synthesis, spectroscopic characterization, crystal structure, DFT, molecular docking and antioxidant activity. Journal of Molecular Structure, 1295, 136637.
  • [4]Aytemir MD, Karakaya G, Ekinci D. Kojic acid derivatives: INTECH Open Access Publisher; 2012.
  • [5]Rho HS, Lee CS, Ahn SM, Hong YD, Shin SS, Park Y-H, et al. (2011). Studies on tyrosinase inhibitory and antioxidant activities of benzoic acid derivatives containing kojic acid moiety. Bulletin of the Korean Chemical Society. 32(12):4411-4.
  • [6]Saeedi, M., Morteza-Semnani, K., Akbari, J., Rahimnia, S. M., Babaei, A., Eghbali, M., & Omidi, M. (2023). Eco-friendly preparation, characterization, evaluation of anti-melanogenesis/antioxidant effect and in vitro/in vivo safety profile of kojic acid loaded niosome as skin lightener preparation. Journal of Biomaterials Science, Polymer Edition, 1-29.
  • [7]Mohammadsadeghi, N., Mahdavi, A., Saadati, F., & Mohammadi, F. (2023). In silico and in vitro studies of novel derivatives of tyrosol and raspberry ketone as the mushroom tyrosinase inhibitors. Food Chemistry, 424, 136413.
  • [8]Kubaib, A., Imran, P. M., & Basha, A. A. (2022). Applications of the Vienna Ab initio simulation package, DFT and molecular interaction studies for investigating the electrochemical stability and solvation performance of non-aqueous NaMF6 electrolytes for sodium-ion batteries. Computational and Theoretical Chemistry, 1217, 113934.
  • [9]Kamat, V., Barretto, D. A., Poojary, B., Kumar, A., Patil, V. B., & Hamzad, S. (2024). In vitro α-amylase and α-glucosidase inhibition study of dihydropyrimidinones synthesized via one-pot Biginelli reaction in the presence of a green catalyst. Bioorganic Chemistry, 143, 107085.
  • [10]Filimonov, D. A., & Poroikov, V. V. (1996). PASS: Computerized prediction of biological activity spectra for chemical substances. Bioactive Compound Design: Possibilities for Industrial Use, 47-56.
  • [11]Gloriozova, T. A., Filimonov, D. A., Lagunin, A. A., & Poroikov, V. V. (1998). Evaluation of computer system for prediction of biological activity PASS on the set of new chemical compounds. Chim.-Pharm. J.(Rus), 32(12), 32-39.
  • [12]Poroikov, V., & Filimonov, D. (2001). Computer-aided prediction of biological activity spectra. Application for finding and optimization of new leads. Rational Approaches to Drug Design, 403-407.
  • [13]Armaković, S., Armaković, S. J., & Koziel, S. (2017). Optoelectronic properties of curved carbon systems. Carbon, 111, 371-379.
  • [14]Stuart, J. G., & Jebaraj, J. W. (2023). Synthesis, characterisation, in silico molecular docking and DFT studies of 2, 6-bis (4-hydroxy-3-methoxyphenyl)-3, 5-dimethylpiperidin-4-one.
  • [15]Darugar, V., Vakili, M., Tayyari, S. F., & Kamounah, F. S. (2021). Validation of potential energy distribution by VEDA in vibrational assignment some of β-diketones; comparison of theoretical predictions and experimental vibration shifts upon deutration. Journal of Molecular Graphics and Modelling, 107, 107976.
  • [16]Bhavani, R., Kanagathara, N., Marchewka, M. K., Janczak, J., Senthilkumar, K., & Azam, M. (2024). Single crystal analysis and DFT studies of the novel hybrid material-based on 2-hydroxypyridine and selenic acid. Results in Chemistry, 7, 101239.
  • [17]Saikia, J., Devi, T. G., & Karlo, T. (2023). DFT calculations, spectroscopic investigations, and molecular docking study of Methylprednisolone with some selective cancer proteins. Materials Today: Proceedings.
  • [18]Basha, A. A., Kubaib, A., & Azam, M. (2024). Exploring the antiviral potency of γ-FP and PA compounds: Electronic characterization, non-covalent interaction analysis and docking profiling with emphasis on QTAIM aspects. Computational and Theoretical Chemistry, 1231, 114412.
  • [19]Hadi, H., Chouchen, B., Nasr, S., Bouzid, G., Chérif, I., Basha, A., & Ayachi, S. (2024). Exploring High-Performance Functionalized Corannulene Dimers: A DFT-Based Investigation for Novel Photovoltaic Applications. Synthetic Metals, 117543.
  • [20]Lu, T., & Chen, F. (2012). Multiwfn: A multifunctional wavefunction analyzer. Journal of computational chemistry, 33(5), 580-592.
  • [21]Kubaib, A., & Imran, P. M. (2023). Fabrication of Li, Na and K electrolytes with doping elements for improved efficiency based on MOT and symmetry. Journal of the Indian Chemical Society, 100(1), 100804.
  • [22]Mason, J. S., Good, A. C., & Martin, E. J. (2001). 3-D pharmacophores in drug discovery. Current pharmaceutical design, 7(7), 567-597.
  • [23]Basha, A. A., Khan, F. L. A., Muthu, S., Imran, P. M., & Kubaib, A. (2023). Dielectric relaxation, dipole moment, electronic characterization and non-covalent interaction behavior of valeramide and halo-phenol in non-polar liquid: A density functional theory-based approach. Journal of Molecular Liquids, 370, 121027.
  • [24]Saranya, G., Devendraprasad, K., Shanmugapriya, P., & Bhuvaneshwari, N. (2023). DFT calculations, molecular docking, in vitro antimicrobial and antidiabetic studies of green synthesized Schiff bases: as Covid-19 inhibitor. Journal of biomolecular structure & dynamics, 1-18.
  • [25]Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7(1), 42717.
  • [26]Release, S. (2018). 4: Jaguar. Schrödinger, LLC, New York, NY.
  • [27]Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of chemical theory and computation, 6(5), 1509-1519.
  • [28]Fatima, A., Khanum, G., Sharma, A., Siddiqui, N., Muthu, S., Butcher, R. J., & Javed, S. (2022). Synthesis, single crystal X-ray, DFT, Hirshfeld surface and molecular docking studies of 9-(2, 4-dichlorophenyl)-4a-hydroxy-tetramethyl-octahydro-1H-xanthene-1, 8 (2H)-dione. Journal of Molecular Structure, 1268, 133613.
  • [29]Yurdakul, Ş., & Polat, T. (2010). FT-IR, FT-Raman spectra, density functional computations of the vibrational spectra and molecular geometry of 2-hydroxyquinoxaline. Journal of Molecular Structure, 963(2-3), 194-201.
  • [30]Ganesan, T. S., Elangovan, N., Vanmathi, V., Sowrirajan, S., Chandrasekar, S., Murthy, K. S., & Thomas, R. (2022). Spectroscopic, Computational (DFT), Quantum mechanical studies and protein-ligand interaction of Schiff base 6, 6-((1, 2-phenylenebis (azaneylylidene)) bis (methaneylylidene)) bis (2-methoxyphenol) from o-phenylenediamine and 3-methoxysalicylaldehyde. Journal of the Indian Chemical Society, 99(10), 100713.
  • [31]Hilary, H. J. L., Prabakar, P. J., Vijayakumar, G., Rejith, S. G., Divya, J., & Sathana, V. (2023). Investigation on the growth, characterization and computational analysis of 2-Amino-2-thiazoline single crystals. Chemical Physics Impact, 6, 100187.
  • [32]Rifana, B. A., Prasana, J. C., Muthu, S., Anuradha, A., & Irfan, A. (2023). Experimental spectroscopy, eco-friendly solvents effect on transitions, reactive sites and biological research on methyl gallate–MTT assay (cytotoxicity). Journal of Molecular Liquids, 371, 121092.
  • [33]Abirami, V., Pari, S., Sumithanandhi, S., Muthupandi, S., Selvam, L. A., & Prathap, S. (2023, May). Quantum chemical studies on the molecular structure and optical properties of 2-amino-5-bromo benzaldehyde compound based on DFT calculations. In AIP Conference Proceedings (Vol. 2770, No. 1). AIP Publishing.
  • [34]Mishma, J. C., Jothy, V. B., Narayana, B., Kodlady, S. N., Alharbi, N. S., Abbas, G., & Muthu, S. (2023). Synthesis, DFT, solvent effect and biological attributes of NLO active 4-bromo-2-((2-(2, 4-Dinitrophenyl) hydrazono) methyl) phenol-Potent drug anti-brain cancer. Journal of Molecular Structure, 1289, 135839.
  • [35]Reeda, V. J., Divya, P., Suja, R., Rathika, A., & Jothy, V. B. (2023). Synthesis, Spectroscopic Investigations, Topological Non-Covalent Interactions, Chemical Reactivity, Molecular Docking and Molecular Dynamic Simulation on Piperazine Succinate-A Potential Antimicrobial Compound. Journal of Molecular Structure, 136179.
  • [36]Basha, A. A., Khan, F. L. A., Muzammil, P., & Fasiuddin, G. S. (2022). Dielectric relaxation and dipole moment studies of hydrogen bonded complexes for enanthamide and valeramide with halogenated phenols using J-band microwave frequency. Materials Research Express, 9(7), 075303.
  • [37]Selvakumaran, M., Imran, P. M., Kubaib, A., Azam, M., Basha, A. A., & Al-Resayes, S. I. (2024). Investigations into the anti-inflammatory and anti-diabetic activity of newly synthesized derivatives of 4AP2BOB utilizing DFT, molecular docking and spectroscopic characterization. Journal of Molecular Liquids, 123983.
  • [38]Chamorro, E., Guerra, C., Ayarde-Henríquez, L., Duque-Noreña, M., Pérez, P., & Rincón, E. (2023). New insights from a bonding evolution theory based on the topological analysis of the electron localization function. Chemical Reactivity, 465-481.
  • [39]Yadav, N. P., Vishwkarma, A. K., Maddheshiya, A. K., Yadav, T., Moharana, S., Kumar, R.,& Tripathi, P. K. (2023). Molecular geometries, vibrational spectra and electronic properties of biphenyl nematic liquid crystals: a quantum chemical analysis. Molecular Physics, e2210957.
  • [40]M. Yeo , P.M. Niamien , E.B.A. Bilé, A. Trokourey , (2018). Thiamine Hydrochloride as a Potential Inhibitor for Aluminium Corrosion in 1.0 M HCl: mass Loss and DFT Studies, Journal of Computational Methods in Molecular Design 8 (1) 13–25.
  • [41]Alam, A., Jawaid, T., & Alam, P. (2021). In vitro antioxidant and anti-inflammatory activities of green cardamom essential oil and in silico molecular docking of its major bioactives. Journal of Taibah University for Science, 15(1), 757-768.
  • [42]Noumi, E., Ahmad, I., Adnan, M., Merghni, A., Patel, H., Haddaji, N., & De Feo, V. (2023). GC/MS Profiling, Antibacterial, Anti-Quorum Sensing, and Antibiofilm Properties of Anethum graveolens L. Essential Oil: Molecular Docking Study and In-Silico ADME Profiling. Plants, 12(10), 1997.
  • [43]Mujafarkani, N., Ojong, M. A., Ahamed, A. J., Benjamin, I., Ngana, O. C., Akor, F. O.,& Louis, H. (2023). Spectroscopic characterization, polar solvation effects, DFT studies, and the antiviral inhibitory potency of a novel terpolymer based on p-Phenylenediamine–Guanidine–Formaldehyde (PGF) ligand. Journal of Molecular Structure, 136049.
  • [44]Alzahrani, A. Y. A., Ullah, H., Bhat, M. A., Rahim, F., Al-Wesabi, E. O., & Alanazi, T. Y. (2024). Design, synthesis, in vitro acetylcholinesterase, butyrylcholinesterase activities, and in silico molecular docking study of oxindole-oxadiazole hybrid analogues. Journal of Molecular Structure, 1299, 137167.
  • [45]Praveen, M., Ullah, I., Buendia, R., Khan, I. A., Sayed, M. G., Kabir, R., & Yaseen, M. (2024). Exploring Potentilla nepalensis Phytoconstituents: Integrated Strategies of Network Pharmacology, Molecular Docking, Dynamic Simulations, and MMGBSA Analysis for Cancer Therapeutic Targets Discovery. Pharmaceuticals, 17(1), 134.
  • [46]Tomar, R., Naaz, T., Pandit, S., Mathuriya, A. S., & Jadhav, D. A. (2024). Exploring the potential of metal-doped perovskite-oxides as oxygen reduction catalyst for enhancing the performance of microbial desalination cells. Fuel, 356, 129451.
There are 46 citations in total.

Details

Primary Language English
Subjects Physical Chemistry (Other)
Journal Section Research Article
Authors

Attar Kubaib 0000-0003-0909-0391

N Nadeem Afroze This is me 0000-0003-4049-1812

Mohamed Imran Predhanekar 0000-0002-5556-4116

Early Pub Date May 21, 2024
Publication Date May 21, 2024
Submission Date October 28, 2023
Acceptance Date March 24, 2024
Published in Issue Year 2024 Volume: 8 Issue: 2

Cite

APA Kubaib, A., Afroze, N. N., & Predhanekar, M. I. (2024). Investigating the Potential Pharmacological Applications of 5-Hydroxy-2 (hydroxymethyl)-4H pyran-4 one through Electronic Characterization and MM-GBSA Studies for Oxidative Stress and Tyrosinase Inhibition: A Quantum Chemical Approach. Turkish Computational and Theoretical Chemistry, 8(2), 80-100. https://doi.org/10.33435/tcandtc.1381982
AMA Kubaib A, Afroze NN, Predhanekar MI. Investigating the Potential Pharmacological Applications of 5-Hydroxy-2 (hydroxymethyl)-4H pyran-4 one through Electronic Characterization and MM-GBSA Studies for Oxidative Stress and Tyrosinase Inhibition: A Quantum Chemical Approach. Turkish Comp Theo Chem (TC&TC). May 2024;8(2):80-100. doi:10.33435/tcandtc.1381982
Chicago Kubaib, Attar, N Nadeem Afroze, and Mohamed Imran Predhanekar. “Investigating the Potential Pharmacological Applications of 5-Hydroxy-2 (hydroxymethyl)-4H Pyran-4 One through Electronic Characterization and MM-GBSA Studies for Oxidative Stress and Tyrosinase Inhibition: A Quantum Chemical Approach”. Turkish Computational and Theoretical Chemistry 8, no. 2 (May 2024): 80-100. https://doi.org/10.33435/tcandtc.1381982.
EndNote Kubaib A, Afroze NN, Predhanekar MI (May 1, 2024) Investigating the Potential Pharmacological Applications of 5-Hydroxy-2 (hydroxymethyl)-4H pyran-4 one through Electronic Characterization and MM-GBSA Studies for Oxidative Stress and Tyrosinase Inhibition: A Quantum Chemical Approach. Turkish Computational and Theoretical Chemistry 8 2 80–100.
IEEE A. Kubaib, N. N. Afroze, and M. I. Predhanekar, “Investigating the Potential Pharmacological Applications of 5-Hydroxy-2 (hydroxymethyl)-4H pyran-4 one through Electronic Characterization and MM-GBSA Studies for Oxidative Stress and Tyrosinase Inhibition: A Quantum Chemical Approach”, Turkish Comp Theo Chem (TC&TC), vol. 8, no. 2, pp. 80–100, 2024, doi: 10.33435/tcandtc.1381982.
ISNAD Kubaib, Attar et al. “Investigating the Potential Pharmacological Applications of 5-Hydroxy-2 (hydroxymethyl)-4H Pyran-4 One through Electronic Characterization and MM-GBSA Studies for Oxidative Stress and Tyrosinase Inhibition: A Quantum Chemical Approach”. Turkish Computational and Theoretical Chemistry 8/2 (May 2024), 80-100. https://doi.org/10.33435/tcandtc.1381982.
JAMA Kubaib A, Afroze NN, Predhanekar MI. Investigating the Potential Pharmacological Applications of 5-Hydroxy-2 (hydroxymethyl)-4H pyran-4 one through Electronic Characterization and MM-GBSA Studies for Oxidative Stress and Tyrosinase Inhibition: A Quantum Chemical Approach. Turkish Comp Theo Chem (TC&TC). 2024;8:80–100.
MLA Kubaib, Attar et al. “Investigating the Potential Pharmacological Applications of 5-Hydroxy-2 (hydroxymethyl)-4H Pyran-4 One through Electronic Characterization and MM-GBSA Studies for Oxidative Stress and Tyrosinase Inhibition: A Quantum Chemical Approach”. Turkish Computational and Theoretical Chemistry, vol. 8, no. 2, 2024, pp. 80-100, doi:10.33435/tcandtc.1381982.
Vancouver Kubaib A, Afroze NN, Predhanekar MI. Investigating the Potential Pharmacological Applications of 5-Hydroxy-2 (hydroxymethyl)-4H pyran-4 one through Electronic Characterization and MM-GBSA Studies for Oxidative Stress and Tyrosinase Inhibition: A Quantum Chemical Approach. Turkish Comp Theo Chem (TC&TC). 2024;8(2):80-100.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)