Review
BibTex RIS Cite
Year 2023, Volume: 5 Issue: 1, 7 - 18, 30.06.2023
https://doi.org/10.53663/turjfas.1247846

Abstract

References

  • Adejumo, S. A., Ogundiran, M. B., & Togun, A. O. (2018). Soil amendment with compost and crop growth stages influenced heavy metal uptake and distribution in maize crop grown on lead-acid battery waste contaminated soil. Journal of Environmental Chemical Engineering, 6(4), 4809-4819. https://doi.org/10.1016/j.jece.2018.07.027
  • Afonne, O. J., & Ifediba, E. C. (2020). Heavy metals risks in plant foods-need to step up precautionary measures. Current Opinion in Toxicology, 22, 1-6. https://doi.org/10.1016/j.cotox.2019.12.006
  • Ahmad, J., Patuzzi, F., Rashid, U., Shahabz, M., Ngamcharussrivichai, C., & Baratieri, M. (2021). Exploring untapped effect of process conditions on biochar characteristics and applications. Environmental Technology and Innovation, 21, 101310. https://doi.org/10.1016/j.eti.2020.101310
  • Ahmad, S. Z. N., Wan Salleh, W. N., Ismail, A. F., Yusof, N., Mohd Yusop, M. Z., & Aziz, F. (2020). Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms. Chemosphere, 248, 1-16. https://doi.org/10.1016/j.chemosphere.2020.126008
  • Akhtar, F. Z., Archana, K. M., Krishnaswamy, V. G., & Rajagopal, R. (2020). Remediation of heavy metals (Cr, Zn) using physical, chemical and biological methods: a novel approach. SN Applied Sciences, 2(2), 1-14. https://doi.org/10.1007/s42452-019-1918-x
  • Baby, R., Saifullah, B., & Hussein, M. Z. (2019). Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remediation. Nanoscale Research Letters, 14, 1-17. https://doi.org/10.1186/s11671-019-3167-8
  • Bhagwat, V.R. (2019). Safety of water used in food production. In R. L. Singh & S. Mondal (Eds.), Food Safety and Human Health (first, pp. 219–247). Elsevier Inc. https://doi.org/10.1016/B978-0-12-816333-7.00009-6
  • Borji, H., Ayoub, G. M., Bilbeisi, R., Nassar, N., & Malaeb, L. (2020). How Effective Are Nanomaterials for the Removal of Heavy Metals from Water and Wastewater? Water, Air, and Soil Pollution, 231, 330. https://doi.org/10.1007/s11270-020-04681-0
  • Bragotto, A. A. P. (2019). Editorial overview: Chemical hazards and the safety of baby foods. Current Opinion in Food Science, 30, iii-iv. https://doi.org/10.1016/j.cofs.2019.11.013
  • Cao, Z. Z., Qin, M. L., Lin, X. Y., Zhu, Z. W., & Chen, M. X. (2018). Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration. Environmental Pollution, 238, 76-84. https://doi.org/10.1016/j.envpol.2018.02.083
  • Chellaiah, E.R. (2018). Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Applied Water Science, 8(6), 1-10. https://doi.org/10.1007/s13201-018-0796-5
  • Chen, D., Liu, X., Bian, R., Cheng, K., Zhang, X., Zheng, J., Joseph, S., Crowley, D., Pan, G., & Li, L. (2018). Effects of biochar on availability and plant uptake of heavy metals- A meta-analysis. Journal of Environmental Management, 222, 76-85. https://doi.org/10.1016/j.jenvman.2018.05.004
  • Chen, H., Yuan, X., Xiong, T., Jiang, L., Wang, H., & Wu, Z. (2020). Biochar facilitated hydroxyapatite/calcium silicate hydrate for remediation of heavy metals contaminated soils. Water, Air, and Soil Pollution, 231, 66. https://doi.org/10.1007/s11270-020-4425-1
  • Chen, W., & Li, H. (2018). Cost-Effectiveness analysis for soil heavy metal contamination treatments. Water, Air, and Soil Pollution, 229, 126. https://doi.org/10.1007/s11270-018-3784-3
  • Colak, N., Torun, H., Gruz, J., Strnad, M., & Ayaz, F. A. (2019). Exogenous N-Acetylcysteine alleviates heavy metal stress by promoting phenolic acids to support antioxidant defence systems in wheat roots. Ecotoxicology and Environmental Safety, 181, 49-59. https://doi.org/10.1016/j.ecoenv.2019.05.052
  • Dhaliwal, S. S., Singh, J., Taneja, P. K., & Mandal, A. (2020). Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review. Environmental Science and Pollution Research, 27(2), 1319-1333. https://doi.org/10.1007/s11356-019-06967-1
  • Dhiman, J., Prasher, S. O., ElSayed, E., Patel, R. M., Nzediegwu, C., & Mawof, A. (2020). Heavy metal uptake by wastewater irrigated potato plants grown on contaminated soil treated with hydrogel based amendments. Environmental Technology and Innovation, 19, 100952. https://doi.org/10.1016/j.eti.2020.100952
  • Diacono, M., & Montemurro, F. (2019). Olive pomace compost in organic emmer crop: yield, soil properties, and heavy metals’ fate in plant and soil. Journal of Soil Science and Plant Nutrition, 19(1), 63-70. https://doi.org/10.1007/s42729-019-0010-3
  • Edogbo, B., Okolocha, E., Maikai, B., Aluwong, T., & Uchendu, C. (2020). Risk analysis of heavy metal contamination in soil, vegetables and fish around Challawa area in Kano State, Nigeria. Scientific African, 7, e00281. https://doi.org/10.1016/j.sciaf.2020.e00281
  • Feng, W., Guo, Z., Xiao, X., Peng, C., Shi, L., Ran, H., & Xu, W. (2020). A dynamic model to evaluate the critical loads of heavy metals in agricultural soil. Ecotoxicology and Environmental Safety, 197, 110607. https://doi.org/10.1016/j.ecoenv.2020.110607
  • Fung, F., Wang, H. S., & Menon, S. (2018). Food safety in the 21st century. Biomedical Journal, 41(2), 88-95. https://doi.org/10.1016/j.bj.2018.03.003
  • Gao, M., Xu, Y., Chang, X., & Song, Z. (2021). Fe-Mn oxide modified biochar decreases phthalate uptake and improves grain quality of wheat grown in phthalate-contaminated fluvo-aquic soil. Chemosphere, 270, 129428. https://doi.org/10.1016/j.chemosphere.2020.129428
  • Godlewska, P., Ok, Y. S., & Oleszczuk, P. (2021). The dark side of black gold: Ecotoxicological aspects of biochar and biochar-amended soils. Journal of Hazardous Materials, 403, 123833. https://doi.org/10.1016/j.jhazmat.2020.123833
  • Gupta, N., Yadav, K. K., Kumar, V., Kumar, S., Chadd, R. P., & Kumar, A. (2019). Trace elements in soil-vegetables interface: Translocation, bioaccumulation, toxicity and amelioration - A review. Science of the Total Environment, 651, 2927-2942. https://doi.org/10.1016/j.scitotenv.2018.10.047
  • Han, H., Cai, H., Wang, X., Hu, X., Chen, Z., & Yao, L. (2020). Heavy metal-immobilizing bacteria increase the biomass and reduce the Cd and Pb uptake by pakchoi (Brassica chinensis L.) in heavy metal-contaminated soil. Ecotoxicology and Environmental Safety, 195, 110375. https://doi.org/10.1016/j.ecoenv.2020.110375
  • Holmes, R. R., Hart, M. L., & Kevern, J. T. (2019). Reuse of Drinking Water Treatment Waste for Remediation of Heavy Metal Contaminated Groundwater. Groundwater Monitoring and Remediation, 39(4), 69-79. https://doi.org/10.1111/gwmr.12348
  • Hu, Q., Jung, J., Chen, D., Leong, K., Song, S., Li, F., Mohan, B. C., Yao, Z., Prabhakar, A. K., Lin, X. H., Lim, E. Y., Zhang, L., Souradeep, G., Ok, Y. S., Kua, H. W., Li, S. F. Y., Tan, H. T. W., Dai, Y., Tong, Y. W., & Wang, C.-H. (2020). Biochar industry to circular economy. Science of The Total Environment, 757, 143820. https://doi.org/10.1016/j.scitotenv.2020.143820
  • Huang, W. H., Lee, D. J., & Huang, C. (2021). Modification on biochars for applications: A research update. Bioresource Technology, 319, 124100. https://doi.org/10.1016/j.biortech.2020.124100
  • Huang, X., Wang, L., Chen, J., Jiang, C., Wu, S., & Wang, H. (2020a). Effective removal of heavy metals with amino-functionalized silica gel in tea polyphenol extracts. Journal of Food Measurement and Characterization, 14(4), 2134-2144. https://doi.org/10.1007/s11694-020-00460-x
  • Huang, Y. N., Dang, F., Li, M., Zhou, D. M., Song, Y., & Wang, J. Bin. (2020b). Environmental and human health risks from metal exposures nearby a Pb-Zn-Ag mine, China. Science of the Total Environment, 698, 134326. https://doi.org/10.1016/j.scitotenv.2019.134326
  • Jalilvand, N., Akhgar, A., Alikhani, H. A., Rahmani, H. A., & Rejali, F. (2020). Removal of Heavy Metals Zinc, Lead, and Cadmium by Biomineralization of Urease-Producing Bacteria Isolated from Iranian Mine Calcareous Soils. Journal of Soil Science and Plant Nutrition, 20(1), 206-219. https://doi.org/10.1007/s42729-019-00121-z
  • Jia, H. L., Wang, X. H., Wei, T., Wang, M., Liu, X., Hua, L., Ren, X. H., Guo, J. K., & Li, J. (2021). Exogenous salicylic acid regulates cell wall polysaccharides synthesis and pectin methylation to reduce Cd accumulation of tomato. Ecotoxicology and Environmental Safety, 207, 111550. https://doi.org/10.1016/j.ecoenv.2020.111550
  • Joseph, L., Jun, B. M., Flora, J. R. V., Park, C. M., & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 142–159. https://doi.org/10.1016/j.chemosphere.2019.04.198
  • Keeflee, M. N. S. N. K., Zain, W. M. W. N. A., Nor, M. M. N., Jamion, N. A., & Yong, S. K. (2020). Growth and metal uptake of spinach with application of co-compost of cat manure and spent coffee ground. Heliyon, 6, e05086. https://doi.org/10.1016/j.heliyon.2020.e05086
  • Khan, A. Z., Ding, X., Khan, S., Ayaz, T., Fidel, R., & Khan, M. A. (2020a). Biochar efficacy for reducing heavy metals uptake by Cilantro (Coriandrum sativum) and spinach (Spinaccia oleracea) to minimize human health risk. Chemosphere, 244, 125543. https://doi.org/10.1016/j.chemosphere.2019.125543
  • Khan, A. Z., Khan, S., Ayaz, T., Brusseau, M. L., Khan, M. A., Nawab, J., & Muhammad, S. (2020b). Popular wood and sugarcane bagasse biochars reduced uptake of chromium and lead by lettuce from mine-contaminated soil. Environmental Pollution, 263, 114446. https://doi.org/10.1016/j.envpol.2020.114446
  • Kumar, S., Prasad, S., Yadav, K. K., Shrivastava, M., Gupta, N., Nagar, S., Bach, Q. V., Kamyab, H., Khan, S. A., Yadav, S., & Malav, L. C. (2019). Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches - A review. Environmental Research, 179, 108792. https://doi.org/10.1016/j.envres.2019.108792
  • Kumar, V., Parihar, R. D., Sharma, A., Bakshi, P., Singh Sidhu, G. P., Bali, A. S., Karaouzas, I., Bhardwaj, R., Thukral, A. K., Gyasi-Agyei, Y., & Rodrigo-Comino, J. (2019). Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere, 236, 124364. https://doi.org/10.1016/j.chemosphere.2019.124364
  • Li, W., Chen, Y., & Wang, T. (2021). Cadmium biosorption by lactic acid bacteria Weissella viridescens ZY-6. Food Control, 123, 107747. https://doi.org/10.1016/j.foodcont.2020.107747
  • Liu, B., Ai, S., Naeem, S., Ding, J., Ji, W., & Zhang, Y. (2018). Metal bioaccessibility in a wastewater irrigated soil-wheat system and associated human health risks: Implications for regional thresholds. Ecological Indicators, 94, 305-311. https://doi.org/10.1016/j.ecolind.2018.06.054
  • Luo, W., Zhang, N., Li, Z., Xu, Z., Wang, D., Liao, G., Pang, G., Xu, G., Wang, Y., Huang, X., Chen, D., Zeng, C., & Du, Z. (2021). Increasement of Cd adsorption capacity of rice stubble from being alive until death in a modified rice-fish system. Ecotoxicology and Environmental Safety, 208, 111441. https://doi.org/10.1016/j.ecoenv.2020.111441
  • Naeem, I., Masood, N., Turan, V., & Iqbal, M. (2021). Prospective usage of magnesium potassium phosphate cement combined with Bougainvillea alba derived biochar to reduce Pb bioavailability in soil and its uptake by Spinacia oleracea L. Ecotoxicology and Environmental Safety, 208, 111723. https://doi.org/10.1016/j.ecoenv.2020.111723
  • Ng, K. T., Herrero, P., Hatt, B., Farrelly, M., & McCarthy, D. (2018). Biofilters for urban agriculture: Metal uptake of vegetables irrigated with stormwater. Ecological Engineering, 122, 177-186. https://doi.org/10.1016/j.ecoleng.2018.07.033
  • Nie, T., Yang, X., Chen, H., Müller, K., & Shaheen, S. M. (2021). Effect of biochar aging and co-existence of diethyl phthalate on the mono-sorption of cadmium and zinc to biochar-treated soils. Journal of Hazardous Materials, 408, 124850. https://doi.org/10.1016/j.jhazmat.2020.124850
  • Nzediegwu, C., Prasher, S., Elsayed, E., Dhiman, J., Mawof, A., & Patel, R. (2019). Effect of biochar on heavy metal accumulation in potatoes from wastewater irrigation. Journal of Environmental Management, 232, 153-164. https://doi.org/10.1016/j.jenvman.2018.11.013
  • Nzediegwu, C., Prasher, S., Elsayed, E., Dhiman, J., Mawof, A., & Patel, R. (2020). Impact of soil biochar incorporation on the uptake of heavy metals present in wastewater by spinach plants. Water, Air, and Soil Pollution, 231(3), 123. https://doi.org/10.1007/s11270-020-04512-2
  • O’Connor, J., Hoang, S. A., Bradney, L., Dutta, S., Xiong, X., Tsang, D. C. W., Ramadass, K., Vinu, A., Kirkham, M. B., & Bolan, N. S. (2021). A review on the valorisation of food waste as a nutrient source and soil amendment. Environmental Pollution, 272, 115985. https://doi.org/10.1016/j.envpol.2020.115985
  • Otunola, B. O., & Ololade, O. O. (2020). A review on the application of clay minerals as heavy metal adsorbents for remediation purposes. Environmental Technology and Innovation, 18, 100692. https://doi.org/10.1016/j.eti.2020.100692
  • Paithankar, J. G., Saini, S., Dwivedi, S., Sharma, A., & Chowdhuri, D. K. (2021). Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. Chemosphere, 262, 128350. https://doi.org/10.1016/j.chemosphere.2020.128350
  • Pal, P., Pal, A., Nakashima, K., & Yadav, B. K. (2021). Applications of chitosan in environmental remediation: A review. Chemosphere, 266, 128934. https://doi.org/10.1016/j.chemosphere.2020.128934
  • Palansooriya, K. N., Ok, Y. S., Awad, Y. M., Lee, S. S., Sung, J. K., Koutsospyros, A., & Moon, D. H. (2019). Impacts of biochar application on upland agriculture: A review. Journal of Environmental Management, 234, 52-64. https://doi.org/10.1016/j.jenvman.2018.12.085
  • Qadir, M., Hussain, A., Hamayun, M., Shah, M., Iqbal, A., Husna, & Murad, W. (2020). Phytohormones producing rhizobacterium alleviates chromium toxicity in Helianthus annuus L. by reducing chromate uptake and strengthening antioxidant system. Chemosphere, 258, 127386. https://doi.org/10.1016/j.chemosphere.2020.127386
  • Qi, X., Gou, J., Chen, X., Xiao, S., Ali, I., Shang, R., Wang, D., Wu, Y., Han, M., & Luo, X. (2021). Application of mixed bacteria-loaded biochar to enhance uranium and cadmium immobilization in a co-contaminated soil. Journal of Hazardous Materials, 401, 123823. https://doi.org/10.1016/j.jhazmat.2020.123823
  • Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F., & Kim, K. H. (2019). Heavy Metals in Food Crops: Health Risks, Fate, Mechanisms, and Management. Environment International, 125, 365-385. https://doi.org/10.1016/j.envint.2019.01.067
  • Rehman, M. Z., Rizwan, M., Hussain, A., Saqib, M., Ali, S., Sohail, M. I., Shafiq, M., & Hafeez, F. (2018a). Alleviation of cadmium (Cd) toxicity and minimizing its uptake in wheat (Triticum aestivum) by using organic carbon sources in Cd-spiked soil. Environmental Pollution, 241, 557-565. https://doi.org/10.1016/j.envpol.2018.06.005
  • Rehman, Z. U., Khan, S., Shah, M. T., Brusseau, M. L., Khan, S. A., & Mainhagu, J. (2018b). Transfer of Heavy Metals from Soils to Vegetables and Associated Human Health Risks at Selected Sites in Pakistan. Pedosphere, 28(4), 666-679. https://doi.org/10.1016/S1002-0160(17)60440-5
  • Rezapour, S., Atashpaz, B., Moghaddam, S. S., & Damalas, C. A. (2019). Heavy metal bioavailability and accumulation in winter wheat (Triticum aestivum L.) irrigated with treated wastewater in calcareous soils. Science of the Total Environment, 656, 261-269. https://doi.org/10.1016/j.scitotenv.2018.11.288
  • Rizwan, M. S., Imtiaz, M., Zhu, J., Yousaf, B., Hussain, M., Ali, L., Ditta, A., Zahid Ihsan, M., Huang, G., Ashraf, M., & Hu, H. (2021). Immobilization of Pb and Cu by organic and inorganic amendments in contaminated soil. Geoderma, 385, 114803. https://doi.org/10.1016/j.geoderma.2020.114803
  • Sharifan, H., Moore, J., & Ma, X. (2020). Zinc oxide (ZnO) nanoparticles elevated iron and copper contents and mitigated the bioavailability of lead and cadmium in different leafy greens. Ecotoxicology and Environmental Safety, 191, 110177. https://doi.org/10.1016/j.ecoenv.2020.110177
  • Sharma, S., Tiwari, S., Hasan, A., Saxena, V., & Pandey, L. M. (2018). Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech, 8(4), 216. https://doi.org/10.1007/s13205-018-1237-8
  • Shen, C., Zhao, Y., Li, W., Yang, Y., Liu, R., & Morgen, D. (2019). Global profile of heavy metals and semimetals adsorption using drinking water treatment residual. Chemical Engineering Journal, 372, 1019-1027. https://doi.org/10.1016/j.cej.2019.04.219
  • Skiba, E., & Wolf, W. M. (2019). Cerium oxide nanoparticles affect heavy metals uptake by Pea in a divergent way than their ionic and bulk counterparts. Water, Air, and Soil Pollution, 230(10), 248. https://doi.org/10.1007/s11270-019-4296-5
  • Strachel, R., Wyszkowska, J., & Baćmaga, M. (2018). An evaluation of the effectiveness of sorbents in the remediation of soil contaminated with zinc. Water, Air, and Soil Pollution, 229(7), 235. https://doi.org/10.1007/s11270-018-3882-2
  • Sun, G. L., Reynolds, E. E., & Belcher, A. M. (2019). Designing yeast as plant-like hyperaccumulators for heavy metals. Nature Communications, 10(1), 5080. https://doi.org/10.1038/s41467-019-13093-6
  • Tsadik, Y. K. G., Hailu, A. M., Asfaw, S. L., & Mekonnen, Y. S. (2020). The effect of brewery sludge biochar on immobilization of bio-available cadmium and growth of Brassica carinata. Heliyon, 6, e05573. https://doi.org/10.1016/j.heliyon.2020.e05573
  • Turan, V., Khan, S. A., Mahmood-ur-Rahman, Iqbal, M., Ramzani, P. M. A., & Fatima, M. (2018). Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan. Ecotoxicology and Environmental Safety, 161, 409-419. https://doi.org/10.1016/j.ecoenv.2018.05.082
  • Ulm, F., Avelar, D., Hobson, P., Penha-Lopes, G., Dias, T., Máguas, C., & Cruz, C. (2019). Sustainable urban agriculture using compost and an open-pollinated maize variety. Journal of Cleaner Production, 212, 622-629. https://doi.org/10.1016/j.jclepro.2018.12.069
  • Vardhan, K. H., Kumar, P. S., & Panda, R. C. (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids, 290, 111197. https://doi.org/10.1016/j.molliq.2019.111197
  • Varghese, A. G., Paul, S. A., & Latha, M. S. (2019). Remediation of heavy metals and dyes from wastewater using cellulose-based adsorbents. Environmental Chemistry Letters, 17(2), 867-877. https://doi.org/10.1007/s10311-018-00843-z
  • Wang, R., Shafi, M., Ma, J., Zhong, B., Guo, J., Hu, X., Xu, W., Yang, Y., Ruan, Z., Wang, Y., Ye, Z., & Liu, D. (2018). Effect of amendments on contaminated soil of multiple heavy metals and accumulation of heavy metals in plants. Environmental Science and Pollution Research, 25(28), 28695-28704. https://doi.org/10.1007/s11356-018-2918-x
  • Wang, X., Gao, P., Li, D., Liu, J., Yang, N., Gu, W., He, X., & Tang, W. (2019). Risk assessment for and microbial community changes in Farmland soil contaminated with heavy metals and metalloids. Ecotoxicology and Environmental Safety, 185, 109685. https://doi.org/10.1016/j.ecoenv.2019.109685
  • Wang, Y., & Liu, R. (2018). H2O2 treatment enhanced the heavy metals removal by manure biochar in aqueous solutions. Science of the Total Environment, 629, 1139-1148. https://doi.org/10.1016/j.scitotenv.2018.02.137
  • Wei, M., Chen, J., & Wang, Q. (2018). Remediation of sandy soil contaminated by heavy metals with Na2EDTA washing enhanced with organic reducing agents: element distribution and spectroscopic analysis. European Journal of Soil Science, 69(4), 719-731. https://doi.org/10.1111/ejss.12560
  • Wei, X., Cao, P., Wang, G., & Han, J. (2020). Microbial inoculant and garbage enzyme reduced cadmium (Cd) uptake in Salvia miltiorrhiza (Bge.) under Cd stress. Ecotoxicology and Environmental Safety, 192(151), 110311. https://doi.org/10.1016/j.ecoenv.2020.110311
  • Wu, J., Zhou, Q., Huang, R., Wu, K., & Li, Z. (2021). Contrasting impacts of mobilisation and immobilisation amendments on soil health and heavy metal transfer to food chain. Ecotoxicology and Environmental Safety, 209, 111836. https://doi.org/10.1016/j.ecoenv.2020.111836
  • Xia, X., Wu, S., Zhou, Z., & Wang, G. (2021). Microbial Cd(II) and Cr(VI) resistance mechanisms and application in bioremediation. Journal of Hazardous Materials, 401, 123685. https://doi.org/10.1016/j.jhazmat.2020.123685
  • Xiang, C., Tian, D., Wang, W., Shen, F., Zhao, G., Ni, X., Zhang, Y., Yang, G., & Zeng, Y. (2020). Fates of Heavy Metals in Anaerobically Digesting the Stover of Grain Sorghum Harvested from Heavy Metal-Contaminated Farmland. Waste and Biomass Valorization, 11(4), 1239-1250. https://doi.org/10.1007/s12649-018-0455-y
  • Xu, C., Qi, J., Yang, W., Chen, Y., Yang, C., He, Y., Wang, J., & Lin, A. (2019a). Immobilization of heavy metals in vegetable-growing soils using nano zero-valent iron modified attapulgite clay. Science of the Total Environment, 686, 476-483. https://doi.org/10.1016/j.scitotenv.2019.05.330
  • Xu, J., Liu, C., Hsu, P. C., Zhao, J., Wu, T., Tang, J., Liu, K., & Cui, Y. (2019b). Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry. Nature Communications, 10(1), 2440. https://doi.org/10.1038/s41467-019-10472-x
  • Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 28, e00570. https://doi.org/10.1016/j.btre.2020.e00570
  • Yang, X., Mao, X., Shao, X., Han, F., Chang, T., Qin, H., & Li, M. (2018). Enhanced Techniques of Soil Washing for the Remediation of Heavy Metal-Contaminated Soils. Agricultural Research, 7(2), 99-104. https://doi.org/10.1007/s40003-018-0302-1
  • Yous, R., Mohellebi, F., Cherifi, H., & Amrane, A. (2018). Competitive biosorption of heavy metals from aqueous solutions onto Streptomyces rimosus. Korean Journal of Chemical Engineering, 35(4), 890-899. https://doi.org/10.1007/s11814-018-0004-1
  • Yu, P., Sun, Y., Huang, Z., Zhu, F., Sun, Y., & Jiang, L. (2020). The effects of ectomycorrhizal fungi on heavy metals’ transport in Pinus massoniana and bacteria community in rhizosphere soil in mine tailing area. Journal of Hazardous Materials, 381, 1–12. https://doi.org/10.1016/j.jhazmat.2019.121203
  • Yu, Y., Zhu, X., Li, L., Lin, B., Xiang, M., Zhang, X., Chen, X., Yu, Z., Wang, Z., & Wan, Y. (2019). Health implication of heavy metals exposure via multiple pathways for residents living near a former e-waste recycling area in China: A comparative study. Ecotoxicology and Environmental Safety, 169, 178-184. https://doi.org/10.1016/j.ecoenv.2018.10.115
  • Zhang, B. Q., Liu, X. S., Feng, S. J., Zhao, Y. N., Wang, L. L., Rono, J. K., Li, H., & Yang, Z. M. (2020). Developing a cadmium resistant rice genotype with OsHIPP29 locus for limiting cadmium accumulation in the paddy crop. Chemosphere, 247, 125958. https://doi.org/10.1016/j.chemosphere.2020.125958
  • Zhang, T., Xu, W., Lin, X., Yan, H., Ma, M., & He, Z. (2019). Assessment of heavy metals pollution of soybean grains in North Anhui of China. Science of the Total Environment, 646, 914-922. https://doi.org/10.1016/j.scitotenv.2018.07.335
  • Zhang, Y., Zhang, Y., Akakuru, O. U., Xu, X., & Wu, A. (2021). Research progress and mechanism of nanomaterials-mediated in-situ remediation of cadmium-contaminated soil: A critical review. Journal of Environmental Science, 104, 351-364. https://doi.org/10.1016/j.jes.2020.12.021
  • Zhao, H., Huang, X., Liu, F., Hu, X., Zhao, X., Wang, L., Gao, P., Li, J., & Ji, P. (2020). Potential of a novel modified gangue amendment to reduce cadmium uptake in lettuce (Lactuca sativa L.). Journal of Hazardous Materials, 410, 124453. https://doi.org/10.1016/j.jhazmat.2020.124543
  • Zhao, W., Cui, Y., Sun, X., Wang, H., & Teng, X. (2021). Corn stover biochar increased edible safety of spinach by reducing the migration of mercury from soil to spinach. Science of the Total Environment, 758, 143883. https://doi.org/10.1016/j.scitotenv.2020.143883
  • Zhaoxiang, W., Huihu, L., Qiaoli, L., Changyan, Y., & Faxin, Y. (2020). Application of bio-organic fertilizer, not biochar, in degraded red soil improves soil nutrients and plant growth. Rhizosphere, 16, 100264. https://doi.org/10.1016/j.rhisph.2020.100264
  • Zhi, L., Zhipeng, R., Minglong, L., Rongjun, B., Xiaoyu, L., Haifei, L., Kun, C., Xuhui, Z., Jufeng, Z., Lianqing, L., Marios, D., Stephen, J., Natarjan, I., & Genxing, P. (2020). Pyrolyzed biowastes deactivated potentially toxic metals and eliminated antibiotic resistant genes for healthy vegetable production. Journal of Cleaner Production, 276, 124208. https://doi.org/10.1016/j.jclepro.2020.124208
  • Zhou, B., & Zhu, H. (2020). Effects of rapeseed straw incorporation on the availability of heavy metals in soil. Arabian Journal of Geosciences, 13(13), 558. https://doi.org/10.1007/s12517-020-05612-3
  • Zhou, J., Li, P., Meng, D., Gu, Y., Zheng, Z., Yin, H., Zhou, Q., & Li, J. (2020). Isolation, characterization and inoculation of Cd tolerant rice endophytes and their impacts on rice under Cd contaminated environment. Environmental Pollution, 260, 113990. https://doi.org/10.1016/j.envpol.2020.113990

A review of heavy metals accumulation and control in active agricultural soil

Year 2023, Volume: 5 Issue: 1, 7 - 18, 30.06.2023
https://doi.org/10.53663/turjfas.1247846

Abstract

Agricultural soil is contaminated with dangerous heavy metals (HMs) from anthropogenic activities and natural processes. These HMs are passed to humans through the consumption of crops produced in the contaminated soil. Crop production in a contaminated field and irrigation with raw untreated sewage and industrial effluents exposed food crops to HMs contaminations. Consumption of foods contaminated with HMs can be dangerous due to their persistent nature and tendency to accumulate in human tissues. HMs contamination in humans can lead to serious health problems and, in severe cases, can cause death. This review article aimed to compile soil treatment methods reported to be effective in reducing HMs uptake by food crops in active agricultural fields, outline research gaps and suggest areas for future research. Soil treatment with biochar is the most effective control method reported, was found to mitigate the uptake of Cd, Cr, Pb, Zn, and Cu in different crops. Other control measures are the application of inorganic sorbents, chelating agents, and nanomaterials to soil and hydroponic water; the use of microorganisms and their products; gene modification of the food crop; and soil washing and filtration. The control methods reported in soil and the hydroponic solution were found to significantly lower Cd, Pb, Ni, Zn, Cu, Co, Cr, Mn, Hg, and Fe uptake in cereal grains and different types of vegetable and tuber crops.

References

  • Adejumo, S. A., Ogundiran, M. B., & Togun, A. O. (2018). Soil amendment with compost and crop growth stages influenced heavy metal uptake and distribution in maize crop grown on lead-acid battery waste contaminated soil. Journal of Environmental Chemical Engineering, 6(4), 4809-4819. https://doi.org/10.1016/j.jece.2018.07.027
  • Afonne, O. J., & Ifediba, E. C. (2020). Heavy metals risks in plant foods-need to step up precautionary measures. Current Opinion in Toxicology, 22, 1-6. https://doi.org/10.1016/j.cotox.2019.12.006
  • Ahmad, J., Patuzzi, F., Rashid, U., Shahabz, M., Ngamcharussrivichai, C., & Baratieri, M. (2021). Exploring untapped effect of process conditions on biochar characteristics and applications. Environmental Technology and Innovation, 21, 101310. https://doi.org/10.1016/j.eti.2020.101310
  • Ahmad, S. Z. N., Wan Salleh, W. N., Ismail, A. F., Yusof, N., Mohd Yusop, M. Z., & Aziz, F. (2020). Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms. Chemosphere, 248, 1-16. https://doi.org/10.1016/j.chemosphere.2020.126008
  • Akhtar, F. Z., Archana, K. M., Krishnaswamy, V. G., & Rajagopal, R. (2020). Remediation of heavy metals (Cr, Zn) using physical, chemical and biological methods: a novel approach. SN Applied Sciences, 2(2), 1-14. https://doi.org/10.1007/s42452-019-1918-x
  • Baby, R., Saifullah, B., & Hussein, M. Z. (2019). Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remediation. Nanoscale Research Letters, 14, 1-17. https://doi.org/10.1186/s11671-019-3167-8
  • Bhagwat, V.R. (2019). Safety of water used in food production. In R. L. Singh & S. Mondal (Eds.), Food Safety and Human Health (first, pp. 219–247). Elsevier Inc. https://doi.org/10.1016/B978-0-12-816333-7.00009-6
  • Borji, H., Ayoub, G. M., Bilbeisi, R., Nassar, N., & Malaeb, L. (2020). How Effective Are Nanomaterials for the Removal of Heavy Metals from Water and Wastewater? Water, Air, and Soil Pollution, 231, 330. https://doi.org/10.1007/s11270-020-04681-0
  • Bragotto, A. A. P. (2019). Editorial overview: Chemical hazards and the safety of baby foods. Current Opinion in Food Science, 30, iii-iv. https://doi.org/10.1016/j.cofs.2019.11.013
  • Cao, Z. Z., Qin, M. L., Lin, X. Y., Zhu, Z. W., & Chen, M. X. (2018). Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration. Environmental Pollution, 238, 76-84. https://doi.org/10.1016/j.envpol.2018.02.083
  • Chellaiah, E.R. (2018). Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Applied Water Science, 8(6), 1-10. https://doi.org/10.1007/s13201-018-0796-5
  • Chen, D., Liu, X., Bian, R., Cheng, K., Zhang, X., Zheng, J., Joseph, S., Crowley, D., Pan, G., & Li, L. (2018). Effects of biochar on availability and plant uptake of heavy metals- A meta-analysis. Journal of Environmental Management, 222, 76-85. https://doi.org/10.1016/j.jenvman.2018.05.004
  • Chen, H., Yuan, X., Xiong, T., Jiang, L., Wang, H., & Wu, Z. (2020). Biochar facilitated hydroxyapatite/calcium silicate hydrate for remediation of heavy metals contaminated soils. Water, Air, and Soil Pollution, 231, 66. https://doi.org/10.1007/s11270-020-4425-1
  • Chen, W., & Li, H. (2018). Cost-Effectiveness analysis for soil heavy metal contamination treatments. Water, Air, and Soil Pollution, 229, 126. https://doi.org/10.1007/s11270-018-3784-3
  • Colak, N., Torun, H., Gruz, J., Strnad, M., & Ayaz, F. A. (2019). Exogenous N-Acetylcysteine alleviates heavy metal stress by promoting phenolic acids to support antioxidant defence systems in wheat roots. Ecotoxicology and Environmental Safety, 181, 49-59. https://doi.org/10.1016/j.ecoenv.2019.05.052
  • Dhaliwal, S. S., Singh, J., Taneja, P. K., & Mandal, A. (2020). Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review. Environmental Science and Pollution Research, 27(2), 1319-1333. https://doi.org/10.1007/s11356-019-06967-1
  • Dhiman, J., Prasher, S. O., ElSayed, E., Patel, R. M., Nzediegwu, C., & Mawof, A. (2020). Heavy metal uptake by wastewater irrigated potato plants grown on contaminated soil treated with hydrogel based amendments. Environmental Technology and Innovation, 19, 100952. https://doi.org/10.1016/j.eti.2020.100952
  • Diacono, M., & Montemurro, F. (2019). Olive pomace compost in organic emmer crop: yield, soil properties, and heavy metals’ fate in plant and soil. Journal of Soil Science and Plant Nutrition, 19(1), 63-70. https://doi.org/10.1007/s42729-019-0010-3
  • Edogbo, B., Okolocha, E., Maikai, B., Aluwong, T., & Uchendu, C. (2020). Risk analysis of heavy metal contamination in soil, vegetables and fish around Challawa area in Kano State, Nigeria. Scientific African, 7, e00281. https://doi.org/10.1016/j.sciaf.2020.e00281
  • Feng, W., Guo, Z., Xiao, X., Peng, C., Shi, L., Ran, H., & Xu, W. (2020). A dynamic model to evaluate the critical loads of heavy metals in agricultural soil. Ecotoxicology and Environmental Safety, 197, 110607. https://doi.org/10.1016/j.ecoenv.2020.110607
  • Fung, F., Wang, H. S., & Menon, S. (2018). Food safety in the 21st century. Biomedical Journal, 41(2), 88-95. https://doi.org/10.1016/j.bj.2018.03.003
  • Gao, M., Xu, Y., Chang, X., & Song, Z. (2021). Fe-Mn oxide modified biochar decreases phthalate uptake and improves grain quality of wheat grown in phthalate-contaminated fluvo-aquic soil. Chemosphere, 270, 129428. https://doi.org/10.1016/j.chemosphere.2020.129428
  • Godlewska, P., Ok, Y. S., & Oleszczuk, P. (2021). The dark side of black gold: Ecotoxicological aspects of biochar and biochar-amended soils. Journal of Hazardous Materials, 403, 123833. https://doi.org/10.1016/j.jhazmat.2020.123833
  • Gupta, N., Yadav, K. K., Kumar, V., Kumar, S., Chadd, R. P., & Kumar, A. (2019). Trace elements in soil-vegetables interface: Translocation, bioaccumulation, toxicity and amelioration - A review. Science of the Total Environment, 651, 2927-2942. https://doi.org/10.1016/j.scitotenv.2018.10.047
  • Han, H., Cai, H., Wang, X., Hu, X., Chen, Z., & Yao, L. (2020). Heavy metal-immobilizing bacteria increase the biomass and reduce the Cd and Pb uptake by pakchoi (Brassica chinensis L.) in heavy metal-contaminated soil. Ecotoxicology and Environmental Safety, 195, 110375. https://doi.org/10.1016/j.ecoenv.2020.110375
  • Holmes, R. R., Hart, M. L., & Kevern, J. T. (2019). Reuse of Drinking Water Treatment Waste for Remediation of Heavy Metal Contaminated Groundwater. Groundwater Monitoring and Remediation, 39(4), 69-79. https://doi.org/10.1111/gwmr.12348
  • Hu, Q., Jung, J., Chen, D., Leong, K., Song, S., Li, F., Mohan, B. C., Yao, Z., Prabhakar, A. K., Lin, X. H., Lim, E. Y., Zhang, L., Souradeep, G., Ok, Y. S., Kua, H. W., Li, S. F. Y., Tan, H. T. W., Dai, Y., Tong, Y. W., & Wang, C.-H. (2020). Biochar industry to circular economy. Science of The Total Environment, 757, 143820. https://doi.org/10.1016/j.scitotenv.2020.143820
  • Huang, W. H., Lee, D. J., & Huang, C. (2021). Modification on biochars for applications: A research update. Bioresource Technology, 319, 124100. https://doi.org/10.1016/j.biortech.2020.124100
  • Huang, X., Wang, L., Chen, J., Jiang, C., Wu, S., & Wang, H. (2020a). Effective removal of heavy metals with amino-functionalized silica gel in tea polyphenol extracts. Journal of Food Measurement and Characterization, 14(4), 2134-2144. https://doi.org/10.1007/s11694-020-00460-x
  • Huang, Y. N., Dang, F., Li, M., Zhou, D. M., Song, Y., & Wang, J. Bin. (2020b). Environmental and human health risks from metal exposures nearby a Pb-Zn-Ag mine, China. Science of the Total Environment, 698, 134326. https://doi.org/10.1016/j.scitotenv.2019.134326
  • Jalilvand, N., Akhgar, A., Alikhani, H. A., Rahmani, H. A., & Rejali, F. (2020). Removal of Heavy Metals Zinc, Lead, and Cadmium by Biomineralization of Urease-Producing Bacteria Isolated from Iranian Mine Calcareous Soils. Journal of Soil Science and Plant Nutrition, 20(1), 206-219. https://doi.org/10.1007/s42729-019-00121-z
  • Jia, H. L., Wang, X. H., Wei, T., Wang, M., Liu, X., Hua, L., Ren, X. H., Guo, J. K., & Li, J. (2021). Exogenous salicylic acid regulates cell wall polysaccharides synthesis and pectin methylation to reduce Cd accumulation of tomato. Ecotoxicology and Environmental Safety, 207, 111550. https://doi.org/10.1016/j.ecoenv.2020.111550
  • Joseph, L., Jun, B. M., Flora, J. R. V., Park, C. M., & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 142–159. https://doi.org/10.1016/j.chemosphere.2019.04.198
  • Keeflee, M. N. S. N. K., Zain, W. M. W. N. A., Nor, M. M. N., Jamion, N. A., & Yong, S. K. (2020). Growth and metal uptake of spinach with application of co-compost of cat manure and spent coffee ground. Heliyon, 6, e05086. https://doi.org/10.1016/j.heliyon.2020.e05086
  • Khan, A. Z., Ding, X., Khan, S., Ayaz, T., Fidel, R., & Khan, M. A. (2020a). Biochar efficacy for reducing heavy metals uptake by Cilantro (Coriandrum sativum) and spinach (Spinaccia oleracea) to minimize human health risk. Chemosphere, 244, 125543. https://doi.org/10.1016/j.chemosphere.2019.125543
  • Khan, A. Z., Khan, S., Ayaz, T., Brusseau, M. L., Khan, M. A., Nawab, J., & Muhammad, S. (2020b). Popular wood and sugarcane bagasse biochars reduced uptake of chromium and lead by lettuce from mine-contaminated soil. Environmental Pollution, 263, 114446. https://doi.org/10.1016/j.envpol.2020.114446
  • Kumar, S., Prasad, S., Yadav, K. K., Shrivastava, M., Gupta, N., Nagar, S., Bach, Q. V., Kamyab, H., Khan, S. A., Yadav, S., & Malav, L. C. (2019). Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches - A review. Environmental Research, 179, 108792. https://doi.org/10.1016/j.envres.2019.108792
  • Kumar, V., Parihar, R. D., Sharma, A., Bakshi, P., Singh Sidhu, G. P., Bali, A. S., Karaouzas, I., Bhardwaj, R., Thukral, A. K., Gyasi-Agyei, Y., & Rodrigo-Comino, J. (2019). Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere, 236, 124364. https://doi.org/10.1016/j.chemosphere.2019.124364
  • Li, W., Chen, Y., & Wang, T. (2021). Cadmium biosorption by lactic acid bacteria Weissella viridescens ZY-6. Food Control, 123, 107747. https://doi.org/10.1016/j.foodcont.2020.107747
  • Liu, B., Ai, S., Naeem, S., Ding, J., Ji, W., & Zhang, Y. (2018). Metal bioaccessibility in a wastewater irrigated soil-wheat system and associated human health risks: Implications for regional thresholds. Ecological Indicators, 94, 305-311. https://doi.org/10.1016/j.ecolind.2018.06.054
  • Luo, W., Zhang, N., Li, Z., Xu, Z., Wang, D., Liao, G., Pang, G., Xu, G., Wang, Y., Huang, X., Chen, D., Zeng, C., & Du, Z. (2021). Increasement of Cd adsorption capacity of rice stubble from being alive until death in a modified rice-fish system. Ecotoxicology and Environmental Safety, 208, 111441. https://doi.org/10.1016/j.ecoenv.2020.111441
  • Naeem, I., Masood, N., Turan, V., & Iqbal, M. (2021). Prospective usage of magnesium potassium phosphate cement combined with Bougainvillea alba derived biochar to reduce Pb bioavailability in soil and its uptake by Spinacia oleracea L. Ecotoxicology and Environmental Safety, 208, 111723. https://doi.org/10.1016/j.ecoenv.2020.111723
  • Ng, K. T., Herrero, P., Hatt, B., Farrelly, M., & McCarthy, D. (2018). Biofilters for urban agriculture: Metal uptake of vegetables irrigated with stormwater. Ecological Engineering, 122, 177-186. https://doi.org/10.1016/j.ecoleng.2018.07.033
  • Nie, T., Yang, X., Chen, H., Müller, K., & Shaheen, S. M. (2021). Effect of biochar aging and co-existence of diethyl phthalate on the mono-sorption of cadmium and zinc to biochar-treated soils. Journal of Hazardous Materials, 408, 124850. https://doi.org/10.1016/j.jhazmat.2020.124850
  • Nzediegwu, C., Prasher, S., Elsayed, E., Dhiman, J., Mawof, A., & Patel, R. (2019). Effect of biochar on heavy metal accumulation in potatoes from wastewater irrigation. Journal of Environmental Management, 232, 153-164. https://doi.org/10.1016/j.jenvman.2018.11.013
  • Nzediegwu, C., Prasher, S., Elsayed, E., Dhiman, J., Mawof, A., & Patel, R. (2020). Impact of soil biochar incorporation on the uptake of heavy metals present in wastewater by spinach plants. Water, Air, and Soil Pollution, 231(3), 123. https://doi.org/10.1007/s11270-020-04512-2
  • O’Connor, J., Hoang, S. A., Bradney, L., Dutta, S., Xiong, X., Tsang, D. C. W., Ramadass, K., Vinu, A., Kirkham, M. B., & Bolan, N. S. (2021). A review on the valorisation of food waste as a nutrient source and soil amendment. Environmental Pollution, 272, 115985. https://doi.org/10.1016/j.envpol.2020.115985
  • Otunola, B. O., & Ololade, O. O. (2020). A review on the application of clay minerals as heavy metal adsorbents for remediation purposes. Environmental Technology and Innovation, 18, 100692. https://doi.org/10.1016/j.eti.2020.100692
  • Paithankar, J. G., Saini, S., Dwivedi, S., Sharma, A., & Chowdhuri, D. K. (2021). Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. Chemosphere, 262, 128350. https://doi.org/10.1016/j.chemosphere.2020.128350
  • Pal, P., Pal, A., Nakashima, K., & Yadav, B. K. (2021). Applications of chitosan in environmental remediation: A review. Chemosphere, 266, 128934. https://doi.org/10.1016/j.chemosphere.2020.128934
  • Palansooriya, K. N., Ok, Y. S., Awad, Y. M., Lee, S. S., Sung, J. K., Koutsospyros, A., & Moon, D. H. (2019). Impacts of biochar application on upland agriculture: A review. Journal of Environmental Management, 234, 52-64. https://doi.org/10.1016/j.jenvman.2018.12.085
  • Qadir, M., Hussain, A., Hamayun, M., Shah, M., Iqbal, A., Husna, & Murad, W. (2020). Phytohormones producing rhizobacterium alleviates chromium toxicity in Helianthus annuus L. by reducing chromate uptake and strengthening antioxidant system. Chemosphere, 258, 127386. https://doi.org/10.1016/j.chemosphere.2020.127386
  • Qi, X., Gou, J., Chen, X., Xiao, S., Ali, I., Shang, R., Wang, D., Wu, Y., Han, M., & Luo, X. (2021). Application of mixed bacteria-loaded biochar to enhance uranium and cadmium immobilization in a co-contaminated soil. Journal of Hazardous Materials, 401, 123823. https://doi.org/10.1016/j.jhazmat.2020.123823
  • Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F., & Kim, K. H. (2019). Heavy Metals in Food Crops: Health Risks, Fate, Mechanisms, and Management. Environment International, 125, 365-385. https://doi.org/10.1016/j.envint.2019.01.067
  • Rehman, M. Z., Rizwan, M., Hussain, A., Saqib, M., Ali, S., Sohail, M. I., Shafiq, M., & Hafeez, F. (2018a). Alleviation of cadmium (Cd) toxicity and minimizing its uptake in wheat (Triticum aestivum) by using organic carbon sources in Cd-spiked soil. Environmental Pollution, 241, 557-565. https://doi.org/10.1016/j.envpol.2018.06.005
  • Rehman, Z. U., Khan, S., Shah, M. T., Brusseau, M. L., Khan, S. A., & Mainhagu, J. (2018b). Transfer of Heavy Metals from Soils to Vegetables and Associated Human Health Risks at Selected Sites in Pakistan. Pedosphere, 28(4), 666-679. https://doi.org/10.1016/S1002-0160(17)60440-5
  • Rezapour, S., Atashpaz, B., Moghaddam, S. S., & Damalas, C. A. (2019). Heavy metal bioavailability and accumulation in winter wheat (Triticum aestivum L.) irrigated with treated wastewater in calcareous soils. Science of the Total Environment, 656, 261-269. https://doi.org/10.1016/j.scitotenv.2018.11.288
  • Rizwan, M. S., Imtiaz, M., Zhu, J., Yousaf, B., Hussain, M., Ali, L., Ditta, A., Zahid Ihsan, M., Huang, G., Ashraf, M., & Hu, H. (2021). Immobilization of Pb and Cu by organic and inorganic amendments in contaminated soil. Geoderma, 385, 114803. https://doi.org/10.1016/j.geoderma.2020.114803
  • Sharifan, H., Moore, J., & Ma, X. (2020). Zinc oxide (ZnO) nanoparticles elevated iron and copper contents and mitigated the bioavailability of lead and cadmium in different leafy greens. Ecotoxicology and Environmental Safety, 191, 110177. https://doi.org/10.1016/j.ecoenv.2020.110177
  • Sharma, S., Tiwari, S., Hasan, A., Saxena, V., & Pandey, L. M. (2018). Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech, 8(4), 216. https://doi.org/10.1007/s13205-018-1237-8
  • Shen, C., Zhao, Y., Li, W., Yang, Y., Liu, R., & Morgen, D. (2019). Global profile of heavy metals and semimetals adsorption using drinking water treatment residual. Chemical Engineering Journal, 372, 1019-1027. https://doi.org/10.1016/j.cej.2019.04.219
  • Skiba, E., & Wolf, W. M. (2019). Cerium oxide nanoparticles affect heavy metals uptake by Pea in a divergent way than their ionic and bulk counterparts. Water, Air, and Soil Pollution, 230(10), 248. https://doi.org/10.1007/s11270-019-4296-5
  • Strachel, R., Wyszkowska, J., & Baćmaga, M. (2018). An evaluation of the effectiveness of sorbents in the remediation of soil contaminated with zinc. Water, Air, and Soil Pollution, 229(7), 235. https://doi.org/10.1007/s11270-018-3882-2
  • Sun, G. L., Reynolds, E. E., & Belcher, A. M. (2019). Designing yeast as plant-like hyperaccumulators for heavy metals. Nature Communications, 10(1), 5080. https://doi.org/10.1038/s41467-019-13093-6
  • Tsadik, Y. K. G., Hailu, A. M., Asfaw, S. L., & Mekonnen, Y. S. (2020). The effect of brewery sludge biochar on immobilization of bio-available cadmium and growth of Brassica carinata. Heliyon, 6, e05573. https://doi.org/10.1016/j.heliyon.2020.e05573
  • Turan, V., Khan, S. A., Mahmood-ur-Rahman, Iqbal, M., Ramzani, P. M. A., & Fatima, M. (2018). Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan. Ecotoxicology and Environmental Safety, 161, 409-419. https://doi.org/10.1016/j.ecoenv.2018.05.082
  • Ulm, F., Avelar, D., Hobson, P., Penha-Lopes, G., Dias, T., Máguas, C., & Cruz, C. (2019). Sustainable urban agriculture using compost and an open-pollinated maize variety. Journal of Cleaner Production, 212, 622-629. https://doi.org/10.1016/j.jclepro.2018.12.069
  • Vardhan, K. H., Kumar, P. S., & Panda, R. C. (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids, 290, 111197. https://doi.org/10.1016/j.molliq.2019.111197
  • Varghese, A. G., Paul, S. A., & Latha, M. S. (2019). Remediation of heavy metals and dyes from wastewater using cellulose-based adsorbents. Environmental Chemistry Letters, 17(2), 867-877. https://doi.org/10.1007/s10311-018-00843-z
  • Wang, R., Shafi, M., Ma, J., Zhong, B., Guo, J., Hu, X., Xu, W., Yang, Y., Ruan, Z., Wang, Y., Ye, Z., & Liu, D. (2018). Effect of amendments on contaminated soil of multiple heavy metals and accumulation of heavy metals in plants. Environmental Science and Pollution Research, 25(28), 28695-28704. https://doi.org/10.1007/s11356-018-2918-x
  • Wang, X., Gao, P., Li, D., Liu, J., Yang, N., Gu, W., He, X., & Tang, W. (2019). Risk assessment for and microbial community changes in Farmland soil contaminated with heavy metals and metalloids. Ecotoxicology and Environmental Safety, 185, 109685. https://doi.org/10.1016/j.ecoenv.2019.109685
  • Wang, Y., & Liu, R. (2018). H2O2 treatment enhanced the heavy metals removal by manure biochar in aqueous solutions. Science of the Total Environment, 629, 1139-1148. https://doi.org/10.1016/j.scitotenv.2018.02.137
  • Wei, M., Chen, J., & Wang, Q. (2018). Remediation of sandy soil contaminated by heavy metals with Na2EDTA washing enhanced with organic reducing agents: element distribution and spectroscopic analysis. European Journal of Soil Science, 69(4), 719-731. https://doi.org/10.1111/ejss.12560
  • Wei, X., Cao, P., Wang, G., & Han, J. (2020). Microbial inoculant and garbage enzyme reduced cadmium (Cd) uptake in Salvia miltiorrhiza (Bge.) under Cd stress. Ecotoxicology and Environmental Safety, 192(151), 110311. https://doi.org/10.1016/j.ecoenv.2020.110311
  • Wu, J., Zhou, Q., Huang, R., Wu, K., & Li, Z. (2021). Contrasting impacts of mobilisation and immobilisation amendments on soil health and heavy metal transfer to food chain. Ecotoxicology and Environmental Safety, 209, 111836. https://doi.org/10.1016/j.ecoenv.2020.111836
  • Xia, X., Wu, S., Zhou, Z., & Wang, G. (2021). Microbial Cd(II) and Cr(VI) resistance mechanisms and application in bioremediation. Journal of Hazardous Materials, 401, 123685. https://doi.org/10.1016/j.jhazmat.2020.123685
  • Xiang, C., Tian, D., Wang, W., Shen, F., Zhao, G., Ni, X., Zhang, Y., Yang, G., & Zeng, Y. (2020). Fates of Heavy Metals in Anaerobically Digesting the Stover of Grain Sorghum Harvested from Heavy Metal-Contaminated Farmland. Waste and Biomass Valorization, 11(4), 1239-1250. https://doi.org/10.1007/s12649-018-0455-y
  • Xu, C., Qi, J., Yang, W., Chen, Y., Yang, C., He, Y., Wang, J., & Lin, A. (2019a). Immobilization of heavy metals in vegetable-growing soils using nano zero-valent iron modified attapulgite clay. Science of the Total Environment, 686, 476-483. https://doi.org/10.1016/j.scitotenv.2019.05.330
  • Xu, J., Liu, C., Hsu, P. C., Zhao, J., Wu, T., Tang, J., Liu, K., & Cui, Y. (2019b). Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry. Nature Communications, 10(1), 2440. https://doi.org/10.1038/s41467-019-10472-x
  • Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 28, e00570. https://doi.org/10.1016/j.btre.2020.e00570
  • Yang, X., Mao, X., Shao, X., Han, F., Chang, T., Qin, H., & Li, M. (2018). Enhanced Techniques of Soil Washing for the Remediation of Heavy Metal-Contaminated Soils. Agricultural Research, 7(2), 99-104. https://doi.org/10.1007/s40003-018-0302-1
  • Yous, R., Mohellebi, F., Cherifi, H., & Amrane, A. (2018). Competitive biosorption of heavy metals from aqueous solutions onto Streptomyces rimosus. Korean Journal of Chemical Engineering, 35(4), 890-899. https://doi.org/10.1007/s11814-018-0004-1
  • Yu, P., Sun, Y., Huang, Z., Zhu, F., Sun, Y., & Jiang, L. (2020). The effects of ectomycorrhizal fungi on heavy metals’ transport in Pinus massoniana and bacteria community in rhizosphere soil in mine tailing area. Journal of Hazardous Materials, 381, 1–12. https://doi.org/10.1016/j.jhazmat.2019.121203
  • Yu, Y., Zhu, X., Li, L., Lin, B., Xiang, M., Zhang, X., Chen, X., Yu, Z., Wang, Z., & Wan, Y. (2019). Health implication of heavy metals exposure via multiple pathways for residents living near a former e-waste recycling area in China: A comparative study. Ecotoxicology and Environmental Safety, 169, 178-184. https://doi.org/10.1016/j.ecoenv.2018.10.115
  • Zhang, B. Q., Liu, X. S., Feng, S. J., Zhao, Y. N., Wang, L. L., Rono, J. K., Li, H., & Yang, Z. M. (2020). Developing a cadmium resistant rice genotype with OsHIPP29 locus for limiting cadmium accumulation in the paddy crop. Chemosphere, 247, 125958. https://doi.org/10.1016/j.chemosphere.2020.125958
  • Zhang, T., Xu, W., Lin, X., Yan, H., Ma, M., & He, Z. (2019). Assessment of heavy metals pollution of soybean grains in North Anhui of China. Science of the Total Environment, 646, 914-922. https://doi.org/10.1016/j.scitotenv.2018.07.335
  • Zhang, Y., Zhang, Y., Akakuru, O. U., Xu, X., & Wu, A. (2021). Research progress and mechanism of nanomaterials-mediated in-situ remediation of cadmium-contaminated soil: A critical review. Journal of Environmental Science, 104, 351-364. https://doi.org/10.1016/j.jes.2020.12.021
  • Zhao, H., Huang, X., Liu, F., Hu, X., Zhao, X., Wang, L., Gao, P., Li, J., & Ji, P. (2020). Potential of a novel modified gangue amendment to reduce cadmium uptake in lettuce (Lactuca sativa L.). Journal of Hazardous Materials, 410, 124453. https://doi.org/10.1016/j.jhazmat.2020.124543
  • Zhao, W., Cui, Y., Sun, X., Wang, H., & Teng, X. (2021). Corn stover biochar increased edible safety of spinach by reducing the migration of mercury from soil to spinach. Science of the Total Environment, 758, 143883. https://doi.org/10.1016/j.scitotenv.2020.143883
  • Zhaoxiang, W., Huihu, L., Qiaoli, L., Changyan, Y., & Faxin, Y. (2020). Application of bio-organic fertilizer, not biochar, in degraded red soil improves soil nutrients and plant growth. Rhizosphere, 16, 100264. https://doi.org/10.1016/j.rhisph.2020.100264
  • Zhi, L., Zhipeng, R., Minglong, L., Rongjun, B., Xiaoyu, L., Haifei, L., Kun, C., Xuhui, Z., Jufeng, Z., Lianqing, L., Marios, D., Stephen, J., Natarjan, I., & Genxing, P. (2020). Pyrolyzed biowastes deactivated potentially toxic metals and eliminated antibiotic resistant genes for healthy vegetable production. Journal of Cleaner Production, 276, 124208. https://doi.org/10.1016/j.jclepro.2020.124208
  • Zhou, B., & Zhu, H. (2020). Effects of rapeseed straw incorporation on the availability of heavy metals in soil. Arabian Journal of Geosciences, 13(13), 558. https://doi.org/10.1007/s12517-020-05612-3
  • Zhou, J., Li, P., Meng, D., Gu, Y., Zheng, Z., Yin, H., Zhou, Q., & Li, J. (2020). Isolation, characterization and inoculation of Cd tolerant rice endophytes and their impacts on rice under Cd contaminated environment. Environmental Pollution, 260, 113990. https://doi.org/10.1016/j.envpol.2020.113990
There are 93 citations in total.

Details

Primary Language English
Subjects Agronomy, Plant Nutrition and Soil Fertility
Journal Section Review
Authors

Nura Abdullahi 0000-0001-9143-6560

Ernest Chukwusoro Igwe 0000-0002-5229-566X

Munir Abba Dandago 0000-0003-4840-9553

Abdulkadir Sani 0000-0003-4788-5232

Nasiru B. Umar 0000-0003-1488-1593

Early Pub Date June 19, 2023
Publication Date June 30, 2023
Submission Date February 6, 2023
Acceptance Date March 13, 2023
Published in Issue Year 2023 Volume: 5 Issue: 1

Cite

APA Abdullahi, N., Igwe, E. C., Dandago, M. A., Sani, A., et al. (2023). A review of heavy metals accumulation and control in active agricultural soil. Turkish Journal of Food and Agriculture Sciences, 5(1), 7-18. https://doi.org/10.53663/turjfas.1247846

 22605      22604        23639     


17579     21244    21245   29292



21866   

Turkish Journal of Food and Agriculture Sciences (TURJFAS) is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is accordance with the BOAI (Budapest Open Access Initiative) definition of open access. 


 17580 

Turkish Journal of Food and Agriculture Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Journal Abbreviation: Turk J Food Agric Sci