Research Article
BibTex RIS Cite

Sonlu Farklar Yöntemi Kullanılarak Geçirimsiz Baraj Tabanına Yerleştirilen Palplanş Perdesinin Yerinin Belirlenmesi

Year 2024, Volume: 16 Issue: 1, 356 - 372, 31.01.2024
https://doi.org/10.29137/umagd.1351299

Abstract

Zemindeki su akımlarında, zeminin çıkış bölgesinde akım yönü yerçekimine zıt yönde ise kaynama (boiling) olayı gerçekleşebilir. Kaynama olayını önlemek için akım yolu uzunluğu arttırılır veya kaynama riskinin bulunduğu bölgede ağırlık filtresi kullanılır. Akım yolu uzunluğunun arttırılması geçirimsiz barajlarda barajın memba (giriş) bölümünde geçirimsiz bir tabaka oluşturulması veya baraj altına geçirimsiz palplanş perdesi yapmakla mümkündür. Palplanş Perdesinin geçirimsiz baraj altında inşaası masraflı ve zordur. Bu çalışmada baraj duvarı altındaki Palplanş perdesi barajın memba (giriş) bölgesi ile barajın mansap (çıkış) bölgesi arasındaki çok sayıda konuma yerleştirilmiş ve barajın sızıntı hızının değeri sonlu farklar yöntemi ile analiz edilmiştir. Hidrolik yükün gradyanı alınarak, Düşeydeki sızıntı hızı değeri ve Kaynamaya karşı güvenlik sayıları bulunmuştur. Barajın çıkış bölgesine yerleştirilen palplanş perdesinin Düşey sızıntı hızını en aza indiren ve bundan dolayı Kaynamaya karşı düşey güvenlik sayısını maksimize eden çözüm olduğu görülmüştür.

References

  • Adamo, N., Al-Ansari, N., Sissakian, V., Laue, J., & Knutsson, S. (2020). Dam safety problems related to seepage. Journal of Earth Sciences and Geotechnical Engineering, 10(6), 191-239.
  • Ahmadi, H., Salimi, H., & Hemmati, M. (2018). Analysis of seepage through earth dams by using finite difference numerical method and extended pressure technique. Irrigation and Drainage Structures Engineering Research, 19(72), 1-14.
  • Banerjee, S., & Muleshkov, A. (1992). Analytical solution of steady seepage into double-walled cofferdams. Journal of engineering mechanics, 118(3), 525-539.
  • Bennett, P. T. (1946). The effect of blankets on seepage through pervious foundations. Transactions of the American Society of Civil Engineers, 111(1), 215-228.
  • Bruch Jr, J. C., & Fernandez Sainz, L. B. (1972). Analytical flow nets in channel seepage flows. Water Resources Research, 8(2), 519-524.
  • Cedergren, H. R. (1997). Seepage, drainage, and flow nets (C. 16). John Wiley & Sons.
  • Chen, Y., Zhou, C., & Zheng, H. (2008). A numerical solution to seepage problems with complex drainage systems. Computers and Geotechnics, 35(3), 383-393.
  • Chowdhury, R., Flentje, P., & Bhattacharya, G. (2009). Geotechnical slope analysis. Crc Press.
  • Donald, P. C. (1999). Geotechnical engineering: principles and practices. Alan Apt, (206-268)
  • Fadaei-Kermani, E., Shojaee, S., Memarzadeh, R., & Barani, G. (2019). Numerical simulation of seepage problem in porous media. Applied Water Science, 9, 1-8.
  • Fetter, C. W. (2018). Applied hydrogeology. Waveland Press.
  • Fontana, N. (2008). Experimental analysis of heaving phenomena in sandy soils. Journal of Hydraulic Engineering, 134(6), 794-799.
  • Foster, M., Fell, R., & Spannagle, M. (2000a). A method for assessing the relative likelihood of failure of embankment dams by piping. Canadian Geotechnical Journal, 37(5), 1025-1061.
  • Foster, M., Fell, R., & Spannagle, M. (2000b). The statistics of embankment dam failures and accidents. Canadian Geotechnical Journal, 37(5), 1000-1024.
  • France, P. W., Parekh, C., Peters, J. C., & Taylor, C. (1971). Numerical analysis of free surface seepage problems. Journal of the Irrigation and Drainage Division, 97(1), 165-179.
  • Fukuchi, T. (2016). Numerical analyses of steady-state seepage problems using the interpolation finite difference method. Soils and Foundations, 56(4), 608-626.
  • Harr, M. E. (1991). Groundwater and seepage. Courier Corporation.
  • He, J.-H. (1998). Approximate analytical solution for seepage flow with fractional derivatives in porous media. Computer Methods in Applied Mechanics and Engineering, 167(1-2), 57-68.
  • Hnang, T. (1996). Stability analysis of an earth dam under steady state seepage. Computers & structures, 58(6), 1075-1082.
  • Hunter, G., & Fell, R. (2003). The deformation behaviour of embankment dams. University of New South Wales, School of Civil and Environmental Engineering.
  • Huyakorn, P. S. (2012). Computational methods in subsurface flow. academic press.
  • Ilyinsky, N., Kacimov, A., & Yakimov, N. (1998). Analytical solutions of seepage theory problems. Inverse method, variational theorems, optimization and estimates (a review). Fluid dynamics, 33(2), 157-168.
  • Kaliakin, V. N. (2018). Introduction to approximate solution techniques, numerical modeling, and finite element methods. CRC Press.
  • Kirra, M., Shahien, M., Elshemy, M., & Zeidan, B. (2015). Seepage and slope stability analysis of Mandali earth dam, Iraq: A case study. International Conference on Advances in Structural and Geotechnical Engineering (ICASGE’15).(6–9 April 2015 Hurghada, Egypt).
  • Klohn, E. J. (1979). Seepage control for tailings dams. Proceedings, First International Conference on Mine Drainage, Miller Freeman Publications, San Francisco, CA.
  • Kumbasar V. Ve Kip F. (1999). Zemin mekaniği problemleri. Çağlayan Kitabevi, (91-159)
  • Lacy, S. J., & Prevost, J. H. (1987). Flow through porous media: A procedure for locating the free surface. International Journal for Numerical and Analytical Methods in Geomechanics, 11(6), 585-601.
  • Lerner, D. N. (1986). Leaking pipes recharge ground water. Groundwater, 24(5), 654-662.
  • Mariño, M. A., & Luthin, J. N. (1982). Seepage and groundwater. Elsevier.
  • McNamee, J. (1949). Seepage into a sheeted excavation. Geotechnique, 1(4), 229-241.
  • Mishra, G. C., & Reddy, A. S. (1983). Exit gradient in anisotropic porous medium. Journal of Hydraulic Engineering, 109(6), 897-904.
  • Narita, K. (2000). Design and construction of embankment dams. Dept. of Civil Eng., Aichi Institute of Technology.
  • Ozkan, S., & Adrian, D. D. (2008). Analytical construction of transient flow nets in homogeneous and isotropic flow medium. Journal of geotechnical and geoenvironmental engineering, 134(6), 888-893.
  • Pachepsky, Y. (2004). Seepage In Soils: Principles and Applications.
  • Peng, M., Zhang, L., Chang, D., & Xu, Y. (2016). Dam failure mechanisms and risk assessment. John Wiley & Sons.
  • Peyret, R., & Taylor, T. D. (2012). Computational methods for fluid flow. Springer Science & Business Media.
  • Polubarinova-Kochina, P. Y. (2015). Theory of ground water movement. Princeton university press.
  • Pratama, I. T., & Ou, C.-Y. (2018). Analysis of Sand Boiling Failure in Deep Excavations. 125-141.
  • Ps, M. A., & Balan, T. A. (2014). Numerical analysis of seepage in Embankment dams. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE (, ICICE, vol. 4, 13-23.
  • Reddi, L. N. (2003). Seepage in soils: Principles and applications. John Wiley & Sons.
  • Rezk, M. A. E.-R. M., & Senoon, A. E.-A. A. A. (2011). Analytical solution of seepage through earth dam with an internal core. Alexandria Engineering Journal, 50(1), 111-115.
  • Schwartz, F. W., & Zhang, H. (2002). Fundamentals of ground water. John Wiley & Sons.
  • Sedghi-Asl, M., Parvizi, M., Azar, E., & Yousefi, M. (2022). Failure modeling of alluvial foundations due to boiling: Numerical modeling versus experiments. International Journal of Mining and Geo-Engineering, 56(3), 249-255.
  • Sharif, N. H., & Wiberg, N. (2002). Adaptive ICT procedure for non‐linear seepage flows with free surface in porous media. Communications in numerical methods in engineering, 18(3), 161-176.
  • Sherard, J. L., & Dunnigan, L. P. (1985). Filters and leakage control in embankment dams. 1-30.
  • Simpson, M., & Clement, T. (2003). Comparison of finite difference and finite element solutions to the variably saturated flow equation. Journal of hydrology, 270(1-2), 49-64.
  • Şen, Z. (2017). Applied hydrogeology for scientists and engineers. CRC Press.
  • Tanaka, T., & Verruijt, A. (1999). Seepage Failure of Sand Behind Sheet Piles—The Mechanism and Practical Approach to Analyze—. Soils and Foundations, 39(3), 27-35.
  • Tanaka, T., & Yokoyama, T. (2006). Effect of jet grouting under sheet piles on seepage failure stability of soil. 923-929.
  • Tanaka, T., Takashima, W., Pham, T. T. H., Utra, K., & Uemura, N. (2012). A case study on seepage failure of bottom soil within a doublesheet-pile-wall-type ditch. ICSE6 Paris, 27-31.
  • Terzaghi, K. (1922). Failure of dam foundations by piping and means for preventing it. Die Wasserkraft, special forchheimer, 17, 445-449.
  • Toro, E. F. (2013). Riemann solvers and numerical methods for fluid dynamics: A practical introduction. Springer Science & Business Media.
  • United States. Bureau of Reclamation. (1987). Design of small dams. US Department of the Interior, Bureau of Reclamation.
  • Wang, H. F., & Anderson, M. P. (1995). Introduction to groundwater modeling: Finite difference and finite element methods. Academic Press.
  • Wang, J., Leung, C., & Chow, Y. (2003). Numerical solutions for flow in porous media. International Journal for numerical and analytical methods in geomechanics, 27(7), 565-583.
  • Yousefi, M., Parvizi, M., & Sedghi–Asl, M. (2016). Laboratory Investigation the Effects of sheet pile on Seepage Control and sand‎ boiling through Alluvial Foundation of hydraulic structures. Amirkabir Journal of Civil Engineering, 48(3), 315-328.
  • Yousefi, M., Sedghi-Asl, M., & Parvizi, M. (2016). Seepage and boiling around a sheet pile under different experimental configuration. Journal of Hydrologic Engineering, 21(12), 06016015. Zheng, H., Shi, Z., Shen, D., Peng, M., Hanley, K. J., Ma, C., & Zhang, L. (2021). Recent advances in stability and failure mechanisms of landslide dams. Frontiers in Earth Science, 9, 659935.
  • Zienkiewicz, O., Mayer, P., & Cheung, Y. K. (1966). Solution of anisotropic seepage by finite elements. Journal of the Engineering Mechanics Division, 92(1), 111-120.
  • Zijl, W., & Nawalany, M. (1993). Natural groundwater flow. CRC Press.

Determination of the Location of the sheet pile wall Placed within the Impermeable Dam Base Using the Finite Difference Method

Year 2024, Volume: 16 Issue: 1, 356 - 372, 31.01.2024
https://doi.org/10.29137/umagd.1351299

Abstract

In water currents within the ground, a boiling event may occur if the flow direction is opposite to gravity in the outlet area of the flow floor. To prevent a boiling event, the length of the flow path is increased or a weight filter is used in the area where there is a risk of boiling. Increasing the length of the current path is possible by creating an impermeable layer in the upstream (inlet) section of the dam or by making an impermeable sheet pile wall under the dam. The construction of the sheet pile wall under an impervious dam is expensive and difficult. In this study, the sheet pile wall under the dam wall was placed in various positions between upstream region and downstream (outlet) region of the dam, and the value of the dam's seepage rate was analyzed by finite difference method. Vertical seepage rate values and safety numbers against vertical boiling have been found by taking the gradient of the hydraulic head. It has been seen that the sheet pile wall placed in the exit zone of the dam is the solution that minimizes the leakage rate, and, therefore, maximizes the vertical safety number against boiling.

References

  • Adamo, N., Al-Ansari, N., Sissakian, V., Laue, J., & Knutsson, S. (2020). Dam safety problems related to seepage. Journal of Earth Sciences and Geotechnical Engineering, 10(6), 191-239.
  • Ahmadi, H., Salimi, H., & Hemmati, M. (2018). Analysis of seepage through earth dams by using finite difference numerical method and extended pressure technique. Irrigation and Drainage Structures Engineering Research, 19(72), 1-14.
  • Banerjee, S., & Muleshkov, A. (1992). Analytical solution of steady seepage into double-walled cofferdams. Journal of engineering mechanics, 118(3), 525-539.
  • Bennett, P. T. (1946). The effect of blankets on seepage through pervious foundations. Transactions of the American Society of Civil Engineers, 111(1), 215-228.
  • Bruch Jr, J. C., & Fernandez Sainz, L. B. (1972). Analytical flow nets in channel seepage flows. Water Resources Research, 8(2), 519-524.
  • Cedergren, H. R. (1997). Seepage, drainage, and flow nets (C. 16). John Wiley & Sons.
  • Chen, Y., Zhou, C., & Zheng, H. (2008). A numerical solution to seepage problems with complex drainage systems. Computers and Geotechnics, 35(3), 383-393.
  • Chowdhury, R., Flentje, P., & Bhattacharya, G. (2009). Geotechnical slope analysis. Crc Press.
  • Donald, P. C. (1999). Geotechnical engineering: principles and practices. Alan Apt, (206-268)
  • Fadaei-Kermani, E., Shojaee, S., Memarzadeh, R., & Barani, G. (2019). Numerical simulation of seepage problem in porous media. Applied Water Science, 9, 1-8.
  • Fetter, C. W. (2018). Applied hydrogeology. Waveland Press.
  • Fontana, N. (2008). Experimental analysis of heaving phenomena in sandy soils. Journal of Hydraulic Engineering, 134(6), 794-799.
  • Foster, M., Fell, R., & Spannagle, M. (2000a). A method for assessing the relative likelihood of failure of embankment dams by piping. Canadian Geotechnical Journal, 37(5), 1025-1061.
  • Foster, M., Fell, R., & Spannagle, M. (2000b). The statistics of embankment dam failures and accidents. Canadian Geotechnical Journal, 37(5), 1000-1024.
  • France, P. W., Parekh, C., Peters, J. C., & Taylor, C. (1971). Numerical analysis of free surface seepage problems. Journal of the Irrigation and Drainage Division, 97(1), 165-179.
  • Fukuchi, T. (2016). Numerical analyses of steady-state seepage problems using the interpolation finite difference method. Soils and Foundations, 56(4), 608-626.
  • Harr, M. E. (1991). Groundwater and seepage. Courier Corporation.
  • He, J.-H. (1998). Approximate analytical solution for seepage flow with fractional derivatives in porous media. Computer Methods in Applied Mechanics and Engineering, 167(1-2), 57-68.
  • Hnang, T. (1996). Stability analysis of an earth dam under steady state seepage. Computers & structures, 58(6), 1075-1082.
  • Hunter, G., & Fell, R. (2003). The deformation behaviour of embankment dams. University of New South Wales, School of Civil and Environmental Engineering.
  • Huyakorn, P. S. (2012). Computational methods in subsurface flow. academic press.
  • Ilyinsky, N., Kacimov, A., & Yakimov, N. (1998). Analytical solutions of seepage theory problems. Inverse method, variational theorems, optimization and estimates (a review). Fluid dynamics, 33(2), 157-168.
  • Kaliakin, V. N. (2018). Introduction to approximate solution techniques, numerical modeling, and finite element methods. CRC Press.
  • Kirra, M., Shahien, M., Elshemy, M., & Zeidan, B. (2015). Seepage and slope stability analysis of Mandali earth dam, Iraq: A case study. International Conference on Advances in Structural and Geotechnical Engineering (ICASGE’15).(6–9 April 2015 Hurghada, Egypt).
  • Klohn, E. J. (1979). Seepage control for tailings dams. Proceedings, First International Conference on Mine Drainage, Miller Freeman Publications, San Francisco, CA.
  • Kumbasar V. Ve Kip F. (1999). Zemin mekaniği problemleri. Çağlayan Kitabevi, (91-159)
  • Lacy, S. J., & Prevost, J. H. (1987). Flow through porous media: A procedure for locating the free surface. International Journal for Numerical and Analytical Methods in Geomechanics, 11(6), 585-601.
  • Lerner, D. N. (1986). Leaking pipes recharge ground water. Groundwater, 24(5), 654-662.
  • Mariño, M. A., & Luthin, J. N. (1982). Seepage and groundwater. Elsevier.
  • McNamee, J. (1949). Seepage into a sheeted excavation. Geotechnique, 1(4), 229-241.
  • Mishra, G. C., & Reddy, A. S. (1983). Exit gradient in anisotropic porous medium. Journal of Hydraulic Engineering, 109(6), 897-904.
  • Narita, K. (2000). Design and construction of embankment dams. Dept. of Civil Eng., Aichi Institute of Technology.
  • Ozkan, S., & Adrian, D. D. (2008). Analytical construction of transient flow nets in homogeneous and isotropic flow medium. Journal of geotechnical and geoenvironmental engineering, 134(6), 888-893.
  • Pachepsky, Y. (2004). Seepage In Soils: Principles and Applications.
  • Peng, M., Zhang, L., Chang, D., & Xu, Y. (2016). Dam failure mechanisms and risk assessment. John Wiley & Sons.
  • Peyret, R., & Taylor, T. D. (2012). Computational methods for fluid flow. Springer Science & Business Media.
  • Polubarinova-Kochina, P. Y. (2015). Theory of ground water movement. Princeton university press.
  • Pratama, I. T., & Ou, C.-Y. (2018). Analysis of Sand Boiling Failure in Deep Excavations. 125-141.
  • Ps, M. A., & Balan, T. A. (2014). Numerical analysis of seepage in Embankment dams. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE (, ICICE, vol. 4, 13-23.
  • Reddi, L. N. (2003). Seepage in soils: Principles and applications. John Wiley & Sons.
  • Rezk, M. A. E.-R. M., & Senoon, A. E.-A. A. A. (2011). Analytical solution of seepage through earth dam with an internal core. Alexandria Engineering Journal, 50(1), 111-115.
  • Schwartz, F. W., & Zhang, H. (2002). Fundamentals of ground water. John Wiley & Sons.
  • Sedghi-Asl, M., Parvizi, M., Azar, E., & Yousefi, M. (2022). Failure modeling of alluvial foundations due to boiling: Numerical modeling versus experiments. International Journal of Mining and Geo-Engineering, 56(3), 249-255.
  • Sharif, N. H., & Wiberg, N. (2002). Adaptive ICT procedure for non‐linear seepage flows with free surface in porous media. Communications in numerical methods in engineering, 18(3), 161-176.
  • Sherard, J. L., & Dunnigan, L. P. (1985). Filters and leakage control in embankment dams. 1-30.
  • Simpson, M., & Clement, T. (2003). Comparison of finite difference and finite element solutions to the variably saturated flow equation. Journal of hydrology, 270(1-2), 49-64.
  • Şen, Z. (2017). Applied hydrogeology for scientists and engineers. CRC Press.
  • Tanaka, T., & Verruijt, A. (1999). Seepage Failure of Sand Behind Sheet Piles—The Mechanism and Practical Approach to Analyze—. Soils and Foundations, 39(3), 27-35.
  • Tanaka, T., & Yokoyama, T. (2006). Effect of jet grouting under sheet piles on seepage failure stability of soil. 923-929.
  • Tanaka, T., Takashima, W., Pham, T. T. H., Utra, K., & Uemura, N. (2012). A case study on seepage failure of bottom soil within a doublesheet-pile-wall-type ditch. ICSE6 Paris, 27-31.
  • Terzaghi, K. (1922). Failure of dam foundations by piping and means for preventing it. Die Wasserkraft, special forchheimer, 17, 445-449.
  • Toro, E. F. (2013). Riemann solvers and numerical methods for fluid dynamics: A practical introduction. Springer Science & Business Media.
  • United States. Bureau of Reclamation. (1987). Design of small dams. US Department of the Interior, Bureau of Reclamation.
  • Wang, H. F., & Anderson, M. P. (1995). Introduction to groundwater modeling: Finite difference and finite element methods. Academic Press.
  • Wang, J., Leung, C., & Chow, Y. (2003). Numerical solutions for flow in porous media. International Journal for numerical and analytical methods in geomechanics, 27(7), 565-583.
  • Yousefi, M., Parvizi, M., & Sedghi–Asl, M. (2016). Laboratory Investigation the Effects of sheet pile on Seepage Control and sand‎ boiling through Alluvial Foundation of hydraulic structures. Amirkabir Journal of Civil Engineering, 48(3), 315-328.
  • Yousefi, M., Sedghi-Asl, M., & Parvizi, M. (2016). Seepage and boiling around a sheet pile under different experimental configuration. Journal of Hydrologic Engineering, 21(12), 06016015. Zheng, H., Shi, Z., Shen, D., Peng, M., Hanley, K. J., Ma, C., & Zhang, L. (2021). Recent advances in stability and failure mechanisms of landslide dams. Frontiers in Earth Science, 9, 659935.
  • Zienkiewicz, O., Mayer, P., & Cheung, Y. K. (1966). Solution of anisotropic seepage by finite elements. Journal of the Engineering Mechanics Division, 92(1), 111-120.
  • Zijl, W., & Nawalany, M. (1993). Natural groundwater flow. CRC Press.
There are 59 citations in total.

Details

Primary Language English
Subjects Civil Geotechnical Engineering
Journal Section Articles
Authors

Barış Kaçak 0009-0003-2687-1285

Ertugrul Ordu 0000-0001-8877-5617

Reşat Mutlu 0000-0003-0030-7136

Publication Date January 31, 2024
Submission Date August 28, 2023
Published in Issue Year 2024 Volume: 16 Issue: 1

Cite

APA Kaçak, B., Ordu, E., & Mutlu, R. (2024). Determination of the Location of the sheet pile wall Placed within the Impermeable Dam Base Using the Finite Difference Method. International Journal of Engineering Research and Development, 16(1), 356-372. https://doi.org/10.29137/umagd.1351299

All Rights Reserved. Kırıkkale University, Faculty of Engineering.