Research Article
BibTex RIS Cite

İki Serbestlik Dereceli Rotor-Hidrodinamik Yatak Sisteminin Kararlılığının Termal Etki Altında İncelenmesi

Year 2024, Volume: 16 Issue: 1, 304 - 319, 31.01.2024
https://doi.org/10.29137/umagd.1404559

Abstract

Hidrodinamik yataklar dönel mekanik sistemlerin önemli bir elemanı olup, birçok makinada tercih edilmektedir. Ancak rotorun yüksek hızlarda ve ağır yükler altında çalıştırıldığı durumlarda, yatak-rotor sistemi, yağın ısınması sebebiyle önemli rotordinamiği problemleri ile karşı karşıya kalmaktadır. Bu çalışmada hidrodinamik yatak ile desteklenmiş rotorun statik ve dinamik karakteristikleri ve sistemin kararlılığı, yağlayıcı viskozitesinin sıcaklığa bağlı değişimi dikkate alınarak sayısal olarak incelenmiş ve farklı radyal boşluk değerleri için termal durumun sistem karakteristikleri üzerindeki etkileri araştırılmştır. Yağlayıcının yatak ve rotor yüzeyleri arasındaki akışı Dowson denklemi ile değişken viskozite için modellenmiş ve pertürbasyon denklemleri 2 serbestlik dereceli bir sistem için türetilmiştir. Yağın sıcaklık dağılımı 3 boyutlu enerji denklemi ile modellenmiş, ve yatak ile yağ arasındaki ısı transferi modele dahil edilmiştir. Geliştirilen algoritma ile pertürbasyon denklemleri ve sıcaklık modelleri eş zamanlı olarak sonlu farklar şeması ile çözülmüş, farklı çalışma koşulları ve farklı paramterler için benzetimler gerçekleştirilmiş ve sistemin kararlılığı analiz edilerek kritik hız oranları ve kritik rotor ağırlıkları incelenmiştir. Termal etkinin sistemin statik ve dinamik performans üzerinde daha küçük radyal boşluk miktarına sahip hidrodinamik yataklar için daha baskın olduğu tespit edilmiş, sistemin kararlı bölgelerinin termal etki ile birlikte azaldığı görüşmüştür.

References

  • Dowson, D., Hudson, J.D., Hunter, B. & March, C.N. (1966). An experimental investigation of the thermal equilibrium of steadily loaded journal bearings. Proceedings of Instutation of Mechanical Engineering Conference Proceedings, 181, 70–80. https://doi.org/10.1243/pime_conf_1966_181_034_02
  • Ferron, J., Frene, J. & Boncompain, R. (1983), A study of the thermohydrodynamic performance of a plain journal bearing comparison between theory and experiments, ASME. J. of Lubrication Tech., 105:3, 422–428. https://doi.org/10.1115/1.3254632
  • Feng, H., Jiang, S. & Ji, A. (2019). Investigations of the static and dynamic characteristics of water-lubricated hydrodynamic journal bearing considering turbulent, thermohydrodynamic and misaligned effects. Tribology International, 130, 245-260, https://doi.org/10.1016/j.triboint.2018.09.007
  • Garg, H. C., Kumar, V., & Sharda, H. B. (2010). Performance of slot-entry hybrid journal bearings considering combined influences of thermal effects and non-Newtonian behavior of lubricant. Tribology International, 43(8), 1518-1531. https://doi.org/10.1016/j.triboint.2010.02.013
  • Klit, P., & Lund, J. W. (1986). Calculation of the Dynamic Coefficients of a Journal Bearing, Using a Variational Approach. ASME. Journal of Tribology, 108:(3), 421–424. https://doi.org/10.1115/1.3261223
  • Li, B., Sun, J., Zhu, S., Fu, Y., Zhao, X., Wang, H., Qing, T., Ren, Y., Li, Y., & Zhu, G. (2019). Thermohydrodynamic lubrication analysis of misaligned journal bearing considering the axial movement of journal. Tribology International, 135, 397-407. https://doi.org/10.1016/j.triboint.2019.03.031
  • Majumdar, B., C., Pai, R., & Hargreaves, D., J. (2004) Analysis of water-lubricated journal bearings with multiple axial grooves. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 218:(2),135-146. https://doi:10.1177/135065010421800208
  • Maneshian, B., & Nassab, S., A., G. (2009). Thermohydrodynamic analysis of turbulent flow in journal bearings running under different steady conditions. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 223:(8), 1115-1127. https://doi:10.1243/13506501JET575
  • Pai, R., S., & Pai, R. (2008). Stability of four-axial and six-axial grooved water-lubricated journal bearings under dynamic load. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 222:(5), 683-691. https://doi:10.1243/13506501JET356
  • Pai, R., Rao, D. S., Shenoy, B. S., & Pai, R. S. (2012). Stability characteristics of a Tri-taper journal bearing: A linearized perturbation approach. Journal of Materials Research and Technology, 1:(2), 84-90. https://doi.org/10.1016/S2238-7854(12)70016-9
  • Sawicki, J., T., & Rao, T., V., V., L., N. (2001). Nonlinear prediction of rotordynamic coefficients for a hydrodynamic journal bearing. Tribology Transactions, 44:(3), 367-374. https://doi.org/10.1080/10402000108982469
  • Shi, J., Zhao, B., He, T., Tu, L., Lu, X., & Xu, H. (2023). Tribology and dynamic characteristics of textured journal-thrust coupled bearing considering thermal and pressure coupled effects. Tribology International, 180, 108292. https://doi.org/10.1016/j.triboint.2023.108292
  • Shyu, S., Fuli, L., Yeau-Ren, J. , Wei-Ren, L., & Sheng-Jii, H. (2010). THD Effects of Static Performance Characteristics of Infinitely Wide Turbulent Journal Bearings. Tribology Transactions, 53:(6), 948-956, https://doi:10.1080/10402004.2010.512116
  • Shyu, S-H., Lee, W-R., Hsieh, S-J., & Liang, S-M. (2012). Static performance characteristics of finite-width turbulent journal bearings with THD effect. Tribology Transactions, 55:(3), 302-312. https://doi.org/10.1080/10402004.2011.654322
  • Sun, X., & Sepahvand, K. K. & Marburg, S. (2021). Stability Analysis of Rotor-Bearing Systems under the influence of misalignment and parameter uncertainty. Applied Sciences, 11, 7918. https://doi.org/10.3390/app11177918
  • Tala-Ighil, N., & Fillon, M. (2015). A numerical investigation of both thermal and texturing surface effects on the journal bearings static characteristics. Tribology International, 90, 228-239. https://doi.org/10.1016/j.triboint.2015.02.032
  • Tammineni, N.M., & Mutra, R.R. (20223). A review on recent advancements in an automotive turbocharger rotor system supported on the ball bearings, oil film and oil-free bearings. Journal of Brazilian Society of Mech. Sci. Eng. 45:481. https://doi.org/10.1007/s40430-023-04383-8
  • Xu, G., Zhou, J., Geng, H., Lu, M., Yang, L., and Yu, L. (2015). Research on the static and dynamic characteristics of misaligned journal bearing considering the rurbulent and thermohydrodynamic fffects. ASME. J. Tribol. April 137:(2), 024504. https://doi.org/10.1115/1.4029333
  • Xu, B,, Guo, H., Wu, X., He, Y., Wang, X., & Bai, J. (2022). Static and dynamic characteristics and stability analysis of high-speed water-lubricated hydrodynamic journal bearings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 236(4):701-720. https://doi:10.1177/13506501211027018
  • Zhang, Y., Wang, W., Wei, D., Wang, G., Xu, J., & Liu, K. (2022). Coupling analysis of tribological and dynamical behavior for a thermal turbulent fluid lubricated floating ring bearing-rotor system at ultra-high speeds. Tribology International, 165, 107325. https://doi.org/10.1016/j.triboint.2021.107325.
  • Zhu, S., Sun, J., Li, B., & Zhu, G. (2020). Thermal turbulent lubrication analysis of rough surface journal bearing with journal misalignment. Tribology International, 144, 106109. https://doi.org/10.1016/j.triboint.2019.106109

Investigation of the Stability of a 2-DOF Rotor-Hydrodynamic Bearing System Considering Thermal Effects

Year 2024, Volume: 16 Issue: 1, 304 - 319, 31.01.2024
https://doi.org/10.29137/umagd.1404559

Abstract

Hydrıdynamic journal bearings that is an important machine element of mechanical systems are generally preferred in a lot of machines. However, when the rotor operates with heavy loads and high speeds, the bearing-rotor system is subject to crucial rotor dynamics problems due to heat generation into the lubricant. In this study, the stability of a hydrodynamic journal bearing-rotor system was investigated taking into consideration of thermal influences on the viscosity of the lubricant, as well as static and dynamic characteristics of the bearing. The lubricant flow was modelled with Dowson’s equation for variable viscosity, and the perturbation equations were derived for 2 degrees-of-freedom system. The temperature distribution of the lubricant was modelled with a 3D energy equation, and the heat transfer between the journal and lubricant was also included in this model. These mathematical models were numerically simultaneously solved with an algorithm based on a finite difference scheme, a serial simulation was performed for different parameters under operational conditions, and critical whirl ratios and critical mass were investigated by analyzing of the stability. It was determined that the thermal effects on the static and dynamic performance characteristics are more dominant when the radial clearance becomes smaller.

References

  • Dowson, D., Hudson, J.D., Hunter, B. & March, C.N. (1966). An experimental investigation of the thermal equilibrium of steadily loaded journal bearings. Proceedings of Instutation of Mechanical Engineering Conference Proceedings, 181, 70–80. https://doi.org/10.1243/pime_conf_1966_181_034_02
  • Ferron, J., Frene, J. & Boncompain, R. (1983), A study of the thermohydrodynamic performance of a plain journal bearing comparison between theory and experiments, ASME. J. of Lubrication Tech., 105:3, 422–428. https://doi.org/10.1115/1.3254632
  • Feng, H., Jiang, S. & Ji, A. (2019). Investigations of the static and dynamic characteristics of water-lubricated hydrodynamic journal bearing considering turbulent, thermohydrodynamic and misaligned effects. Tribology International, 130, 245-260, https://doi.org/10.1016/j.triboint.2018.09.007
  • Garg, H. C., Kumar, V., & Sharda, H. B. (2010). Performance of slot-entry hybrid journal bearings considering combined influences of thermal effects and non-Newtonian behavior of lubricant. Tribology International, 43(8), 1518-1531. https://doi.org/10.1016/j.triboint.2010.02.013
  • Klit, P., & Lund, J. W. (1986). Calculation of the Dynamic Coefficients of a Journal Bearing, Using a Variational Approach. ASME. Journal of Tribology, 108:(3), 421–424. https://doi.org/10.1115/1.3261223
  • Li, B., Sun, J., Zhu, S., Fu, Y., Zhao, X., Wang, H., Qing, T., Ren, Y., Li, Y., & Zhu, G. (2019). Thermohydrodynamic lubrication analysis of misaligned journal bearing considering the axial movement of journal. Tribology International, 135, 397-407. https://doi.org/10.1016/j.triboint.2019.03.031
  • Majumdar, B., C., Pai, R., & Hargreaves, D., J. (2004) Analysis of water-lubricated journal bearings with multiple axial grooves. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 218:(2),135-146. https://doi:10.1177/135065010421800208
  • Maneshian, B., & Nassab, S., A., G. (2009). Thermohydrodynamic analysis of turbulent flow in journal bearings running under different steady conditions. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 223:(8), 1115-1127. https://doi:10.1243/13506501JET575
  • Pai, R., S., & Pai, R. (2008). Stability of four-axial and six-axial grooved water-lubricated journal bearings under dynamic load. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 222:(5), 683-691. https://doi:10.1243/13506501JET356
  • Pai, R., Rao, D. S., Shenoy, B. S., & Pai, R. S. (2012). Stability characteristics of a Tri-taper journal bearing: A linearized perturbation approach. Journal of Materials Research and Technology, 1:(2), 84-90. https://doi.org/10.1016/S2238-7854(12)70016-9
  • Sawicki, J., T., & Rao, T., V., V., L., N. (2001). Nonlinear prediction of rotordynamic coefficients for a hydrodynamic journal bearing. Tribology Transactions, 44:(3), 367-374. https://doi.org/10.1080/10402000108982469
  • Shi, J., Zhao, B., He, T., Tu, L., Lu, X., & Xu, H. (2023). Tribology and dynamic characteristics of textured journal-thrust coupled bearing considering thermal and pressure coupled effects. Tribology International, 180, 108292. https://doi.org/10.1016/j.triboint.2023.108292
  • Shyu, S., Fuli, L., Yeau-Ren, J. , Wei-Ren, L., & Sheng-Jii, H. (2010). THD Effects of Static Performance Characteristics of Infinitely Wide Turbulent Journal Bearings. Tribology Transactions, 53:(6), 948-956, https://doi:10.1080/10402004.2010.512116
  • Shyu, S-H., Lee, W-R., Hsieh, S-J., & Liang, S-M. (2012). Static performance characteristics of finite-width turbulent journal bearings with THD effect. Tribology Transactions, 55:(3), 302-312. https://doi.org/10.1080/10402004.2011.654322
  • Sun, X., & Sepahvand, K. K. & Marburg, S. (2021). Stability Analysis of Rotor-Bearing Systems under the influence of misalignment and parameter uncertainty. Applied Sciences, 11, 7918. https://doi.org/10.3390/app11177918
  • Tala-Ighil, N., & Fillon, M. (2015). A numerical investigation of both thermal and texturing surface effects on the journal bearings static characteristics. Tribology International, 90, 228-239. https://doi.org/10.1016/j.triboint.2015.02.032
  • Tammineni, N.M., & Mutra, R.R. (20223). A review on recent advancements in an automotive turbocharger rotor system supported on the ball bearings, oil film and oil-free bearings. Journal of Brazilian Society of Mech. Sci. Eng. 45:481. https://doi.org/10.1007/s40430-023-04383-8
  • Xu, G., Zhou, J., Geng, H., Lu, M., Yang, L., and Yu, L. (2015). Research on the static and dynamic characteristics of misaligned journal bearing considering the rurbulent and thermohydrodynamic fffects. ASME. J. Tribol. April 137:(2), 024504. https://doi.org/10.1115/1.4029333
  • Xu, B,, Guo, H., Wu, X., He, Y., Wang, X., & Bai, J. (2022). Static and dynamic characteristics and stability analysis of high-speed water-lubricated hydrodynamic journal bearings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 236(4):701-720. https://doi:10.1177/13506501211027018
  • Zhang, Y., Wang, W., Wei, D., Wang, G., Xu, J., & Liu, K. (2022). Coupling analysis of tribological and dynamical behavior for a thermal turbulent fluid lubricated floating ring bearing-rotor system at ultra-high speeds. Tribology International, 165, 107325. https://doi.org/10.1016/j.triboint.2021.107325.
  • Zhu, S., Sun, J., Li, B., & Zhu, G. (2020). Thermal turbulent lubrication analysis of rough surface journal bearing with journal misalignment. Tribology International, 144, 106109. https://doi.org/10.1016/j.triboint.2019.106109
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Dynamics, Vibration and Vibration Control, Machine Theory and Dynamics
Journal Section Articles
Authors

Abdurrahim Dal 0000-0002-7012-2148

Publication Date January 31, 2024
Submission Date December 13, 2023
Acceptance Date December 29, 2023
Published in Issue Year 2024 Volume: 16 Issue: 1

Cite

APA Dal, A. (2024). İki Serbestlik Dereceli Rotor-Hidrodinamik Yatak Sisteminin Kararlılığının Termal Etki Altında İncelenmesi. International Journal of Engineering Research and Development, 16(1), 304-319. https://doi.org/10.29137/umagd.1404559

All Rights Reserved. Kırıkkale University, Faculty of Engineering.