Research Article
BibTex RIS Cite

FİBER İLE İYİLEŞTİRİLMİŞ KUM ZEMİNE GÖMÜLÜ BORULARIN DİNAMİK DAVRANIŞININ SARSMA TABLASI DENEYLERİ İLE İNCELENMESİ

Year 2020, Volume: 25 Issue: 1, 1 - 12, 30.04.2020
https://doi.org/10.17482/uumfd.631236

Abstract

Altyapı sistemlerinden olan gömülü borular ülkemizde ve tüm dünyada yaşam standartlarını kolaylaştırmak adına su, petrol, doğalgaz, kanalizasyon gibi alanlarda kullanılmaktadır. Zeminde oluşabilecek deprem vb. olaylar zemin yapı etkileşimden kaynaklı altyapıda bulunan gömülü boru sistemlerine de zarar vermektedir. Oluşabilecek zararları minimuma indirmek ve önlemek adına son zamanlarda zemin iyileştirmesi alanında fiber katkı malzemesi yaygın olarak kullanılmaya başlanmıştır. Çalışma kapsamında hazırlanan deney düzeneği temiz silis kumu, PPRC (polypropylene random copolymer) boru, fiber, sarsma tablası ve cam hazneden oluşmaktadır. Çalışmada temiz silis kumu 10 cm'lik 3 tabaka halinde, tabanda %80 rölatif sıkılıkta fiber katkısız ve üstünde ağırlıkça %1- %2 fiber katkılı olmak üzere %20 rölatif sıkılıkta yerleştirilerek deney setleri hazırlanmıştır. Çalışmada 32 mm çapında PPRC boru kullanılmıştır. Kullanılan boru gömü derinliği boru çapına (D) bağlı olarak yüzeyden 1,2D ve 2D olmak üzere iki farklı derinlikte fiber katkılı ve katkısız numuneler hazırlanmış ve bu numuneler üzerinde bir seri sarsma tablası deneyleri gerçekleştirilmiştir. Yapılan tek eksenli sarsma tablası deneyleri ile gömülü boruda meydana gelen ivme değişimleri incelenmiştir. Deneylerden elde edilen kayma gerilmesi- kayma şekil değiştirmesi grafiğinin eğiminden kayma modülü hesaplanmıştır. Sonuç olarak, grafikler ve hesaplamalara bakıldığında fiber katkısının temiz kum zeminlerin dinamik davranışını olumlu yönde etkilediği ve gömülü boru deplasmanlarında olumlu etkisinin olduğu gözlemlenmiştir.

References

  • 1. ASTM C1116 / C1116M, (2015) Standard Specification for Fiber-Reinforced Concrete.
  • 2. ASTM D422 – 63, (2007) Standard Test Method for Particle-Size Analysis of Soils.
  • 3. Datta, S.K., Shah, A.H. and Wong, K.C. (1984) Dynamic stresses and displacements in buried pipe, Journal of Engineering Mechanics, 110, 1451-1466. doi:10.1061/(ASCE)0733- 9399(1984)110:10(1451)
  • 4. Edinçliler, A. ve Ayhan, V. (2010) Influence of Tire Fiber Inclusions on Shear Strength of Sand, Geosynthetics International, Geosynthetics International, 17, No. 4, 183–192. doi: 10.1680/gein.2010.17.4.183
  • 5. Gray, D.H. and Ohashi, H. (1983) Mechanics of fiber reinforcement in sands, Journal of Geotechnical Engineering, ASCE 109(3), 335–353. doi:10.1061/(ASCE)0733- 9410(1983)109:3(335)
  • 6. Hindy, A. and Novak, M. (1979) Earthquake response of underground pipelines, Earthquake Engineering and Structural Dynamics, 7, 451-476. doi:10.1002/eqe.4290070506
  • 7. Ling, H.I., Mohri, Y., Kawabata, T., Liu, H., Burke, C., and Sun, L. (2003) Centrifugal modeling of seismic behavior of large-diameter pipe in liquefiable soil, Journal of Geotechnical and Geoenvironmental Engineering, 129, 12. doi:10.1061/(ASCE)1090- 0241(2003)129:12(1092)
  • 8. Maher, M.D. ve Woods, R.D. (1990) Dynamic response of sand reinforced with randomly distributed fibers, ASCE Journal of Geotechical Engineering, 116:1116-1131. doi:10.1061/(ASCE)0733-9410(1990)116:7(1116)
  • 9. Moghaddas Tafreshi, S.N. and Khalaj, O. (2007) Laboratory tests of small-diameter hdpe pipes buried in reinforced sand under repeated-load, Geotextiles and Geomembranes, 26 (2008) 145–163. doi: 10.1016/j.geotexmem.2007.06.002
  • 10. Nataraj, M.S. and McManis, K.L. (1997) Strength and deformation properties of soil reinforced with fibrillated fibers, Geosynthetics International, 4, 1, 65–79. doi:10.1680/gein.4.0089
  • 11. Öztürk, O. (2018) Fiber Katkılarının Temiz Kum Zeminlerin Dinamik Davranışlarına Etkisi, Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir.
  • 12. Sakurai, A. and Takahashi, T. (1969) Dynamic stresses of underground pipelines during earthquakes, In: Proceedings of The Fourth World Conference on Earthquake Engineering, Santiago De Chile, 81–95.
  • 13. Tran, K.Q., Satomi, T. and Takahashi, H. (2018) Effect of waste cornsilk fiber reinforcement on mechanical properties of soft soils, Transportation Geotechnics, 16, 76– 84. doi: 10.1016/j.trgeo.2018.07.003
  • 14. Uzuner, B.A. (2016) Temel Mühendisliğine Giriş, Derya Kitapevi, Trabzon.
  • 15. Wang, K. and Brennan, A. (2019) Behaviour of saturated fibre-reinforced sand in centrifuge model tests, Soil Dynamics and Earthquake Engineering, 125 (2019) 105749. doi:10.1016/j.soildyn.2019.105749
  • 16. Yılmaz, M. (2019) Fiber ile İyileştirilmiş Zemine Gömülü Boruların Sismik Etkiler Altındaki Dinamik Davranışı, Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi, Trabzon.

Investigation of Dynamic Behavior of Buried Pipe in Santy Soil with Shaking Table Tests

Year 2020, Volume: 25 Issue: 1, 1 - 12, 30.04.2020
https://doi.org/10.17482/uumfd.631236

Abstract

Buried pipes from infrastructure systems are used in areas such as water, oil, natural gas and sewerage in order to facilitate living standards in our country and all over the World. Earthquakes that may occur on the ground, etc. and the other incidents also damage buried pipe systems located in the ground structure interaction-induced infrastructure. Recently, fiber additive material has been widely used in the field of ground improvement in order to minimize and prevent damages that may occur. The test apparatus prepared within the scope of the study consists of clean silica sand, PPRC pipe, fiber, shaking table and glass box. Experimental sets were prepared by placing clean silica sand in 3 layers of 10 cm, 80% relative density at the base and 20% relative density at 1% to 2% fiber doping. In this study, 32 mm diameter PPRC (polypropylene random copolymer) pipe was used. Depending on the pipe burial depth (D), two different depths of fiber-doped and undoped samples, 1,2D and 2D, were prepared from the surface and a series of shaking table experiments were performed on these samples. The changes in the buried pipe were investigated by uniaxial shaking table experiments. The shear modulus was calculated from the slope of the shear stress-shear strain graph obtained from the experiments. As a result, it is observed that fiber additive has a positive effect on the dynamic behavior of clean sand soils and has a positive effect on buried pipe displacements.

References

  • 1. ASTM C1116 / C1116M, (2015) Standard Specification for Fiber-Reinforced Concrete.
  • 2. ASTM D422 – 63, (2007) Standard Test Method for Particle-Size Analysis of Soils.
  • 3. Datta, S.K., Shah, A.H. and Wong, K.C. (1984) Dynamic stresses and displacements in buried pipe, Journal of Engineering Mechanics, 110, 1451-1466. doi:10.1061/(ASCE)0733- 9399(1984)110:10(1451)
  • 4. Edinçliler, A. ve Ayhan, V. (2010) Influence of Tire Fiber Inclusions on Shear Strength of Sand, Geosynthetics International, Geosynthetics International, 17, No. 4, 183–192. doi: 10.1680/gein.2010.17.4.183
  • 5. Gray, D.H. and Ohashi, H. (1983) Mechanics of fiber reinforcement in sands, Journal of Geotechnical Engineering, ASCE 109(3), 335–353. doi:10.1061/(ASCE)0733- 9410(1983)109:3(335)
  • 6. Hindy, A. and Novak, M. (1979) Earthquake response of underground pipelines, Earthquake Engineering and Structural Dynamics, 7, 451-476. doi:10.1002/eqe.4290070506
  • 7. Ling, H.I., Mohri, Y., Kawabata, T., Liu, H., Burke, C., and Sun, L. (2003) Centrifugal modeling of seismic behavior of large-diameter pipe in liquefiable soil, Journal of Geotechnical and Geoenvironmental Engineering, 129, 12. doi:10.1061/(ASCE)1090- 0241(2003)129:12(1092)
  • 8. Maher, M.D. ve Woods, R.D. (1990) Dynamic response of sand reinforced with randomly distributed fibers, ASCE Journal of Geotechical Engineering, 116:1116-1131. doi:10.1061/(ASCE)0733-9410(1990)116:7(1116)
  • 9. Moghaddas Tafreshi, S.N. and Khalaj, O. (2007) Laboratory tests of small-diameter hdpe pipes buried in reinforced sand under repeated-load, Geotextiles and Geomembranes, 26 (2008) 145–163. doi: 10.1016/j.geotexmem.2007.06.002
  • 10. Nataraj, M.S. and McManis, K.L. (1997) Strength and deformation properties of soil reinforced with fibrillated fibers, Geosynthetics International, 4, 1, 65–79. doi:10.1680/gein.4.0089
  • 11. Öztürk, O. (2018) Fiber Katkılarının Temiz Kum Zeminlerin Dinamik Davranışlarına Etkisi, Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir.
  • 12. Sakurai, A. and Takahashi, T. (1969) Dynamic stresses of underground pipelines during earthquakes, In: Proceedings of The Fourth World Conference on Earthquake Engineering, Santiago De Chile, 81–95.
  • 13. Tran, K.Q., Satomi, T. and Takahashi, H. (2018) Effect of waste cornsilk fiber reinforcement on mechanical properties of soft soils, Transportation Geotechnics, 16, 76– 84. doi: 10.1016/j.trgeo.2018.07.003
  • 14. Uzuner, B.A. (2016) Temel Mühendisliğine Giriş, Derya Kitapevi, Trabzon.
  • 15. Wang, K. and Brennan, A. (2019) Behaviour of saturated fibre-reinforced sand in centrifuge model tests, Soil Dynamics and Earthquake Engineering, 125 (2019) 105749. doi:10.1016/j.soildyn.2019.105749
  • 16. Yılmaz, M. (2019) Fiber ile İyileştirilmiş Zemine Gömülü Boruların Sismik Etkiler Altındaki Dinamik Davranışı, Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi, Trabzon.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Research Articles
Authors

Meryem Yılmaz This is me 0000-0001-8663-0406

Sabriye Banu İkizler 0000-0002-6820-5593

Berrak Teymür 0000-0001-8290-5337

Publication Date April 30, 2020
Submission Date October 9, 2019
Acceptance Date January 6, 2020
Published in Issue Year 2020 Volume: 25 Issue: 1

Cite

APA Yılmaz, M., İkizler, S. B., & Teymür, B. (2020). FİBER İLE İYİLEŞTİRİLMİŞ KUM ZEMİNE GÖMÜLÜ BORULARIN DİNAMİK DAVRANIŞININ SARSMA TABLASI DENEYLERİ İLE İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(1), 1-12. https://doi.org/10.17482/uumfd.631236
AMA Yılmaz M, İkizler SB, Teymür B. FİBER İLE İYİLEŞTİRİLMİŞ KUM ZEMİNE GÖMÜLÜ BORULARIN DİNAMİK DAVRANIŞININ SARSMA TABLASI DENEYLERİ İLE İNCELENMESİ. UUJFE. April 2020;25(1):1-12. doi:10.17482/uumfd.631236
Chicago Yılmaz, Meryem, Sabriye Banu İkizler, and Berrak Teymür. “FİBER İLE İYİLEŞTİRİLMİŞ KUM ZEMİNE GÖMÜLÜ BORULARIN DİNAMİK DAVRANIŞININ SARSMA TABLASI DENEYLERİ İLE İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25, no. 1 (April 2020): 1-12. https://doi.org/10.17482/uumfd.631236.
EndNote Yılmaz M, İkizler SB, Teymür B (April 1, 2020) FİBER İLE İYİLEŞTİRİLMİŞ KUM ZEMİNE GÖMÜLÜ BORULARIN DİNAMİK DAVRANIŞININ SARSMA TABLASI DENEYLERİ İLE İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25 1 1–12.
IEEE M. Yılmaz, S. B. İkizler, and B. Teymür, “FİBER İLE İYİLEŞTİRİLMİŞ KUM ZEMİNE GÖMÜLÜ BORULARIN DİNAMİK DAVRANIŞININ SARSMA TABLASI DENEYLERİ İLE İNCELENMESİ”, UUJFE, vol. 25, no. 1, pp. 1–12, 2020, doi: 10.17482/uumfd.631236.
ISNAD Yılmaz, Meryem et al. “FİBER İLE İYİLEŞTİRİLMİŞ KUM ZEMİNE GÖMÜLÜ BORULARIN DİNAMİK DAVRANIŞININ SARSMA TABLASI DENEYLERİ İLE İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25/1 (April 2020), 1-12. https://doi.org/10.17482/uumfd.631236.
JAMA Yılmaz M, İkizler SB, Teymür B. FİBER İLE İYİLEŞTİRİLMİŞ KUM ZEMİNE GÖMÜLÜ BORULARIN DİNAMİK DAVRANIŞININ SARSMA TABLASI DENEYLERİ İLE İNCELENMESİ. UUJFE. 2020;25:1–12.
MLA Yılmaz, Meryem et al. “FİBER İLE İYİLEŞTİRİLMİŞ KUM ZEMİNE GÖMÜLÜ BORULARIN DİNAMİK DAVRANIŞININ SARSMA TABLASI DENEYLERİ İLE İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 25, no. 1, 2020, pp. 1-12, doi:10.17482/uumfd.631236.
Vancouver Yılmaz M, İkizler SB, Teymür B. FİBER İLE İYİLEŞTİRİLMİŞ KUM ZEMİNE GÖMÜLÜ BORULARIN DİNAMİK DAVRANIŞININ SARSMA TABLASI DENEYLERİ İLE İNCELENMESİ. UUJFE. 2020;25(1):1-12.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.