Research Article
BibTex RIS Cite

Alzheimer Hastalığının Vitamin B6, B12, Folat ve Homosistein Düzeyleri ile Metilentetrahidrofolat Redüktaz (MTHFR) Gen Polimorfizmi ile İlişkisi

Year 2023, Volume: 16 Issue: 3, 254 - 261, 30.12.2023
https://doi.org/10.52976/vansaglik.1296233

Abstract

Amaç: Alzheimer hastalığı nörodejeneratif bir hastalıktır ve yaşlı popülasyonda görülen demansın en sık çeşididir (%50-60). Hastalık beynin belirli bölgelerinde amiloid birikimi ile karakterizedir. Bu birikimler amiloid plak ve nörofibriller yumakları içermektedir. Alzheimer’lı beynin makroskopik özellikleri hafıza ve konuşma ile ilgili olan bölgeleri etkileyen sulkusların genişlemesi, kortikal atrofi ve ventriküler dilatasyondur. Hiperhomosisteineminin vasküler değişiklikleri indükleme vasıtasıyla Alzheimer hastalığı ile bağlantılı olabileceği düşünülmektedir. Homosistein remetilasyon yoluyla metiyonine çevrilmektedir. Bu yolakta metilentetrahidrofolat redüktaz enzimi metilentetrahidrofolatın metiltetrahidrofolata dönüşüm reaksiyonunu katalizlemektedir. Homosisteinin remetilasyonunda folat, B6 ve B12gibi vitaminler de görev almaktadır. Bu çalışmada Alzheimer hastalığı ile homosistein, folat,vitamin B6, B12 düzeyleri ve metilentetrahidrofolat redüktaz genotiplerinin ilişkisini araştırmayı amaçladık.
Yöntem: Kan örnekleri 56 Alzheimer hastasından ve 82 sağlıklı bireyden toplandı. Folat ve B12 vitamini düzeyleri Modular E170 (Roche Diagnostics GmbH Mannheim, Germany) biyokimya otoanalizöründe, homosistein ve B6 vitamini düzeyleri ise yüksek basınçlı sıvı kromatografisi yöntemiyle Agilent 1100 Series (Germany) cihazında ölçüldü. Metilentetrahidrofolat redüktaz gen polimorfizmleri real time PCR yöntemiyle LightCycler (Roche Diagnostics GmbH Mannheim, Germany) cihazında tespit edildi.
Bulgular: Vitamin B12 düzeyleri hasta grubunda daha yüksek, vitamin B6 ve folat düzeyleri hasta grubunda daha düşük bulunmasına rağmen farklılıklar istatistiksel olarak anlamlı bulunmadı (p>0.05). Homosistein düzeyleri hasta grubunda istatistiksel olarak anlamlı derecede yüksek bulundu (p=0.016).Metilentetrahidrofolat redüktaz C677T polimorfizminin 677CC, 677CT ve 677TT genotipleri ve A1298C polimorfizminin 1298AA, 1298AC ve 1298CC genotipleri bakımından gruplar arasında farklılık olmadığı tespit edildi.
Sonuç: Homosisteinin Alzheimer hastalığı için risk faktörü olduğu ve homosistein metabolizmasında görev alan diğer biyomoleküller ve enzimleri de kapsayan çalışmaların Alzheimer hastalığı ve homosistein ilişkisini ortaya çıkarabileceği düşünülmektedir.

Supporting Institution

Mersin Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

SBE-BK(UD)-2003-2YL

Thanks

SBE-BK(UD)-2003-2YL proje numaralı bu çalışma Mersin Üniversitesi Bilimsel Araştırma Projeleri Birimince desteklenmiştir.

References

  • Aleman G, Tovar AR, Torres N. (2001). Homocysteine metabolism and risk of cardiovascular diseases: importance of the nutritional status on folic acid, vitamins B6 and B12. La Revista de Investigation Clinica, 53(2), 141-151.
  • Aisen PS, Egelko S, Andrews H, Diaz-Arrastia R, Weiner M, DeCarli C, et al. (2003). A pilot study of vitamins to lower plasma homocysteine levels in Alzheimer disease. American Journal of Geriatric Psychiatry, 11(2), 246–249.
  • Beal MF, Swartz KJ, Finn SF, Mazurek MF, Kowall NW. (1991). Neurochemical characterization of excitoxin lesions in the cerebral cortex. Journal of Neuroscience, 11, 147–158.
  • Bouguerra K, Tazir M, Melouli H, Khelil M. (2022). The methylenetetrahydrofolate reductase C677T and A1298C genetic polymorphisms and plasma homocysteine in Alzheimer’s disease in an Algerian population. International Journal of Neuroscience, 29, 1-6.
  • Burner U, Tantschanko W, Obinger C. (1999). Kinetics of oxidation of aliphatic and aromatic thiols by myeloperoxidase compounds I and II. Federation of European Biochemical Societies Letters, 443(3), 290-296. Choi SW, Mason JB. (2000). Folate and carcinogenesis: an integrated scheme. The Journal of Nutrition, 130, 129–132.
  • Hankey GJ, Eikelenboom P. (1999). Homocysteine and vascular disease. Lancet, 354407-413. Ho YS, Yu MS, Yang XF, So KF, Yuen WH, Chang RC. (2010). Neuroprotective effects of polysaccharides from wolfberry, the fruits of Lycium barbarum, against homocysteine-induced toxicity in rat cortical neurons. Journal of Alzheimer’s Disease, 19, 813–827.
  • Hoffbrand AV, Weir DG. (2001). The history of folic acid. British Journal of Haematology, 113,579-589. Homocysteine Lowering Trialists’ Collaboration. (1998). Lowering blood homocysteine with folic acid based supplements: meta- analysis of randomised trials. British Medical Journal, 316(7135), 894–898.
  • Jiang Y, Xiao X, Wen Y, Wan M, Zhou L, Liu X, et al. (2021). Genetic effect of MTHFR C677T, A1298C, and A1793G polymorphisms on the age at onset, plasma homocysteine, and white matter lesions in Alzheimer's disease in the Chinese population. Ageing, 13(8), 11352-11362.
  • Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman D A. (2000). Statins and the risk of dementia. Lancet, 356, 1627–1631.
  • Kirsch SH, Herrmann W, Obeid R. (2013). Genetic defects in folate and cobalamin pathways affecting the brain. Clinical Chemistry and Laboratory Medicine, 51, 139-155.
  • Li JG, Chu J, Barrero C, Merali S, Pratico D. (2014). Homocysteine exacerbates amyloid pathology, tau pathology, and cognitive deficit in a mouse model of Alzheimer disease with plaques and tangles. Annals of Neurology, 75, 851-863.
  • Li JG, Pratico D. (2015). High levels of homocysteine results in cerebral amyloid angiopathy in mice. Journal of Alzheimer’s Disease, 43, 29-35.
  • Linnebank M, Popp J, Smulders Y, Smith D, Semmler A, Farkas M, et al. (2010). S-adenosylmethionine is decreased in the cerebrospinal fluid of patients with Alzheimer’s disease. Neurodegenerative Diseases, 7, 373-378.
  • Lipton SA, Kim WK, Choi YB,Kumar S, D’Emilia DM, Rayudu PV, et al. (1997). Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proceedings of the National Academy of Sciences USA, 94, 5923–5928.
  • Moll S, Varga EA. (2015). Homocysteine and MTHFR mutations. Circulation, 132(1), e6-e9.
  • Ott A, Stolk RP, van Harskamp F, Pols H A, Hofman A, Breteler MM. (1999) Diabetes mellitus and the risk of dementia: the Rotterdam study. Neurology, 53, 1937–1942.
  • Pacheco-Quinto J, Rodriguez de Turco EB, DeRosa S, Howard A, Cruz-Sanchez F, Sambamurti K, et al. (2006). Hyperhomocysteinemic Alzheimer’s mouse model of amyloidosis shows increased brain amyloid beta peptide levels. Neurobiology of Disease. 22, 651–656.
  • Porter RH, Roberts PJ. (1993). Glutamate metabotropic receptor activation in neonatal rat cerebral cortex by sulphur-containing excitatory amino acids. Neuroscience Letters, 154, 78-80.
  • Prasad K. (1999). Homocysteine, a risk factor for Cardiovascular Disease. International Journal of Angiology, 8, 76-86.
  • Quadri P, Fragiacomo C, Pezzati R, Zanda E, Forloni G, Tettamanti M, et al. (2004). Homocysteine, folate, and vitamin B-12 in mild cognitive impairment, Alzheimer disease, and vascular dementia. The American Journal of Clinical Nutrition, 80, 114–122.
  • Querfurth HW, LaFerla FM. (2010). Alzheimer’s disease. New England Journal of Medicine, 362, 329–344 Rai V. (2017). Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and Alzheimer disease risk: A meta-analysis. Molecular Neurobiology, 54(2), 1173-1186.
  • Regland B, Blennow K, Germgard T, Schmidt ACK, Gottfries CG. (1999). The role of the polymorphic genes apolipoprotein E and methylenetetrahydrofolate reductase in the development of dementia of the Alzheimer type. Dementia and Geriatric Cognitive Disorders, 10, 245-254.
  • Sacco RL, Roberts JK, Jacobs BS. (1998). Homocysteine as a risk factor for ischemic stroke: an epidemiological story in evolution. Neuroepidemiology, 17, 167-173.
  • Schatz RA, Wilens TE, Sellinger OZ. (1981). Decreased transmethylation of biogenic amines after in vivo elevation of brain S-adenosyl-I-homocysteine. Journal of Neurochemistry, 36(5), 1739-1748.
  • Selhub J, D'Angelo G. (1997). Hyperhomocysteinemia and thrombosis: acquired conditions. Thrombosis and Haemostasis, 78, 527-531
  • Šerý O, Povová J, Míšek I, Pešák L, Janout V. (2013). Molecular mechanisms of neuropathological changes in Alzheimer’s disease: a review. Folia Neuropathologica, 51(1), 1-9.
  • Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, et al. (2002). Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. The New England Journal of Medicine, 346, 476–483.
  • Smirnova T, Skinnakre J, Malet J. (1993). Characterization of a presynaptic glutamate receptor. Science, 262(5132), 430-433.
  • Sontag JM, Wasek B, Taleski G, Smith J, Arning E, Sontag E et al. (2014). Altered protein phosphatase 2A methylation and Tau phosphorylation in the young and aged brainof methylenetetrahydrofolate reductase (MTHFR) deficient mice. Frontiers in Aging Neuroscience, 6, 214.
  • Sunder G, Födinger M. (2003). Genetic determinants of the homocysteine level. Kidney International, 63, 141-144.
  • Ural Ulucan H, Yılmaz D, Özdemir F, Acar EB, Keçeci E. (2023). Comparison of vitamin B12 values and kidney function tests in patients diagnosed with FMF and Gout under colchicine treatment. Van Sağlık Bilimleri Dergisi, 16 (1), 94-99. Zhang CE, Tian Q, Wei W, Liu GP, Zhou XW, Wang Q, et al. (2008). Homocysteine induces tau phosphorylation by inactivating protein phosphatase 2A in rat hippocampus. Neurobiology of Aging, 29, 1654–1665. Welch GN, Loscalzo J. (1998). Homocysteine and atherothrombosis. New England Journal of Medicine. 338, 1042-1050.
  • Zhuo JM, Pratico D. (2010). Acceleration of brain amyloidosis in an Alzheimer’s disease mouse model by a folate, vitamin B6 and B12-deficient diet. Experimental Gerontology, 45,195-201.
Year 2023, Volume: 16 Issue: 3, 254 - 261, 30.12.2023
https://doi.org/10.52976/vansaglik.1296233

Abstract

Project Number

SBE-BK(UD)-2003-2YL

References

  • Aleman G, Tovar AR, Torres N. (2001). Homocysteine metabolism and risk of cardiovascular diseases: importance of the nutritional status on folic acid, vitamins B6 and B12. La Revista de Investigation Clinica, 53(2), 141-151.
  • Aisen PS, Egelko S, Andrews H, Diaz-Arrastia R, Weiner M, DeCarli C, et al. (2003). A pilot study of vitamins to lower plasma homocysteine levels in Alzheimer disease. American Journal of Geriatric Psychiatry, 11(2), 246–249.
  • Beal MF, Swartz KJ, Finn SF, Mazurek MF, Kowall NW. (1991). Neurochemical characterization of excitoxin lesions in the cerebral cortex. Journal of Neuroscience, 11, 147–158.
  • Bouguerra K, Tazir M, Melouli H, Khelil M. (2022). The methylenetetrahydrofolate reductase C677T and A1298C genetic polymorphisms and plasma homocysteine in Alzheimer’s disease in an Algerian population. International Journal of Neuroscience, 29, 1-6.
  • Burner U, Tantschanko W, Obinger C. (1999). Kinetics of oxidation of aliphatic and aromatic thiols by myeloperoxidase compounds I and II. Federation of European Biochemical Societies Letters, 443(3), 290-296. Choi SW, Mason JB. (2000). Folate and carcinogenesis: an integrated scheme. The Journal of Nutrition, 130, 129–132.
  • Hankey GJ, Eikelenboom P. (1999). Homocysteine and vascular disease. Lancet, 354407-413. Ho YS, Yu MS, Yang XF, So KF, Yuen WH, Chang RC. (2010). Neuroprotective effects of polysaccharides from wolfberry, the fruits of Lycium barbarum, against homocysteine-induced toxicity in rat cortical neurons. Journal of Alzheimer’s Disease, 19, 813–827.
  • Hoffbrand AV, Weir DG. (2001). The history of folic acid. British Journal of Haematology, 113,579-589. Homocysteine Lowering Trialists’ Collaboration. (1998). Lowering blood homocysteine with folic acid based supplements: meta- analysis of randomised trials. British Medical Journal, 316(7135), 894–898.
  • Jiang Y, Xiao X, Wen Y, Wan M, Zhou L, Liu X, et al. (2021). Genetic effect of MTHFR C677T, A1298C, and A1793G polymorphisms on the age at onset, plasma homocysteine, and white matter lesions in Alzheimer's disease in the Chinese population. Ageing, 13(8), 11352-11362.
  • Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman D A. (2000). Statins and the risk of dementia. Lancet, 356, 1627–1631.
  • Kirsch SH, Herrmann W, Obeid R. (2013). Genetic defects in folate and cobalamin pathways affecting the brain. Clinical Chemistry and Laboratory Medicine, 51, 139-155.
  • Li JG, Chu J, Barrero C, Merali S, Pratico D. (2014). Homocysteine exacerbates amyloid pathology, tau pathology, and cognitive deficit in a mouse model of Alzheimer disease with plaques and tangles. Annals of Neurology, 75, 851-863.
  • Li JG, Pratico D. (2015). High levels of homocysteine results in cerebral amyloid angiopathy in mice. Journal of Alzheimer’s Disease, 43, 29-35.
  • Linnebank M, Popp J, Smulders Y, Smith D, Semmler A, Farkas M, et al. (2010). S-adenosylmethionine is decreased in the cerebrospinal fluid of patients with Alzheimer’s disease. Neurodegenerative Diseases, 7, 373-378.
  • Lipton SA, Kim WK, Choi YB,Kumar S, D’Emilia DM, Rayudu PV, et al. (1997). Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proceedings of the National Academy of Sciences USA, 94, 5923–5928.
  • Moll S, Varga EA. (2015). Homocysteine and MTHFR mutations. Circulation, 132(1), e6-e9.
  • Ott A, Stolk RP, van Harskamp F, Pols H A, Hofman A, Breteler MM. (1999) Diabetes mellitus and the risk of dementia: the Rotterdam study. Neurology, 53, 1937–1942.
  • Pacheco-Quinto J, Rodriguez de Turco EB, DeRosa S, Howard A, Cruz-Sanchez F, Sambamurti K, et al. (2006). Hyperhomocysteinemic Alzheimer’s mouse model of amyloidosis shows increased brain amyloid beta peptide levels. Neurobiology of Disease. 22, 651–656.
  • Porter RH, Roberts PJ. (1993). Glutamate metabotropic receptor activation in neonatal rat cerebral cortex by sulphur-containing excitatory amino acids. Neuroscience Letters, 154, 78-80.
  • Prasad K. (1999). Homocysteine, a risk factor for Cardiovascular Disease. International Journal of Angiology, 8, 76-86.
  • Quadri P, Fragiacomo C, Pezzati R, Zanda E, Forloni G, Tettamanti M, et al. (2004). Homocysteine, folate, and vitamin B-12 in mild cognitive impairment, Alzheimer disease, and vascular dementia. The American Journal of Clinical Nutrition, 80, 114–122.
  • Querfurth HW, LaFerla FM. (2010). Alzheimer’s disease. New England Journal of Medicine, 362, 329–344 Rai V. (2017). Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and Alzheimer disease risk: A meta-analysis. Molecular Neurobiology, 54(2), 1173-1186.
  • Regland B, Blennow K, Germgard T, Schmidt ACK, Gottfries CG. (1999). The role of the polymorphic genes apolipoprotein E and methylenetetrahydrofolate reductase in the development of dementia of the Alzheimer type. Dementia and Geriatric Cognitive Disorders, 10, 245-254.
  • Sacco RL, Roberts JK, Jacobs BS. (1998). Homocysteine as a risk factor for ischemic stroke: an epidemiological story in evolution. Neuroepidemiology, 17, 167-173.
  • Schatz RA, Wilens TE, Sellinger OZ. (1981). Decreased transmethylation of biogenic amines after in vivo elevation of brain S-adenosyl-I-homocysteine. Journal of Neurochemistry, 36(5), 1739-1748.
  • Selhub J, D'Angelo G. (1997). Hyperhomocysteinemia and thrombosis: acquired conditions. Thrombosis and Haemostasis, 78, 527-531
  • Šerý O, Povová J, Míšek I, Pešák L, Janout V. (2013). Molecular mechanisms of neuropathological changes in Alzheimer’s disease: a review. Folia Neuropathologica, 51(1), 1-9.
  • Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, et al. (2002). Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. The New England Journal of Medicine, 346, 476–483.
  • Smirnova T, Skinnakre J, Malet J. (1993). Characterization of a presynaptic glutamate receptor. Science, 262(5132), 430-433.
  • Sontag JM, Wasek B, Taleski G, Smith J, Arning E, Sontag E et al. (2014). Altered protein phosphatase 2A methylation and Tau phosphorylation in the young and aged brainof methylenetetrahydrofolate reductase (MTHFR) deficient mice. Frontiers in Aging Neuroscience, 6, 214.
  • Sunder G, Födinger M. (2003). Genetic determinants of the homocysteine level. Kidney International, 63, 141-144.
  • Ural Ulucan H, Yılmaz D, Özdemir F, Acar EB, Keçeci E. (2023). Comparison of vitamin B12 values and kidney function tests in patients diagnosed with FMF and Gout under colchicine treatment. Van Sağlık Bilimleri Dergisi, 16 (1), 94-99. Zhang CE, Tian Q, Wei W, Liu GP, Zhou XW, Wang Q, et al. (2008). Homocysteine induces tau phosphorylation by inactivating protein phosphatase 2A in rat hippocampus. Neurobiology of Aging, 29, 1654–1665. Welch GN, Loscalzo J. (1998). Homocysteine and atherothrombosis. New England Journal of Medicine. 338, 1042-1050.
  • Zhuo JM, Pratico D. (2010). Acceleration of brain amyloidosis in an Alzheimer’s disease mouse model by a folate, vitamin B6 and B12-deficient diet. Experimental Gerontology, 45,195-201.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Original Research Articles
Authors

Ulaş Değirmenci 0000-0001-5208-6430

Serhan Sevim 0000-0002-0518-3374

Lülüfer Tamer 0000-0003-2092-6604

Project Number SBE-BK(UD)-2003-2YL
Publication Date December 30, 2023
Submission Date May 12, 2023
Published in Issue Year 2023 Volume: 16 Issue: 3

Cite

APA Değirmenci, U., Sevim, S., & Tamer, L. (2023). Alzheimer Hastalığının Vitamin B6, B12, Folat ve Homosistein Düzeyleri ile Metilentetrahidrofolat Redüktaz (MTHFR) Gen Polimorfizmi ile İlişkisi. Van Sağlık Bilimleri Dergisi, 16(3), 254-261. https://doi.org/10.52976/vansaglik.1296233

ISSN 

images?q=tbn:ANd9GcQBnZPknmjKO2vn7ExYwjsL0g4cijty6VTFQQ&usqp=CAU CABI-Logo_Accessible_RGB.png  logo-e1506365530266.png ici2.png 

8c492a0a466f9b2cd59ec89595639a5c?AccessKeyId=245B99561176BAE11FEB&disposition=0&alloworigin=1asos-index.png  Root Indexing    ResearchBib BASE Logo      


Creative Commons Lisansı

Van Health Sciences Journal (Van Sağlık Bilimleri Dergisi) başlıklı eser bu Creative Commons Atıf-Gayri Ticari 4.0 Uluslararası Lisansı ile lisanslanmıştır.

  open-access-logo.png  search-result-logo-horizontal-TEST.jpg