Review
BibTex RIS Cite
Year 2023, Volume: 33 Issue: 4, 729 - 741, 31.12.2023
https://doi.org/10.29133/yyutbd.1254507

Abstract

References

  • Arrieta, M., Samper, M., Aldas, M., & López, J. (2017). On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials, 10(9), 1008. https://doi.org/10.3390/ma10091008
  • Asgher, M., Wahab, A., Bilal, M., & Nasir Iqbal, H. M. (2016). Lignocellulose degradation and production of lignin modifying enzymes by Schizophyllum commune IBL-06 in solid-state fermentation. Biocatalysis and Agricultural Biotechnology, 6, 195–201. https://doi.org/10.1016/j.bcab.2016.04.003
  • Awad, G. E. A., Helal, M. M. I., Danial, E. N., & Esawy, M. A. (2014). Optimization of phytase production by Penicillium purpurogenum GE1 under solid state fermentation by using Box-Behnken design. Saudi Journal of Biological Sciences, 21(1), 81–88. https://doi.org/10.1016/j.sjbs.2013.06.004
  • Azmi, M. A. A. M., Jalil, R., & Kalil, M. S. (2016). Production of cellulase from pycnoporus sanguineus. Indian Journal of Science and Technology. https://doi.org/10.17485/ijst/2016/v9i21/95230
  • Beitel, S. M., Coelho, L. F., & Contiero, J. (2020). Efficient Conversion of Agroindustrial Waste into D(-) Lactic Acid by Lactobacillus delbrueckii Using Fed-Batch Fermentation. BioMed Research International, 2020. https://doi.org/10.1155/2020/4194052
  • Bilal, M., Ashraf, S. S., Barceló, D., & Iqbal, H. M. N. (2019). Biocatalytic degradation/redefining “removal” fate of pharmaceutically active compounds and antibiotics in the aquatic environment. Science of the Total Environment, 691, 1190–1211. https://doi.org/10.1016/j.scitotenv.2019.07.224
  • Castanera, R., Pérez, G., Omarini, A., Alfaro, M., Pisabarro, A. G., Faraco, V., Amore, A., & Ramírez, L. (2012). Transcriptional and enzymatic profiling of pleurotus ostreatus laccase genes in submerged and solid-state fermentation cultures. Applied and Environmental Microbiology, 78(11), 4037–4045. https://doi.org/10.1128/AEM.07880-11
  • Claus, H., Mojsov, K., Claus, H., & Mojsov, K. (2018). Enzymes for Wine Fermentation: Current and Perspective Applications. Fermentation, 4(3), 52. https://doi.org/10.3390/fermentation4030052
  • Coban, H. B., Demirci, A., & Turhan, I. (2015). Microparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentation. Bioprocess and Biosystems Engineering, 38(6), 1075–1080. https://doi.org/10.1007/s00449-014-1349-4
  • Coltelli, M.-B., Danti, S., De Clerck, K., Lazzeri, A., & Morganti, P. (2020). Pullulan for Advanced Sustainable Body- and Skin-Contact Applications. Journal of Functional Biomaterials, 11(1), 20. https://doi.org/10.3390/jfb11010020
  • Costa, C. E., Romaní, A., Møller-Hansen, I., Teixeira, J. A., Borodina, I., & Domingues, L. (2022). Valorisation of wine wastes by de novo biosynthesis of resveratrol using a recombinant xylose-consuming industrial Saccharomyces cerevisiae strain. Green Chemistry, 24(23), 9128–9142. https://doi.org/10.1039/D2GC02429B
  • Couto, S. R., Luis, J., & Herrera, T. (2006). Industrial and biotechnological applications of laccases: A review. https://doi.org/10.1016/j.biotechadv.2006.04.003
  • Cunha, F. M., Vasconcellos, V. M., Florencio, C., Badino, A. C., & Farinas, C. S. (2017). On-Site Production of Enzymatic Cocktails Using a Non-conventional Fermentation Method with Agro-Industrial Residues as Renewable Feedstocks. Waste and Biomass Valorization, 8(2), 517–526. https://doi.org/10.1007/s12649-016-9609-y
  • da Silva, L. L. (2016). Adding Value to Agro-Industrial Wastes. Industrial Chemistry, 2(2), 1–2. https://doi.org/10.4172/2469-9764.1000e103
  • Dana, M., Khaniki, G. B., Abbas Mokhtarieh, A., & Davarpanah, S. J. (2017). Biotechnological and Industrial Applications of Laccase: A Review. In Journal of Applied Biotechnology Reports Review Article Journal of Applied Biotechnology Reports (Vol. 4, Issue 4).
  • Falade, A. O., Mabinya, L. V., Okoh, A. I., & Nwodo, U. U. (2018). Ligninolytic enzymes: Versatile biocatalysts for the elimination of endocrine-disrupting chemicals in wastewater. In MicrobiologyOpen.
  • Freitas, A. C., Ferreira, F., Costa, A. M., Pereira, R., Antunes, S. C., Gonçalves, F., Rocha-Santos, T. A. P., Diniz, M. S., Castro, L., Peres, I., & Duarte, A. C. (2009). Biological treatment of the effluent from a bleached kraft pulp mill using basidiomycete and zygomycete fungi. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2009.01.054
  • Gordish, K. L., & Beierwaltes, W. H. (2014). Resveratrol induces acute endothelium-dependent renal vasodilation mediated through nitric oxide and reactive oxygen species scavenging. American Journal of Physiology-Renal Physiology, 306(5), F542–F550. https://doi.org/10.1152/ajprenal.00437.2013
  • Goyal, V., Mittal, A., Bhuwal, A. K., Singh, G., Yadav, A., & Aggarwal, N. K. (2014). Parametric Optimization of Cultural Conditions for Carboxymethyl Cellulase Production Using Pretreated Rice Straw by Bacillus sp. 313SI under Stationary and Shaking Conditions. Biotechnology Research International, 2014, 1–7. https://doi.org/10.1155/2014/651839
  • Hassan, M. A., Bakhiet, E. K., Hussein, H. R., & Ali, S. G. (2019). Statistical optimization studies for polyhydroxybutyrate (PHB) production by novel Bacillus subtilis using agricultural and industrial wastes. International Journal of Environmental Science and Technology, 16(7), 3497–3512. https://doi.org/10.1007/s13762-018-1900-y
  • Hasunuma, T., Okazaki, F., Okai, N., Hara, K. Y., Ishii, J., & Kondo, A. (2013). A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresource Technology, 135(39), 513–522. https://doi.org/10.1016/j.biortech.2012.10.047
  • Hazuchová, M., Chmelová, D., & Ondrejovič, M. (2017). The optimization of propagation medium for the increase of laccase production by the white-rot fungus Pleurotus ostreatus. Nova Biotechnologica et Chimica, 16(2), 113–123. https://doi.org/10.1515/NBEC-2017-0016
  • Hess, J. R., Lamers, P., Stichnothe, H., Beermann, M., & Jungmeier, G. (2016). Bioeconomy Strategies. In Developing the Global Bioeconomy: Technical, Market, and Environmental Lessons from Bioenergy (pp. 1–9). https://doi.org/10.1016/B978-0-12-805165-8.00001-X
  • Hon Kee, S., Ganeson, K., Fazielawanie Mohd Rashid, N., Farhana Mohd Yatim, A., Vigneswari, S., Abdullah Amirul, A.-A., Ramakrishna, S., & Bhubalan, K. (2022). A review on biorefining of palm oil and sugar cane agro-industrial residues by bacteria into commercially viable bioplastics and biosurfactants. Fuel, 321, 124039. https://doi.org/10.1016/j.fuel.2022.124039
  • Hu, Y., Du, C., Pensupa, N., & Lin, C. S. K. (2018). Optimisation of fungal cellulase production from textile waste using experimental design. Process Safety and Environmental Protection, 118, 133–142. https://doi.org/10.1016/j.psep.2018.06.009
  • Israni, N., & Shivakumar, S. (2020). Polyhydroxyalkanoate (PHA) biosynthesis from directly valorized ragi husk and sesame oil cake by Bacillus megaterium strain Ti3: Statistical optimization and characterization. International Journal of Biological Macromolecules, 148, 20–30. https://doi.org/10.1016/j.ijbiomac.2020.01.082
  • Jamwal, V., Mittal, A., & Dhaundiyal, A. (2023). Valorization of agro-industrial waste in composite films for sustainable packaging applications. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2023.08.042
  • Jin, S., Gao, M., Cheng, Y., Yang, B., Kuang, H., Wang, Z., Yi, S., Wang, B., & Fu, Y. (2021). Surfactant‐assisted and ionic liquid aqueous system pretreatment for biocatalysis of resveratrol from grape seed residue using an immobilized microbial consortia. Journal of Food Processing and Preservation, 45(3), e15279. https://doi.org/10.1111/jfpp.15279
  • Jönsson, L. J., & Martín, C. (2016). Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology, 199, 103–112. https://doi.org/10.1016/j.biortech.2015.10.009
  • Kaur, P., Bhardwaj, N. K., & Sharma, J. (2016). Process optimization for hyper production of xylanase via statistical methodology from isolated Bacillus pumilus 3GAH using lignocellulosic waste. Biocatalysis and Agricultural Biotechnology, 6, 159–167. https://doi.org/10.1016/j.bcab.2016.03.009
  • Kim, Y., Ximenes, E., Mosier, N. S., & Ladisch, M. R. (2011). Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme and Microbial Technology, 48(4–5), 408–415. https://doi.org/10.1016/j.enzmictec.2011.01.007
  • Koller, M. (2017). Advances in Polyhydroxyalkanoate (PHA) Production. Bioengineering, 4(4), 88. https://doi.org/10.3390/bioengineering4040088
  • Krull, S., Brock, S., Prüße, U., & Kuenz, A. (2020). Hydrolyzed Agricultural Residues—Low-Cost Nutrient Sources for l-Lactic Acid Production. Fermentation, 6(4), 97. https://doi.org/10.3390/fermentation6040097
  • Madhu, A., & Chakraborty, J. N. (2017). Developments in application of enzymes for textile processing. In Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2017.01.013
  • Mate, D. M., & Alcalde, M. (2017). Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. In Microbial Biotechnology (Vol. 10, Issue 6, pp. 1457–1467). https://doi.org/10.1111/1751-7915.12422
  • Menendez, E., Garcia-Fraile, P., & Rivas, R. (2015). Biotechnological applications of bacterial cellulases. AIMS Bioengineering, 2(3), 163–182. https://doi.org/10.3934/bioeng.2015.3.163
  • Mirzaee, H., Khodaiyan, F., Kennedy, J. F., & Hosseini, S. S. (2020). Production, optimization and characterization of pullulan from sesame seed oil cake as a new substrate by Aureobasidium pullulans. Carbohydrate Polymer Technologies and Applications, 1, 100004. https://doi.org/10.1016/j.carpta.2020.100004
  • Mithra, M. G., & Padmaja, G. (2016). Phenolic Inhibitors of Saccharification and Fermentation in Lignocellulo-Starch Prehydrolysates and Comparative Efficacy of Detoxification Treatments. Journal of Biomass to Biofuel. https://doi.org/10.11159/jbb.2016.001
  • Moreno, A. D., Ibarra, D., Eugenio, M. E., & Tomás-Pejó, E. (2020). Laccases as versatile enzymes: from industrial uses to novel applications. In Journal of Chemical Technology and Biotechnology (Vol. 95, Issue 3, pp. 481–494). John Wiley and Sons Ltd. https://doi.org/10.1002/jctb.6224
  • Muthukumarasamy, N. P., Jackson, B., Joseph Raj, A., & Sevanan, M. (2015). Production of Extracellular Laccase from Bacillus subtilis MTCC 2414 Using Agroresidues as a Potential Substrate. Biochemistry Research International, 2015, 1–9. https://doi.org/10.1155/2015/765190
  • Olofsson, J., Barta, Z., Börjesson, P., & Wallberg, O. (2017). Integrating enzyme fermentation in lignocellulosic ethanol production: Life-cycle assessment and techno-economic analysis. Biotechnology for Biofuels, 10(1), 51. https://doi.org/10.1186/s13068-017-0733-0
  • Osma, J. F., Toca-Herrera, J. L., & Rodríguez-Couto, S. (2010). Uses of Laccases in the Food Industry. Enzyme Research, 2010, 1–8. https://doi.org/10.4061/2010/918761
  • Penkhrue, W., Jendrossek, D., Khanongnuch, C., Pathomareeid, W., Aizawa, T., Behrens, R. L., & Lumyongid, S. (2020). Response surface method for polyhydroxybutyrate (PHB) bioplastic accumulation in Bacillus drentensis BP17 using pineapple peel. PLoS ONE, 15(3), e0230443. https://doi.org/10.1371/journal.pone.0230443
  • Perlatti, B., Forim, M. R., & Zuin, V. G. (2014). Green chemistry, sustainable agriculture and processing systems: a Brazilian overview. https://doi.org/10.1186/s40538-014-0005-1
  • Philippini, R. R., Martiniano, S. E., Ingle, A. P., Franco Marcelino, P. R., Silva, G. M., Barbosa, F. G., dos Santos, J. C., & da Silva, S. S. (2020). Agroindustrial Byproducts for the Generation of Biobased Products: Alternatives for Sustainable Biorefineries. In Frontiers in Energy Research (Vol. 8, p. 152). Frontiers Media S.A. https://doi.org/10.3389/fenrg.2020.00152
  • Pires, E. B. E., de Freitas, A. J., Souza, F. F. e., Salgado, R. L., Guimarães, V. M., Pereira, F. A., & Eller, M. R. (2019). Production of Fungal Phytases from Agroindustrial Byproducts for Pig Diets. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-45720-z
  • Ravindran, R., Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). A review on bioconversion of agro-industrial wastes to industrially important enzymes. In Bioengineering (Vol. 5, Issue 4, p. 93). MDPI AG. https://doi.org/10.3390/bioengineering5040093
  • Rico, A., Rencoret, J., Del Río, J. C., Martínez, A. T., & Gutiérrez, A. (2014). Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. Biotechnology for Biofuels, 7(1). https://doi.org/10.1186/1754-6834-7-6
  • Rishi, V., Sandhu, A. K., Kaur, A., Kaur, J., Sharma, S., & Soni, S. K. (2020). Utilization of kitchen waste for production of pullulan to develop biodegradable plastic. Applied Microbiology and Biotechnology, 104(3), 1307–1317. https://doi.org/10.1007/s00253-019-10167-9
  • Ruiz-Dueñas, F. J., & Martínez, Á. T. (2009). Microbial degradation of lignin: How a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. In Microbial Biotechnology (Vol. 2, Issue 2 SPEC. ISS., pp. 164–177). https://doi.org/10.1111/j.1751-7915.2008.00078.x
  • Saratale, R. G., Cho, S. K., Saratale, G. D., Ghodake, G. S., Bharagava, R. N., Kim, D. S., Nair, S., & Shin, H. S. (2021). Efficient bioconversion of sugarcane bagasse into polyhydroxybutyrate (PHB) by Lysinibacillus sp. and its characterization. Bioresource Technology, 324, 124673. https://doi.org/10.1016/j.biortech.2021.124673
  • Saritha Mohanram, V. R. (2015). Beta-Glucosidase: Key Enzyme in Determining Efficiency of Cellulase and Biomass Hydrolysis. Journal of Bioprocessing & Biotechniques, 05(01). https://doi.org/10.4172/2155-9821.1000197
  • Sharma, R. K., & Arora, D. S. (2014). Bioprocessing of wheat and paddy straw for their nutritional up-gradation. Bioprocess and Biosystems Engineering, 37(7), 1437–1445. https://doi.org/10.1007/s00449-013-1116-y
  • Shraddha, Ravi Shekher, Simran Sehgal, MohitKamthania, A. (2011). Laccase:Microbial Sources, Production, Purification, and Potential Biotechnological Applications. Enzyme Research. https://doi.org/10.1080/713609297
  • Silambarasan, S., Logeswari, P., Sivaramakrishnan, R., Pugazhendhi, A., Kamaraj, B., Ruiz, A., Ramadoss, G., & Cornejo, P. (2021). Polyhydroxybutyrate production from ultrasound-aided alkaline pretreated finger millet straw using Bacillus megaterium strain CAM12. Bioresource Technology, 325, 124632. https://doi.org/10.1016/j.biortech.2020.124632
  • Singh, B., Korstad, J., Guldhe, A., & Kothari, R. (2022). Editorial: Emerging Feedstocks & Clean Technologies for Lignocellulosic Biofuel. Frontiers in Energy Research, 10(July), 1–2. https://doi.org/10.3389/fenrg.2022.917081
  • Singh, R. S., Kaur, N., Pandey, A., & Kennedy, J. F. (2020). Hyper-production of pullulan from de-oiled rice bran by Aureobasidium pullulans in a stirred tank reactor and its characterization. Bioresource Technology Reports, 11, 100494. https://doi.org/10.1016/j.biteb.2020.100494
  • Sirohi, R., Singh, A., Tarafdar, A., Shahi, N. C., Verma, A. K., & Kushwaha, A. (2019). Cellulase Production from Pre-treated Pea Hulls Using Trichoderma reesei Under Submerged Fermentation. Waste and Biomass Valorization, 10(9), 2651–2659. https://doi.org/10.1007/s12649-018-0271-4
  • Sukumaran, R. K., Singhania, R. R., Mathew, G. M., & Pandey, A. (2009). Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renewable Energy, 34(2), 421–424. https://doi.org/10.1016/j.renene.2008.05.008
  • Swathy, R., Rambabu, K., Banat, F., Ho, S. H., Chu, D. T., & Show, P. L. (2020). Production and optimization of high grade cellulase from waste date seeds by Cellulomonas uda NCIM 2353 for biohydrogen production. International Journal of Hydrogen Energy, 45(42), 22260–22270. https://doi.org/10.1016/j.ijhydene.2019.06.171
  • Teixeira Da Silva, V. D. C., De Souza Coto, A. L., De Carvalho Souza, R., Neves, M. B. S., Gomes, E., & Bonilla-Rodriguez, G. O. (2016). Effect of pH, Temperature, and Chemicals on the Endoglucanases and β-Glucosidases from the Thermophilic Fungus Myceliophthora heterothallica F.2.1.4. Obtained by Solid-State and Submerged Cultivation. Biochemistry Research International, 2016, 9781216. https://doi.org/10.1155/2016/9781216
  • Viveka, R., Varjani, S., & Ekambaram, N. (2020). Valorization of cassava waste for pullulan production by Aureobasidium pullulans MTCC 1991. Energy & Environment, 0958305X2090806. https://doi.org/10.1177/0958305X20908065
  • Winnacker, M. (2019). Polyhydroxyalkanoates: Recent Advances in Their Synthesis and Applications. European Journal of Lipid Science and Technology, 121(11), 1900101. https://doi.org/10.1002/ejlt.201900101
  • Yadav, M., & Yadav, H. S. (2015). Applications of ligninolytic enzymes to pollutants, wastewater, dyes, soil, coal, paper and polymers. In Environmental Chemistry Letters. https://doi.org/10.1007/s10311-015-0516-4
  • Yadav, V. G., Yadav, G. D., & Patankar, S. C. (2020). The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-à-vis sustainability and the environment. In Clean Technologies and Environmental Policy (Vol. 22, Issue 9, pp. 1757–1774). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s10098-020-01945-5
  • Yesilada, O., Yildirim, S. C., Birhanli, E., Apohan, E., Asma, D., & Kuru, F. (2010). The evaluation of pre-grown mycelial pellets in decolorization of textile dyes during repeated batch process. World Journal of Microbiology and Biotechnology. https://doi.org/10.1007/s11274-009-0138-8
  • Yetik-Anacak, G., Dereli, M. V., Sevin, G., Ozzayım, O., Erac, Y., & Ahmed, A. (2015). Resveratrol Stimulates Hydrogen Sulfide (H2S) Formation to Relax Murine Corpus Cavernosum. The Journal of Sexual Medicine, 12(10), 2004–2012. https://doi.org/10.1111/jsm.12993
  • Yilmaz-Sercinoglu, Z., & Sayar, N. A. (2020). Process simulation-integrated optimization of lignocellulolytic enzyme production. Biochemical Engineering Journal, 153, 107420. https://doi.org/10.1016/j.bej.2019.107420

Bioprocessing of Agricultural and Agro-Industrial Wastes into Value-Added Products

Year 2023, Volume: 33 Issue: 4, 729 - 741, 31.12.2023
https://doi.org/10.29133/yyutbd.1254507

Abstract

Agricultural wastes are one of the most abundant lignocellulosic wastes on Earth. Inevitably, this number will increase due to increasing population needed to be fed. Unfortunately, this substantial amount of resource is underutilized and ends up in different routes: a) incineration b) left in the field to decay and c) landfill. In all these possible scenarios, it is obvious that they are both non-ecofriendly or unsustainable for the society and related industries.
Agricultural wastes are noteworthy “input” for the circular economy since they possess high nutritional composition. Circular economy is defined as a system in which “output” of an industry is reused as a “resource” for another industry.
Agricultural and agro-industrial wastes can be converted into value-added products such as enzymes, biofuels, pharmaceuticals, food/feed enhancer, green chemicals, bioplastics and etc. By this way, we can eliminate the problems related to waste management and lower our environmental impact. In addition, circular bioeconomy can lower the production cost of bioprocesses, create regional job opportunities, support farmers.
This review discusses industrially important products produced via bioprocessing agricultural feedstocks and related examples from literature are given.

References

  • Arrieta, M., Samper, M., Aldas, M., & López, J. (2017). On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials, 10(9), 1008. https://doi.org/10.3390/ma10091008
  • Asgher, M., Wahab, A., Bilal, M., & Nasir Iqbal, H. M. (2016). Lignocellulose degradation and production of lignin modifying enzymes by Schizophyllum commune IBL-06 in solid-state fermentation. Biocatalysis and Agricultural Biotechnology, 6, 195–201. https://doi.org/10.1016/j.bcab.2016.04.003
  • Awad, G. E. A., Helal, M. M. I., Danial, E. N., & Esawy, M. A. (2014). Optimization of phytase production by Penicillium purpurogenum GE1 under solid state fermentation by using Box-Behnken design. Saudi Journal of Biological Sciences, 21(1), 81–88. https://doi.org/10.1016/j.sjbs.2013.06.004
  • Azmi, M. A. A. M., Jalil, R., & Kalil, M. S. (2016). Production of cellulase from pycnoporus sanguineus. Indian Journal of Science and Technology. https://doi.org/10.17485/ijst/2016/v9i21/95230
  • Beitel, S. M., Coelho, L. F., & Contiero, J. (2020). Efficient Conversion of Agroindustrial Waste into D(-) Lactic Acid by Lactobacillus delbrueckii Using Fed-Batch Fermentation. BioMed Research International, 2020. https://doi.org/10.1155/2020/4194052
  • Bilal, M., Ashraf, S. S., Barceló, D., & Iqbal, H. M. N. (2019). Biocatalytic degradation/redefining “removal” fate of pharmaceutically active compounds and antibiotics in the aquatic environment. Science of the Total Environment, 691, 1190–1211. https://doi.org/10.1016/j.scitotenv.2019.07.224
  • Castanera, R., Pérez, G., Omarini, A., Alfaro, M., Pisabarro, A. G., Faraco, V., Amore, A., & Ramírez, L. (2012). Transcriptional and enzymatic profiling of pleurotus ostreatus laccase genes in submerged and solid-state fermentation cultures. Applied and Environmental Microbiology, 78(11), 4037–4045. https://doi.org/10.1128/AEM.07880-11
  • Claus, H., Mojsov, K., Claus, H., & Mojsov, K. (2018). Enzymes for Wine Fermentation: Current and Perspective Applications. Fermentation, 4(3), 52. https://doi.org/10.3390/fermentation4030052
  • Coban, H. B., Demirci, A., & Turhan, I. (2015). Microparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentation. Bioprocess and Biosystems Engineering, 38(6), 1075–1080. https://doi.org/10.1007/s00449-014-1349-4
  • Coltelli, M.-B., Danti, S., De Clerck, K., Lazzeri, A., & Morganti, P. (2020). Pullulan for Advanced Sustainable Body- and Skin-Contact Applications. Journal of Functional Biomaterials, 11(1), 20. https://doi.org/10.3390/jfb11010020
  • Costa, C. E., Romaní, A., Møller-Hansen, I., Teixeira, J. A., Borodina, I., & Domingues, L. (2022). Valorisation of wine wastes by de novo biosynthesis of resveratrol using a recombinant xylose-consuming industrial Saccharomyces cerevisiae strain. Green Chemistry, 24(23), 9128–9142. https://doi.org/10.1039/D2GC02429B
  • Couto, S. R., Luis, J., & Herrera, T. (2006). Industrial and biotechnological applications of laccases: A review. https://doi.org/10.1016/j.biotechadv.2006.04.003
  • Cunha, F. M., Vasconcellos, V. M., Florencio, C., Badino, A. C., & Farinas, C. S. (2017). On-Site Production of Enzymatic Cocktails Using a Non-conventional Fermentation Method with Agro-Industrial Residues as Renewable Feedstocks. Waste and Biomass Valorization, 8(2), 517–526. https://doi.org/10.1007/s12649-016-9609-y
  • da Silva, L. L. (2016). Adding Value to Agro-Industrial Wastes. Industrial Chemistry, 2(2), 1–2. https://doi.org/10.4172/2469-9764.1000e103
  • Dana, M., Khaniki, G. B., Abbas Mokhtarieh, A., & Davarpanah, S. J. (2017). Biotechnological and Industrial Applications of Laccase: A Review. In Journal of Applied Biotechnology Reports Review Article Journal of Applied Biotechnology Reports (Vol. 4, Issue 4).
  • Falade, A. O., Mabinya, L. V., Okoh, A. I., & Nwodo, U. U. (2018). Ligninolytic enzymes: Versatile biocatalysts for the elimination of endocrine-disrupting chemicals in wastewater. In MicrobiologyOpen.
  • Freitas, A. C., Ferreira, F., Costa, A. M., Pereira, R., Antunes, S. C., Gonçalves, F., Rocha-Santos, T. A. P., Diniz, M. S., Castro, L., Peres, I., & Duarte, A. C. (2009). Biological treatment of the effluent from a bleached kraft pulp mill using basidiomycete and zygomycete fungi. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2009.01.054
  • Gordish, K. L., & Beierwaltes, W. H. (2014). Resveratrol induces acute endothelium-dependent renal vasodilation mediated through nitric oxide and reactive oxygen species scavenging. American Journal of Physiology-Renal Physiology, 306(5), F542–F550. https://doi.org/10.1152/ajprenal.00437.2013
  • Goyal, V., Mittal, A., Bhuwal, A. K., Singh, G., Yadav, A., & Aggarwal, N. K. (2014). Parametric Optimization of Cultural Conditions for Carboxymethyl Cellulase Production Using Pretreated Rice Straw by Bacillus sp. 313SI under Stationary and Shaking Conditions. Biotechnology Research International, 2014, 1–7. https://doi.org/10.1155/2014/651839
  • Hassan, M. A., Bakhiet, E. K., Hussein, H. R., & Ali, S. G. (2019). Statistical optimization studies for polyhydroxybutyrate (PHB) production by novel Bacillus subtilis using agricultural and industrial wastes. International Journal of Environmental Science and Technology, 16(7), 3497–3512. https://doi.org/10.1007/s13762-018-1900-y
  • Hasunuma, T., Okazaki, F., Okai, N., Hara, K. Y., Ishii, J., & Kondo, A. (2013). A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresource Technology, 135(39), 513–522. https://doi.org/10.1016/j.biortech.2012.10.047
  • Hazuchová, M., Chmelová, D., & Ondrejovič, M. (2017). The optimization of propagation medium for the increase of laccase production by the white-rot fungus Pleurotus ostreatus. Nova Biotechnologica et Chimica, 16(2), 113–123. https://doi.org/10.1515/NBEC-2017-0016
  • Hess, J. R., Lamers, P., Stichnothe, H., Beermann, M., & Jungmeier, G. (2016). Bioeconomy Strategies. In Developing the Global Bioeconomy: Technical, Market, and Environmental Lessons from Bioenergy (pp. 1–9). https://doi.org/10.1016/B978-0-12-805165-8.00001-X
  • Hon Kee, S., Ganeson, K., Fazielawanie Mohd Rashid, N., Farhana Mohd Yatim, A., Vigneswari, S., Abdullah Amirul, A.-A., Ramakrishna, S., & Bhubalan, K. (2022). A review on biorefining of palm oil and sugar cane agro-industrial residues by bacteria into commercially viable bioplastics and biosurfactants. Fuel, 321, 124039. https://doi.org/10.1016/j.fuel.2022.124039
  • Hu, Y., Du, C., Pensupa, N., & Lin, C. S. K. (2018). Optimisation of fungal cellulase production from textile waste using experimental design. Process Safety and Environmental Protection, 118, 133–142. https://doi.org/10.1016/j.psep.2018.06.009
  • Israni, N., & Shivakumar, S. (2020). Polyhydroxyalkanoate (PHA) biosynthesis from directly valorized ragi husk and sesame oil cake by Bacillus megaterium strain Ti3: Statistical optimization and characterization. International Journal of Biological Macromolecules, 148, 20–30. https://doi.org/10.1016/j.ijbiomac.2020.01.082
  • Jamwal, V., Mittal, A., & Dhaundiyal, A. (2023). Valorization of agro-industrial waste in composite films for sustainable packaging applications. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2023.08.042
  • Jin, S., Gao, M., Cheng, Y., Yang, B., Kuang, H., Wang, Z., Yi, S., Wang, B., & Fu, Y. (2021). Surfactant‐assisted and ionic liquid aqueous system pretreatment for biocatalysis of resveratrol from grape seed residue using an immobilized microbial consortia. Journal of Food Processing and Preservation, 45(3), e15279. https://doi.org/10.1111/jfpp.15279
  • Jönsson, L. J., & Martín, C. (2016). Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology, 199, 103–112. https://doi.org/10.1016/j.biortech.2015.10.009
  • Kaur, P., Bhardwaj, N. K., & Sharma, J. (2016). Process optimization for hyper production of xylanase via statistical methodology from isolated Bacillus pumilus 3GAH using lignocellulosic waste. Biocatalysis and Agricultural Biotechnology, 6, 159–167. https://doi.org/10.1016/j.bcab.2016.03.009
  • Kim, Y., Ximenes, E., Mosier, N. S., & Ladisch, M. R. (2011). Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme and Microbial Technology, 48(4–5), 408–415. https://doi.org/10.1016/j.enzmictec.2011.01.007
  • Koller, M. (2017). Advances in Polyhydroxyalkanoate (PHA) Production. Bioengineering, 4(4), 88. https://doi.org/10.3390/bioengineering4040088
  • Krull, S., Brock, S., Prüße, U., & Kuenz, A. (2020). Hydrolyzed Agricultural Residues—Low-Cost Nutrient Sources for l-Lactic Acid Production. Fermentation, 6(4), 97. https://doi.org/10.3390/fermentation6040097
  • Madhu, A., & Chakraborty, J. N. (2017). Developments in application of enzymes for textile processing. In Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2017.01.013
  • Mate, D. M., & Alcalde, M. (2017). Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. In Microbial Biotechnology (Vol. 10, Issue 6, pp. 1457–1467). https://doi.org/10.1111/1751-7915.12422
  • Menendez, E., Garcia-Fraile, P., & Rivas, R. (2015). Biotechnological applications of bacterial cellulases. AIMS Bioengineering, 2(3), 163–182. https://doi.org/10.3934/bioeng.2015.3.163
  • Mirzaee, H., Khodaiyan, F., Kennedy, J. F., & Hosseini, S. S. (2020). Production, optimization and characterization of pullulan from sesame seed oil cake as a new substrate by Aureobasidium pullulans. Carbohydrate Polymer Technologies and Applications, 1, 100004. https://doi.org/10.1016/j.carpta.2020.100004
  • Mithra, M. G., & Padmaja, G. (2016). Phenolic Inhibitors of Saccharification and Fermentation in Lignocellulo-Starch Prehydrolysates and Comparative Efficacy of Detoxification Treatments. Journal of Biomass to Biofuel. https://doi.org/10.11159/jbb.2016.001
  • Moreno, A. D., Ibarra, D., Eugenio, M. E., & Tomás-Pejó, E. (2020). Laccases as versatile enzymes: from industrial uses to novel applications. In Journal of Chemical Technology and Biotechnology (Vol. 95, Issue 3, pp. 481–494). John Wiley and Sons Ltd. https://doi.org/10.1002/jctb.6224
  • Muthukumarasamy, N. P., Jackson, B., Joseph Raj, A., & Sevanan, M. (2015). Production of Extracellular Laccase from Bacillus subtilis MTCC 2414 Using Agroresidues as a Potential Substrate. Biochemistry Research International, 2015, 1–9. https://doi.org/10.1155/2015/765190
  • Olofsson, J., Barta, Z., Börjesson, P., & Wallberg, O. (2017). Integrating enzyme fermentation in lignocellulosic ethanol production: Life-cycle assessment and techno-economic analysis. Biotechnology for Biofuels, 10(1), 51. https://doi.org/10.1186/s13068-017-0733-0
  • Osma, J. F., Toca-Herrera, J. L., & Rodríguez-Couto, S. (2010). Uses of Laccases in the Food Industry. Enzyme Research, 2010, 1–8. https://doi.org/10.4061/2010/918761
  • Penkhrue, W., Jendrossek, D., Khanongnuch, C., Pathomareeid, W., Aizawa, T., Behrens, R. L., & Lumyongid, S. (2020). Response surface method for polyhydroxybutyrate (PHB) bioplastic accumulation in Bacillus drentensis BP17 using pineapple peel. PLoS ONE, 15(3), e0230443. https://doi.org/10.1371/journal.pone.0230443
  • Perlatti, B., Forim, M. R., & Zuin, V. G. (2014). Green chemistry, sustainable agriculture and processing systems: a Brazilian overview. https://doi.org/10.1186/s40538-014-0005-1
  • Philippini, R. R., Martiniano, S. E., Ingle, A. P., Franco Marcelino, P. R., Silva, G. M., Barbosa, F. G., dos Santos, J. C., & da Silva, S. S. (2020). Agroindustrial Byproducts for the Generation of Biobased Products: Alternatives for Sustainable Biorefineries. In Frontiers in Energy Research (Vol. 8, p. 152). Frontiers Media S.A. https://doi.org/10.3389/fenrg.2020.00152
  • Pires, E. B. E., de Freitas, A. J., Souza, F. F. e., Salgado, R. L., Guimarães, V. M., Pereira, F. A., & Eller, M. R. (2019). Production of Fungal Phytases from Agroindustrial Byproducts for Pig Diets. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-45720-z
  • Ravindran, R., Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). A review on bioconversion of agro-industrial wastes to industrially important enzymes. In Bioengineering (Vol. 5, Issue 4, p. 93). MDPI AG. https://doi.org/10.3390/bioengineering5040093
  • Rico, A., Rencoret, J., Del Río, J. C., Martínez, A. T., & Gutiérrez, A. (2014). Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. Biotechnology for Biofuels, 7(1). https://doi.org/10.1186/1754-6834-7-6
  • Rishi, V., Sandhu, A. K., Kaur, A., Kaur, J., Sharma, S., & Soni, S. K. (2020). Utilization of kitchen waste for production of pullulan to develop biodegradable plastic. Applied Microbiology and Biotechnology, 104(3), 1307–1317. https://doi.org/10.1007/s00253-019-10167-9
  • Ruiz-Dueñas, F. J., & Martínez, Á. T. (2009). Microbial degradation of lignin: How a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. In Microbial Biotechnology (Vol. 2, Issue 2 SPEC. ISS., pp. 164–177). https://doi.org/10.1111/j.1751-7915.2008.00078.x
  • Saratale, R. G., Cho, S. K., Saratale, G. D., Ghodake, G. S., Bharagava, R. N., Kim, D. S., Nair, S., & Shin, H. S. (2021). Efficient bioconversion of sugarcane bagasse into polyhydroxybutyrate (PHB) by Lysinibacillus sp. and its characterization. Bioresource Technology, 324, 124673. https://doi.org/10.1016/j.biortech.2021.124673
  • Saritha Mohanram, V. R. (2015). Beta-Glucosidase: Key Enzyme in Determining Efficiency of Cellulase and Biomass Hydrolysis. Journal of Bioprocessing & Biotechniques, 05(01). https://doi.org/10.4172/2155-9821.1000197
  • Sharma, R. K., & Arora, D. S. (2014). Bioprocessing of wheat and paddy straw for their nutritional up-gradation. Bioprocess and Biosystems Engineering, 37(7), 1437–1445. https://doi.org/10.1007/s00449-013-1116-y
  • Shraddha, Ravi Shekher, Simran Sehgal, MohitKamthania, A. (2011). Laccase:Microbial Sources, Production, Purification, and Potential Biotechnological Applications. Enzyme Research. https://doi.org/10.1080/713609297
  • Silambarasan, S., Logeswari, P., Sivaramakrishnan, R., Pugazhendhi, A., Kamaraj, B., Ruiz, A., Ramadoss, G., & Cornejo, P. (2021). Polyhydroxybutyrate production from ultrasound-aided alkaline pretreated finger millet straw using Bacillus megaterium strain CAM12. Bioresource Technology, 325, 124632. https://doi.org/10.1016/j.biortech.2020.124632
  • Singh, B., Korstad, J., Guldhe, A., & Kothari, R. (2022). Editorial: Emerging Feedstocks & Clean Technologies for Lignocellulosic Biofuel. Frontiers in Energy Research, 10(July), 1–2. https://doi.org/10.3389/fenrg.2022.917081
  • Singh, R. S., Kaur, N., Pandey, A., & Kennedy, J. F. (2020). Hyper-production of pullulan from de-oiled rice bran by Aureobasidium pullulans in a stirred tank reactor and its characterization. Bioresource Technology Reports, 11, 100494. https://doi.org/10.1016/j.biteb.2020.100494
  • Sirohi, R., Singh, A., Tarafdar, A., Shahi, N. C., Verma, A. K., & Kushwaha, A. (2019). Cellulase Production from Pre-treated Pea Hulls Using Trichoderma reesei Under Submerged Fermentation. Waste and Biomass Valorization, 10(9), 2651–2659. https://doi.org/10.1007/s12649-018-0271-4
  • Sukumaran, R. K., Singhania, R. R., Mathew, G. M., & Pandey, A. (2009). Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renewable Energy, 34(2), 421–424. https://doi.org/10.1016/j.renene.2008.05.008
  • Swathy, R., Rambabu, K., Banat, F., Ho, S. H., Chu, D. T., & Show, P. L. (2020). Production and optimization of high grade cellulase from waste date seeds by Cellulomonas uda NCIM 2353 for biohydrogen production. International Journal of Hydrogen Energy, 45(42), 22260–22270. https://doi.org/10.1016/j.ijhydene.2019.06.171
  • Teixeira Da Silva, V. D. C., De Souza Coto, A. L., De Carvalho Souza, R., Neves, M. B. S., Gomes, E., & Bonilla-Rodriguez, G. O. (2016). Effect of pH, Temperature, and Chemicals on the Endoglucanases and β-Glucosidases from the Thermophilic Fungus Myceliophthora heterothallica F.2.1.4. Obtained by Solid-State and Submerged Cultivation. Biochemistry Research International, 2016, 9781216. https://doi.org/10.1155/2016/9781216
  • Viveka, R., Varjani, S., & Ekambaram, N. (2020). Valorization of cassava waste for pullulan production by Aureobasidium pullulans MTCC 1991. Energy & Environment, 0958305X2090806. https://doi.org/10.1177/0958305X20908065
  • Winnacker, M. (2019). Polyhydroxyalkanoates: Recent Advances in Their Synthesis and Applications. European Journal of Lipid Science and Technology, 121(11), 1900101. https://doi.org/10.1002/ejlt.201900101
  • Yadav, M., & Yadav, H. S. (2015). Applications of ligninolytic enzymes to pollutants, wastewater, dyes, soil, coal, paper and polymers. In Environmental Chemistry Letters. https://doi.org/10.1007/s10311-015-0516-4
  • Yadav, V. G., Yadav, G. D., & Patankar, S. C. (2020). The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-à-vis sustainability and the environment. In Clean Technologies and Environmental Policy (Vol. 22, Issue 9, pp. 1757–1774). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s10098-020-01945-5
  • Yesilada, O., Yildirim, S. C., Birhanli, E., Apohan, E., Asma, D., & Kuru, F. (2010). The evaluation of pre-grown mycelial pellets in decolorization of textile dyes during repeated batch process. World Journal of Microbiology and Biotechnology. https://doi.org/10.1007/s11274-009-0138-8
  • Yetik-Anacak, G., Dereli, M. V., Sevin, G., Ozzayım, O., Erac, Y., & Ahmed, A. (2015). Resveratrol Stimulates Hydrogen Sulfide (H2S) Formation to Relax Murine Corpus Cavernosum. The Journal of Sexual Medicine, 12(10), 2004–2012. https://doi.org/10.1111/jsm.12993
  • Yilmaz-Sercinoglu, Z., & Sayar, N. A. (2020). Process simulation-integrated optimization of lignocellulolytic enzyme production. Biochemical Engineering Journal, 153, 107420. https://doi.org/10.1016/j.bej.2019.107420
There are 68 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Articles
Authors

Zeynep Yılmaz Serçinoğlu 0000-0002-1632-091X

Early Pub Date December 15, 2023
Publication Date December 31, 2023
Acceptance Date July 31, 2023
Published in Issue Year 2023 Volume: 33 Issue: 4

Cite

APA Yılmaz Serçinoğlu, Z. (2023). Bioprocessing of Agricultural and Agro-Industrial Wastes into Value-Added Products. Yuzuncu Yıl University Journal of Agricultural Sciences, 33(4), 729-741. https://doi.org/10.29133/yyutbd.1254507
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.