Research Article
BibTex RIS Cite

Developing Sterilization and Lighting Systems for Sprouting Rooms Using Ozone and Optical Fibers

Year 2023, Volume: 33 Issue: 4, 556 - 570, 31.12.2023
https://doi.org/10.29133/yyutbd.1261911

Abstract

The increasing population has led to the widespread adoption of hydroponics. Hydroponic production of fresh green forage requires minimal space, does not use soil, and allows for rapid harvesting. A fully controlled sprouting room can yield a substantial amount of green fodder from a small area with less water consumption. This study aims to investigate the effectiveness of ozone on seed germination, seedling growth, and microbial sterilization during germinated barley processing. Additionally, the sterilization of the barley sprouting room was conducted using ultraviolet and infrared light, which provides optimal sprouting conditions.The study comprises three experimental variables: three levels of ozonized water (13, 26, and 39 mg L-1) combined with three light sources (fluorescent, infrared, and ultraviolet) and three light duration times (8, 16, and 24 h). The measurements include shoot length, fresh yield weight, dry yield weight, conversion factor, chlorophyll content, N, P, K, crude protein, ash, and log reduction.The results indicated that the maximum values were observed when using ozonized water at 39 mg L-1, Ultraviolet LED as a light source, and a sterilizing medium with a light duration time of 24 h. Conversely, the minimum values were observed when using ozonized water at 13 mg L-1, fluorescent LEDs as a light source, and a light duration time of 8 h. Based on the findings, it is highly recommended to utilize the developed sprouting room throughout the year for the production of fresh forage.

References

  • Abeli, T., Guasconi, D. B., Mondoni, A., Dondi, D., Bentivoglio, A., Buttafava, A., Cristofanelli, P., Bonasoni, P., Rossi, G., & Orsenigo, S. (2017). Acute and chronic ozone exposure temporarily affects seed germination in alpine plants. Plant Biosystems: An International Journal Dealing with All Aspects of Plant Biology, 151(2), 304–315.
  • Adiban, R., Pour, A. H., & Parchami-Araghi, F. (2021). Predicting barley harvest time in dryland conditions using satellite images. Yuzuncu Yıl University Journal of Agricultural Sciences, 31(3), 655-662. https://doi.org/10.29133/yyutbd.909711
  • Akbağ, H. İ., Türkmen, O. S., Baytekin, H., & Yurtman, İ. Y. (2014). Effects of Harvesting Time on Nutritional Value of Hydroponic Barley Production. Turkish Journal of Agricultural and Natural Sciences, 1(Special Issue 2), 1761–1765. https://dergipark.org.tr/en/pub/turkjans/issue/13311/ 160977
  • Al-Ajmi, A., Salih, A., Kadhim, I., & Othman, Y. (2009). Yield and water use efficiency of barley fodder produced under hydroponic system in GCC countries using tertiary treated sewage effluents. Journal of Phytology, 1(5), 342-348.
  • Al-Karaki, G. N. (2010). Hydroponic green fodder: an alternative method for saving water in dry areas. Proceedings of the Second Agricultural Meeting on Sustainable Improvement of Agricultural and Animal Production and Saving Water Use.
  • Allen, S. E., Grimshaw, H. M., Parkinson, J. A., & Quarmby, C. (1974). Chemical analysis of ecological materials. Blackwell Scientific Publications.
  • Al-Hashmi, M. (2008). Hydroponic green fodder. World Journal of Agricultural Sciences, 6(2), 171-177.
  • Molla, A., & Sharaiha, R. K. (2010). Competition and resource utilization in mixed cropping of barley and durum wheat under different moisture stress levels. World Journal of Agricultural Sciences, 6(6), 713-719.
  • Mariyappillai, A., Arumugam, G., & Raghavendran, V. B. (2020). The Techniques of Hydroponic System. Acta Scientific Agriculture, 4(7), 79-84.
  • A.O.A.C. (2000). Association of Official Methods of Analysis (17th ed.). Association of Official Analytical Chemists, Gaithersburg.
  • Atlas Global Crop. LTD. (2004). Feeding animals to feed people. Retrieved from: World Wide Web: www.atgloco.com.
  • Bader, H., & Hoigné, J. (1981). Determination of ozone in water by the indigo method. Water Research, 15(4), 449–456. https://doi.org/10.1016/0043-1354(81)90054-3.
  • Bakshi, M., Wadhwa, M., & Makka, H. (2017). Hydroponic fodder production: A critical assessment. Feedipedia Broadening Horizons, 1, 1-10.
  • Conceição, G. M., Lúcio, A. D., Mertz-Henning, L. M., Henning, F. A., Beche, M., & Andrade, F. F. D. (2016). Physiological and sanitary quality of soybean seeds under different chemical treatments during storage. Revista Brasileira de Engenharia Agrícola e Ambiental, 20, 1020-1024. doi:10.1590/1807-1929/agriambi.v20n11p1020-1024.
  • El-Morsy, A. T., Abul-Soud, M., & Emam, M. S. A. (2013). Localized hydroponic green forage technology as a climate change adaptation under Egyptian conditions. Research Journal of Agriculture and Biological Sciences, 9(6), 341-350.
  • FAO (1980). Soil and plant Analysis. Soils Bulletin, 38/2, 250.
  • FAO (2001). Food and Agriculture Organization of the United Nations. Hydroponic green fodder technical manual. Santiago de Chile, Chile.
  • Ferreira, T. F., Oliveira, J. A., Carvalho, R. A. D., Resende, L. S., Lopes, C. G. M., & Ferreira, V. D. F. (2016). Quality of soybean seeds treated with fungicides and insecticides before and after storage. Journal of Seed Science, 38, 278-286. doi:10.1590/2317-1545v38n4161760.
  • Gebremedhin, W. K. (2015). Nutritional benefit and economic value of feeding hydroponically grown maize and barley fodder for Konkan Kanyal goats. IOSR J. Agric. Vet. Sci, 8, 24-30.
  • Ghorbel, R., Chakchak, J., Malayoğlu, H. B., & Cetin, N. S. (2021). Hydroponics “Soilless Farming”: The Future of Food and Agriculture—A Review. Proceedings of the 5th International Students Science Congress Proceedings, Rome, Italy, 20-22.
  • Goodwin, T. W., & Mercer E. I. (1993). Introduction to plant biochemistry (2nd ed.). Pergamon Press Ltd.
  • Grigas, A., Kemzūraitė, A., & Steponavičius, D. (2019). Hydroponic devices for green fodder production: A review. In Proceedings of the International Scientific Conference “Rural Development” (pp. 21-27). doi:10.15544/RD.2019.003.
  • Koide, S., Takeda, J. ichi, Shi, J., Shono, H., & Atungulu, G. G. (2009). Disinfection efficacy of slightly acidic electrolyzed water on fresh cut cabbage. Food Control, 20(3), 294–297. https://doi.org/10.1016/J.FOODCONT.2008.05.019
  • Kruglyakov, Y. A. (1989). Construction of equipment for growing green fodder by a hydroponic technique. Traktory-I Sel'skokhozyaistvennye Mashiny, 6(1), 24-27.
  • Loeb, B. L. (2018). Forty years of advances in ozone technology: A review of ozone: Science & engineering. Ozone: Science & Engineering, 40(1), 3-20. doi:10.1080/01919512.2017.1383129.
  • Madakemohekar, A. H., Prasad, L. C., Lal, J. P., & Prasad, R. (2018). Estimation of combining ability and heterosis for yield contributing traits in exotic and indigenous crosses of barley (Hordeum vulgare L.). Research on Crops, 19(2), 264-270. doi:10.5958/2348-7542.2018.00039.6.‏
  • Manetas, Y., Grammatikopoulos, G., & Kyparissis, A. (1998). The use of the portable, non-destructive, SPAD-502 (Minolta) chlorophyll meter with leaves of varying trichome density and anthocyanin content. Journal of Plant Physiology, 153(3-4), 513-516. https://doi.org/10.1016/S0176-1617(98)80182-X
  • Marsh, B. H. (2016). An Investigation of Current Potato Nitrogen Fertility Programs' Contribution to Ground Water Contamination. International Journal of Agricultural and Biosystems Engineering, 10(3), 138-144. https://doi.org/10.5281/zenodo.1111889
  • Merrill, A. L., & Watt, B. K. (1955). Energy value of foods: basis and derivation (No. 74). Human Nutrition Research Branch, Agricultural Research Service, US Department of Agriculture.
  • Konica Minolta (2009). Chlorophyll meter SPAD-502Plus. Konica Minolta.
  • Mohammad, Z., Kalbasi-Ashtari, A., Riskowski, G., & Castillo, A. (2019). Reduction of salmonella and shiga toxin-producing Escherichia Coli on alfalfa seeds and sprouts using an ozone generating system. International Journal of Food Microbiology, 289, 57–63. https://doi.org/10.1016/j.ijfoodmicro.2018.08.023
  • Monroy Vazquez, M. E., Peña-Valdivia, C. B., García, J. R., Solano, E., Campos, H., & García, E. (2017). Chemical scarification and ozone in seed dormancy alleviation of wild and domesticated Opuntia, Cactaceae. Ozone: Science & Engineering, 39(2), 104-114. https://doi.org/10.1080/01919512.2016.1261010
  • Mooney, J. (2005). Growing cattle feed hydroponically. Meat and Livestock, Australia, 30.
  • Morgan, J. V., & Hunter, R. R. (1993). Limiting factors in hydroponic barley grass production. In Proceedings of the 8th international congress on soilless culture, Hunter's Rest, South Africa, 2-9 October (Vol. 1992), pp. 241-261.
  • Naik, P. K., Swain, B. K., & Singh, N. P. (2015). Production and utilization of hydroponics fodder. Indian Journal of Animal Nutrition, 32(1), 1-9.
  • Neelamegam, R., & Sutha, T. (2015). UV-C irradiation effect on seed germination, seedling growth, and productivity of groundnut (Arachis hypogaea L.). International Journal of Current Microbiology and Applied Sciences, 4(8), 430-443. http://eprints.icrisat.ac.in/14038
  • Nei, D., Bari, L., Inatsu, Y., Kawasaki, S., Todoriki, S., & Kawamoto, S. (2010). Combined effect of low-dose irradiation and acidified sodium chlorite washing on Escherichia coli O157: H7 inoculated on mung bean seeds. Foodborne Pathogens and Disease, 7(10), 1217-1223. https://doi.org/10.1089/fpd.2010.0565
  • Oida, A. (1997). Using a personal computer for agricultural machinery management. Kyoto University. Japan.
  • Opti-Sciences Inc. (2011). CCM-300 – The chlorophyll content meter for very small leaves & difficult to measure samples. http://www.optisci.com/assets/ccm300.pdf
  • Peer, D. J., & Leeson, S. (1985). Feeding value of hydroponically sprouted barley for poultry and pigs. Animal Feed Science and Technology, 13(3-4), 183-190.
  • Ramteke, R., Doneria, R., & Gendley, M. K. (2019). Hydroponic techniques for fodder production. Acta Scientific Nutritional Health, 3(5), 127-132.
  • Randeniya, L. K., & de Groot, G. J. (2015). Non‐thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination, and other benefits: a review. Plasma Processes and Polymers, 12(7), 608-623. https://doi.org/10.1002/ppap.201500042
  • Rico, C. M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2015). Differential effects of cerium oxide nanoparticles on rice, wheat, and barley roots: A Fourier Transform Infrared (FT-IR) microspectroscopy study. Applied Spectroscopy, 69(2), 287-295. https://doi.org/10.1177/0003702814568211
  • Rodrigues, V. O., Penido, A. C., Pereira, D. D. S., Oliveira, A., Mendes, A. E. S., & Oliveira, J. A. (2019). Sanitary and physiological quality of soybean seeds treated with ozone. Journal of Agricultural Science, 11(4), 183. https://doi.org/10.5539/jas.v11n4p183
  • Rupiasih, N. N., & Vidyasagar, P. B. (2016). Effect of UV-C radiation and hypergravity on germination, growth, and content of chlorophyll of wheat seedlings. AIP Conference Proceedings, 1719(1), 030035-1-030035-6. https://doi.org/10.1063/1.4943730
  • Ryan, J. (1996). A soil and plant analysis manual adapted for the West Asia and North Africa region.
  • Sadeghianfar, P., Nazari, M., & Backes, G. (2019). Exposure to ultraviolet (UV-C) radiation increases germination rate of maize (Zea mays L.) and sugar beet (Beta vulgaris) seeds. Plants, 8(2), 49. https://doi.org/10.3390/plants8020049
  • Sharma, N., Acharya, S., Kumar, K., Singh, N., & Chaurasia, O. P. (2018). Hydroponics as an advanced technique for vegetable production: An overview. Journal of Soil and Water Conservation, 17(4), 364-371. https://doi.org/10.5958/2455-7145.2018.00056.5
  • Shit, N. (2019). Hydroponic fodder production: An alternative technology for sustainable livestock production in India. Exploratory Animal & Medical Research, 9(2), 108-119.
  • Shtaya, I. (2004). Performance of Awassi ewes fed barley green fodder (Doctoral dissertation, An-Najah National University).
  • Vázquez-Ybarra, J. A., Peña-Valdivia, C. B., Trejo, C., Villegas-Bastida, A., Benedicto-Valdéz, S., & Sánchez-García, P. (2015). Promoting growth of lettuce plants (Lactuca sativa L.) with sublethal ozone doses applied to culture medium. Revista Fitotecnia Mexicana, 38(4), 405-413.
  • Yang, H., Hu, J., Li, P., & Zhang, C. (2020). Ultraviolet germicidal irradiation for filtering facepiece respirators disinfection to facilitate reuse during COVID-19 pandemic: A review. Photodiagnosis and Photodynamic Therapy, 31, 101943. https://doi.org/10.1016/j.pdpdt.2020.101943
Year 2023, Volume: 33 Issue: 4, 556 - 570, 31.12.2023
https://doi.org/10.29133/yyutbd.1261911

Abstract

References

  • Abeli, T., Guasconi, D. B., Mondoni, A., Dondi, D., Bentivoglio, A., Buttafava, A., Cristofanelli, P., Bonasoni, P., Rossi, G., & Orsenigo, S. (2017). Acute and chronic ozone exposure temporarily affects seed germination in alpine plants. Plant Biosystems: An International Journal Dealing with All Aspects of Plant Biology, 151(2), 304–315.
  • Adiban, R., Pour, A. H., & Parchami-Araghi, F. (2021). Predicting barley harvest time in dryland conditions using satellite images. Yuzuncu Yıl University Journal of Agricultural Sciences, 31(3), 655-662. https://doi.org/10.29133/yyutbd.909711
  • Akbağ, H. İ., Türkmen, O. S., Baytekin, H., & Yurtman, İ. Y. (2014). Effects of Harvesting Time on Nutritional Value of Hydroponic Barley Production. Turkish Journal of Agricultural and Natural Sciences, 1(Special Issue 2), 1761–1765. https://dergipark.org.tr/en/pub/turkjans/issue/13311/ 160977
  • Al-Ajmi, A., Salih, A., Kadhim, I., & Othman, Y. (2009). Yield and water use efficiency of barley fodder produced under hydroponic system in GCC countries using tertiary treated sewage effluents. Journal of Phytology, 1(5), 342-348.
  • Al-Karaki, G. N. (2010). Hydroponic green fodder: an alternative method for saving water in dry areas. Proceedings of the Second Agricultural Meeting on Sustainable Improvement of Agricultural and Animal Production and Saving Water Use.
  • Allen, S. E., Grimshaw, H. M., Parkinson, J. A., & Quarmby, C. (1974). Chemical analysis of ecological materials. Blackwell Scientific Publications.
  • Al-Hashmi, M. (2008). Hydroponic green fodder. World Journal of Agricultural Sciences, 6(2), 171-177.
  • Molla, A., & Sharaiha, R. K. (2010). Competition and resource utilization in mixed cropping of barley and durum wheat under different moisture stress levels. World Journal of Agricultural Sciences, 6(6), 713-719.
  • Mariyappillai, A., Arumugam, G., & Raghavendran, V. B. (2020). The Techniques of Hydroponic System. Acta Scientific Agriculture, 4(7), 79-84.
  • A.O.A.C. (2000). Association of Official Methods of Analysis (17th ed.). Association of Official Analytical Chemists, Gaithersburg.
  • Atlas Global Crop. LTD. (2004). Feeding animals to feed people. Retrieved from: World Wide Web: www.atgloco.com.
  • Bader, H., & Hoigné, J. (1981). Determination of ozone in water by the indigo method. Water Research, 15(4), 449–456. https://doi.org/10.1016/0043-1354(81)90054-3.
  • Bakshi, M., Wadhwa, M., & Makka, H. (2017). Hydroponic fodder production: A critical assessment. Feedipedia Broadening Horizons, 1, 1-10.
  • Conceição, G. M., Lúcio, A. D., Mertz-Henning, L. M., Henning, F. A., Beche, M., & Andrade, F. F. D. (2016). Physiological and sanitary quality of soybean seeds under different chemical treatments during storage. Revista Brasileira de Engenharia Agrícola e Ambiental, 20, 1020-1024. doi:10.1590/1807-1929/agriambi.v20n11p1020-1024.
  • El-Morsy, A. T., Abul-Soud, M., & Emam, M. S. A. (2013). Localized hydroponic green forage technology as a climate change adaptation under Egyptian conditions. Research Journal of Agriculture and Biological Sciences, 9(6), 341-350.
  • FAO (1980). Soil and plant Analysis. Soils Bulletin, 38/2, 250.
  • FAO (2001). Food and Agriculture Organization of the United Nations. Hydroponic green fodder technical manual. Santiago de Chile, Chile.
  • Ferreira, T. F., Oliveira, J. A., Carvalho, R. A. D., Resende, L. S., Lopes, C. G. M., & Ferreira, V. D. F. (2016). Quality of soybean seeds treated with fungicides and insecticides before and after storage. Journal of Seed Science, 38, 278-286. doi:10.1590/2317-1545v38n4161760.
  • Gebremedhin, W. K. (2015). Nutritional benefit and economic value of feeding hydroponically grown maize and barley fodder for Konkan Kanyal goats. IOSR J. Agric. Vet. Sci, 8, 24-30.
  • Ghorbel, R., Chakchak, J., Malayoğlu, H. B., & Cetin, N. S. (2021). Hydroponics “Soilless Farming”: The Future of Food and Agriculture—A Review. Proceedings of the 5th International Students Science Congress Proceedings, Rome, Italy, 20-22.
  • Goodwin, T. W., & Mercer E. I. (1993). Introduction to plant biochemistry (2nd ed.). Pergamon Press Ltd.
  • Grigas, A., Kemzūraitė, A., & Steponavičius, D. (2019). Hydroponic devices for green fodder production: A review. In Proceedings of the International Scientific Conference “Rural Development” (pp. 21-27). doi:10.15544/RD.2019.003.
  • Koide, S., Takeda, J. ichi, Shi, J., Shono, H., & Atungulu, G. G. (2009). Disinfection efficacy of slightly acidic electrolyzed water on fresh cut cabbage. Food Control, 20(3), 294–297. https://doi.org/10.1016/J.FOODCONT.2008.05.019
  • Kruglyakov, Y. A. (1989). Construction of equipment for growing green fodder by a hydroponic technique. Traktory-I Sel'skokhozyaistvennye Mashiny, 6(1), 24-27.
  • Loeb, B. L. (2018). Forty years of advances in ozone technology: A review of ozone: Science & engineering. Ozone: Science & Engineering, 40(1), 3-20. doi:10.1080/01919512.2017.1383129.
  • Madakemohekar, A. H., Prasad, L. C., Lal, J. P., & Prasad, R. (2018). Estimation of combining ability and heterosis for yield contributing traits in exotic and indigenous crosses of barley (Hordeum vulgare L.). Research on Crops, 19(2), 264-270. doi:10.5958/2348-7542.2018.00039.6.‏
  • Manetas, Y., Grammatikopoulos, G., & Kyparissis, A. (1998). The use of the portable, non-destructive, SPAD-502 (Minolta) chlorophyll meter with leaves of varying trichome density and anthocyanin content. Journal of Plant Physiology, 153(3-4), 513-516. https://doi.org/10.1016/S0176-1617(98)80182-X
  • Marsh, B. H. (2016). An Investigation of Current Potato Nitrogen Fertility Programs' Contribution to Ground Water Contamination. International Journal of Agricultural and Biosystems Engineering, 10(3), 138-144. https://doi.org/10.5281/zenodo.1111889
  • Merrill, A. L., & Watt, B. K. (1955). Energy value of foods: basis and derivation (No. 74). Human Nutrition Research Branch, Agricultural Research Service, US Department of Agriculture.
  • Konica Minolta (2009). Chlorophyll meter SPAD-502Plus. Konica Minolta.
  • Mohammad, Z., Kalbasi-Ashtari, A., Riskowski, G., & Castillo, A. (2019). Reduction of salmonella and shiga toxin-producing Escherichia Coli on alfalfa seeds and sprouts using an ozone generating system. International Journal of Food Microbiology, 289, 57–63. https://doi.org/10.1016/j.ijfoodmicro.2018.08.023
  • Monroy Vazquez, M. E., Peña-Valdivia, C. B., García, J. R., Solano, E., Campos, H., & García, E. (2017). Chemical scarification and ozone in seed dormancy alleviation of wild and domesticated Opuntia, Cactaceae. Ozone: Science & Engineering, 39(2), 104-114. https://doi.org/10.1080/01919512.2016.1261010
  • Mooney, J. (2005). Growing cattle feed hydroponically. Meat and Livestock, Australia, 30.
  • Morgan, J. V., & Hunter, R. R. (1993). Limiting factors in hydroponic barley grass production. In Proceedings of the 8th international congress on soilless culture, Hunter's Rest, South Africa, 2-9 October (Vol. 1992), pp. 241-261.
  • Naik, P. K., Swain, B. K., & Singh, N. P. (2015). Production and utilization of hydroponics fodder. Indian Journal of Animal Nutrition, 32(1), 1-9.
  • Neelamegam, R., & Sutha, T. (2015). UV-C irradiation effect on seed germination, seedling growth, and productivity of groundnut (Arachis hypogaea L.). International Journal of Current Microbiology and Applied Sciences, 4(8), 430-443. http://eprints.icrisat.ac.in/14038
  • Nei, D., Bari, L., Inatsu, Y., Kawasaki, S., Todoriki, S., & Kawamoto, S. (2010). Combined effect of low-dose irradiation and acidified sodium chlorite washing on Escherichia coli O157: H7 inoculated on mung bean seeds. Foodborne Pathogens and Disease, 7(10), 1217-1223. https://doi.org/10.1089/fpd.2010.0565
  • Oida, A. (1997). Using a personal computer for agricultural machinery management. Kyoto University. Japan.
  • Opti-Sciences Inc. (2011). CCM-300 – The chlorophyll content meter for very small leaves & difficult to measure samples. http://www.optisci.com/assets/ccm300.pdf
  • Peer, D. J., & Leeson, S. (1985). Feeding value of hydroponically sprouted barley for poultry and pigs. Animal Feed Science and Technology, 13(3-4), 183-190.
  • Ramteke, R., Doneria, R., & Gendley, M. K. (2019). Hydroponic techniques for fodder production. Acta Scientific Nutritional Health, 3(5), 127-132.
  • Randeniya, L. K., & de Groot, G. J. (2015). Non‐thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination, and other benefits: a review. Plasma Processes and Polymers, 12(7), 608-623. https://doi.org/10.1002/ppap.201500042
  • Rico, C. M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2015). Differential effects of cerium oxide nanoparticles on rice, wheat, and barley roots: A Fourier Transform Infrared (FT-IR) microspectroscopy study. Applied Spectroscopy, 69(2), 287-295. https://doi.org/10.1177/0003702814568211
  • Rodrigues, V. O., Penido, A. C., Pereira, D. D. S., Oliveira, A., Mendes, A. E. S., & Oliveira, J. A. (2019). Sanitary and physiological quality of soybean seeds treated with ozone. Journal of Agricultural Science, 11(4), 183. https://doi.org/10.5539/jas.v11n4p183
  • Rupiasih, N. N., & Vidyasagar, P. B. (2016). Effect of UV-C radiation and hypergravity on germination, growth, and content of chlorophyll of wheat seedlings. AIP Conference Proceedings, 1719(1), 030035-1-030035-6. https://doi.org/10.1063/1.4943730
  • Ryan, J. (1996). A soil and plant analysis manual adapted for the West Asia and North Africa region.
  • Sadeghianfar, P., Nazari, M., & Backes, G. (2019). Exposure to ultraviolet (UV-C) radiation increases germination rate of maize (Zea mays L.) and sugar beet (Beta vulgaris) seeds. Plants, 8(2), 49. https://doi.org/10.3390/plants8020049
  • Sharma, N., Acharya, S., Kumar, K., Singh, N., & Chaurasia, O. P. (2018). Hydroponics as an advanced technique for vegetable production: An overview. Journal of Soil and Water Conservation, 17(4), 364-371. https://doi.org/10.5958/2455-7145.2018.00056.5
  • Shit, N. (2019). Hydroponic fodder production: An alternative technology for sustainable livestock production in India. Exploratory Animal & Medical Research, 9(2), 108-119.
  • Shtaya, I. (2004). Performance of Awassi ewes fed barley green fodder (Doctoral dissertation, An-Najah National University).
  • Vázquez-Ybarra, J. A., Peña-Valdivia, C. B., Trejo, C., Villegas-Bastida, A., Benedicto-Valdéz, S., & Sánchez-García, P. (2015). Promoting growth of lettuce plants (Lactuca sativa L.) with sublethal ozone doses applied to culture medium. Revista Fitotecnia Mexicana, 38(4), 405-413.
  • Yang, H., Hu, J., Li, P., & Zhang, C. (2020). Ultraviolet germicidal irradiation for filtering facepiece respirators disinfection to facilitate reuse during COVID-19 pandemic: A review. Photodiagnosis and Photodynamic Therapy, 31, 101943. https://doi.org/10.1016/j.pdpdt.2020.101943
There are 52 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Articles
Authors

Mohamed Ali Ibrahim Al-rajhi 0000-0001-5212-5401

Ahmed Shawky El-sayed 0000-0002-5825-2425

Early Pub Date December 15, 2023
Publication Date December 31, 2023
Acceptance Date August 25, 2023
Published in Issue Year 2023 Volume: 33 Issue: 4

Cite

APA Ali Ibrahim Al-rajhi, M., & Shawky El-sayed, A. (2023). Developing Sterilization and Lighting Systems for Sprouting Rooms Using Ozone and Optical Fibers. Yuzuncu Yıl University Journal of Agricultural Sciences, 33(4), 556-570. https://doi.org/10.29133/yyutbd.1261911
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.