Research Article
BibTex RIS Cite

Performances of F3 and F4 Bulk Populations in Cotton (Gossypium hirsutum L.)

Year 2023, Volume: 33 Issue: 4, 534 - 542, 31.12.2023
https://doi.org/10.29133/yyutbd.1292327

Abstract

The experiment was laid out in 2020 to compare the performance of thirty-seven F3 and F4 multi-parental bulk populations of cotton, including comparative cultivars, and to assess the heritability of traits studied. The differences within generations were significant for seed cotton yield, ginning out-turn, fiber quality, and nep fragments. The mean fiber strength of the F4 generation showed significant performance compared with F3. The broad sense heritability was high for ginning out-turn, fiber length, and fiber strength. The normal distribution for F3 and F4 generations due to non-significant skewness and kurtosis values indicated that there were no epistatic effects on the heritability of traits studied. Eight F4 lines were selected for transfer to F5 generation according to optimization in terms of desired traits.

References

  • Abdel-Aty, M. S., Sorour, F. A., Yehia, W. M. B., Kotb, H. M. K., Abdelghany, A. M., Lamlom, S. F., ... & Abdelsalam, N. R. (2023). Estimating the combining ability and genetic parameters for growth habit, yield, and fiber quality traits in some Egyptian cotton crosses. BMC Plant Biology, 23(1), 1-21. https://doi.org/10.1186/s12870-023-04131-z
  • Allard, R. W. (1960). Principles of Plant Breeding. John Willey and Sons, New York, 485 p.
  • Anonymous, (2022). 80th Plenary Meeting of the ICAC 29 November 2022 - 01 December 2022.
  • Azam, M. S., Mohammad, F., Ahmad, I., Khalil, I. H., Jadoon, S. A., & Nasim, A. (2013). Divergence in F3 segregating bread wheat populations. International Journal of Basic and Applied Sciences, 13(3), 94-99.
  • Balcı, Ş., Çınar, V. M. & Ünay, A. (2021). The effects of modified recurrent selection on fiber characteristics and neps in cotton (Gossypium hirsutum L.). ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, 31(2), 137-142. https://doi.org/10.18615/anadolu.1029812
  • Balcı, Ş., Çınar, V. M., & Ünay, A. (2020). A Study on genetic advance and heritability for quantitative traits in cotton (Gossypium hirsutum L.). Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 17(1), 81-84. https://doi.org/10.25308/aduziraat.709514
  • Basal, H., Demirok, B., Karahan, T., Ilker, E., & Gungor, H. (2017). Comparison of mean yield components and fiber quality parameters of advanced bulk generations in F2, F3 and F4 interspecific and intraspecific cotton populations. Turkish Journal of Field Crops, 22(1), 14-23. https://doi.org/10.17557/tjfc.301686
  • Bowman, D. T. (2000). Attributes of public and private cotton breeding programs. Journal of Cotton Science, 4(2), 130-136.
  • Chen, Z. J., Scheffler, B. E., Dennis, E., Triplett, B. A., Zhang, T., Guo, W., ... & Paterson, A. H. (2007). Toward sequencing cotton (Gossypium) genomes. Plant Physiology, 145(4), 1303-1310. https://doi.org/10.1104/pp.107.107672
  • Choo, T. M., & Reinbergs, E. (1982). Analyses of skewness and kurtosis for detecting gene interaction in a doubled haploid population1. Crop Science, 22(2), 231-235. https://doi.org/10.2135/cropsci1982.0011183X002200020008x
  • Clement, J. D., Constable, G. A., Stiller, W. N., & Liu, S. M. (2015). Early generation selection strategies for breeding better combinations of cotton yield and fibre quality. Field Crops Research, 172, 145-152. https://doi.org/10.1016/j.fcr.2014.11.009
  • Çakmak, F., Çınar, V.M., Balcı, Ş., Ünay, A. (2023). Yield and fiber quality balance in upland cotton (Gossypium hirsutum L.) breeding. Bangladesh Journal of Botany, 52(2), 283-290. https://doi.org/10.3329/bjb.v52i2.67025
  • Elhousary, A. (2023). Genetic analysis in the F1 and F2 cotton generations of diallel crosses. Annals of Agricultural Science, Moshtohor, 61(1), 1-11. https://doi.org/10.21608/assjm.2023.279160
  • El-Mansy, Y. M. (2005). Using genetic components for predicting new recombination in some cotton crosses. [Doctoral dissertation, Mansoura University, Egypt].
  • El-Shazly, M. W. M. (2013). Efficiency of intermating population system for breakup linking groups and predicting new genetic recombination in cotton. [Master’s dissertation, Mansoura University, Egypt].
  • El-Shazly, M. W., Hamed, H. H., & Mabrouk, A. H. (2023). Using biparental mating design to breakup undesirable linkage groups and obtain new recombinations in cotton (G. barbadense L.). Egyptian Journal of Plant Breeding, 27(2), 139–152. https://doi.org/10.12816/EJPB.2023.301678
  • Falconer, D. S., & Mackay, T. F. (1996). Introduction to Quantitative genetics. London, UK: Longman.
  • Fang, D. D., Jenkins, J. N., Deng, D. D., McCarty, J. C., Li, P., & Wu, J. (2014). Quantitative trait loci analysis of fiber quality traits using a random-mated recombinant inbred population in Upland cotton (Gossypium hirsutum L.). BMC Genomics, 15(1), 1-15. https://doi.org/10.1186/1471-2164-15-397
  • Fang, L., Wang, Q., Hu, Y., Jia, Y., Chen, J., Liu, B., ... & Zhang, T. (2017). Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nature Genetics, 49(7), 1089-1098. https://doi.org/10.1038/ng.3887
  • Fawad, A., Nadeem, M. A., Khalil, I., Barut, M., Ilker, Y. & Baloch, F. (2022). Estimation of genetic parameters in F3 segregating spring wheat populations for yield and yield related traits. Yuzuncu Yil University Journal of Agricultural Sciences, 32(1), 1-10. https://doi.org/10.29133/yyutbd.886006
  • Galanopoulou-Sendouca, S., & Roupakias, D. (1999). Performance of cotton F1 hybrids and its relation to the mean yield of advanced bulk generations. European Journal of Agronomy, 11(1), 53-62. https://doi.org/10.1016/S1161-0301(99)00018-0
  • Gore, M. A., Fang, D. D., Poland, J. A., Zhang, J., Percy, R. G., Cantrell, R. G., ... & Lipka, A. E. (2014). Linkage map construction and quantitative trait locus analysis of agronomic and fiber quality traits in cotton. The Plant Genome, 7(1), 1-10. https://doi.org/10.3835/plantgenome2013.07.0023
  • Huang, C., Nie, X., Shen, C., You, C., Li, W., Zhao, W., ... & Lin, Z. (2017). Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome‐wide association study using high‐density SNPs. Plant Biotechnology Journal, 15(11), 1374-1386. https://doi.org/10.1111/pbi.12722
  • Ishaq, M., Hassan, A., Munir, S., Shahzad, A., Anjam, M., Bhutta, M., & Qureshi, M. K. (2021). Effect of heritability, genetic advance and correlation on yield contributing traits in upland cotton. Journal of Agricultural Sciences, 27(3), 353-359. https://doi.org/10.15832/ankutbd.686698
  • JMP. (2018). SAS Institute Inc. 2018. JMP Statistical Software, Version 14. Cary, USA.
  • Kapur, S. K. (1981). Elements of Practical Statistics. Oxford and IBH Publishing Co, New Delhi.
  • Khan, N. U. (2003). Genetic analysis, combining ability and heterotic studies for yield, its components, fiber and oil quality traits in upland cotton (G. hirsutum L.). (PhD), Sindh Agriculture University, Tandojam, Pakistan.
  • Khan, N. U., Marwat, K. B., Hassan, G., Kumbhar, M. B., Farhatullah, Z. A., Soomro, N. K., ... & Aiman, U. (2009). Study of fiber quality traits in upland cotton using additive dominance model. Pakistan Journal of Botany, 41(3), 1271-1383.
  • Kumar, N., Markar, S., & Kumar, V. (2014). Studies on heritability and genetic advance estimates in timely sown bread wheat (Triticum aestivum L.). Bioscience Discovery, 5(1), 64-69.
  • Lingaswamy, M., Gopinath, M., & Murthy, K. G. (2013). Line x tester analysis for yield and yield attributes in upland Cotton (Gossypium hirsutum L.). Helix, 5, 378-382.
  • Ma, J., Geng, Y., Pei, W., Wu, M., Li, X., Liu, G., ... & Yu, J. (2018). Genetic variation of dynamic fiber elongation and developmental quantitative trait locus mapping of fiber length in upland cotton (Gossypium hirsutum L.). BMC Genomics, 19, 1-18. https://doi.org/10.1186/s12864-018-5309-2
  • May, O. L., & Green, C. C. (1994). Genetic variation for fiber properties in elite Pee Dee cotton populations. Crop Science, 34(3), 684-690. https://doi.org/10.2135/cropsci1994.0011183X003400030016x
  • Meredith Jr, W. R. (1979). Inbreeding Depression of Selected F3 Cotton Progenies1. Crop Science, 19(1), 86-88. https://doi.org/10.2135/cropsci1979.0011183X001900010020x
  • Meredith Jr, W. R., & Bridge, R. R. (1973). The Relationship Between F2 and Selected F3 Progenies in Cotton (Gossypium hirsutum L.). Crop Science, 13(3), 354-356. https://doi.org/10.2135/cropsci1973.0011183X001300030019x
  • Mızrak, R., Ekinci, R., & Başbağ, S. (2020). Evaluation of advanced cotton (G. hirsutum L.) lines by biplot analysis method. Yuzuncu Yıl University Journal of Agricultural Sciences, 30(4), 781-787. https://doi: 10.29133/yyutbd.698594
  • Monicashree, C., Balu, P. A., & Gunasekaran, M. (2017). Combining ability and heterosis studies on yield and fibre quality traits in upland cotton (Gossypium hirsutum L.). International Journal of Current Microbiology and Applied Sciences, 6(8), 912-927. http://dx.doi.org/10.20546/ijcmas
  • Percy, R. G., Cantrell, R. G., & Zhang, J. (2006). Genetic variation for agronomic and fiber properties in an introgressed recombinant inbred population of cotton. Crop Science, 46(3), 1311-1317. https://doi.org/10.2135/cropsci2005.08-0284
  • Prakash, G., Korekar, S. L., & Mankare, S. (2018). Combining ability analysis in Bt cotton (G. hirsutum L.) to harness high yield under contrasting planting densities through heterosis breeding. International Journal of Current Microbiology and Applied Sciences, 7, 1765-1774.
  • Rehman, A., Mustafa, N., DU, X., & Azhar, M. T. (2020). Heritability and correlation analysis of morphological and yield traits in genetically modified cotton. Journal of Cotton Research, 3(1), 1-9. https://doi.org/10.1186/s42397-020-00067-z
  • Savitha, P., & Kumari, R. U. (2015). Studies on skewness, kurtosis and parent progeny regression for yield and its related traits in segregating generations of rice. ORYZA-An International Journal on Rice, 52(2), 80-86.
  • Shahzad, K., Mubeen, I., Zhang, M., Zhang, X., Wu, J., & Xing, C. (2022). Progress and perspective on cotton breeding in Pakistan. Journal of Cotton Research, 5(1), 1-17. https://doi.org/10.1186/s42397-022-00137-4
  • Singh, R. K., & Chaudhary, B. D. (1985). Biometrical Methods in Quantitative Genetic Analysis. Kalyani Publishers, New Delhi, India.
  • Srinivas, B., Bhadru, D., Rao, M. V., & Gopinath, M. (2014). Genetic studies in yield and fibre quality traits in American cotton (Gossypium hirsutum L.). Agricultural Science Digest-A Research Journal, 34(4), 285-288. https://doi.org/10.5958/0976-0547.2014.01021.0
  • Swamy, M. L., Gopinath, M., & Murthy, K. G. K. (2013). Line× tester analysis for yield and yield attributes in upland cotton (Gossypium hirsutum L.). Helix, 5, 378-382.
  • Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics. Boston, MA: Pearson.
  • Usharani, C. V., Manjula, S. M., & Patil, S. S. (2016). Estimating combining ability through line × tester analysis in upland cotton. Research in Environment and Life Sciences, 9(5), 628-633.
  • Verhalen, L. M., Morrison, W. C., Al‐Rawi, B. A., Fun, K. C., & Murray, J. C. (1971). A diallel analysis of several agronomic traits in upland cotton for various characters of cotton (Gossypium hirsutum L.). Crop Science, 11(1), 92-96. https://doi.org/10.2135/cropsci1971.0011183X001100010032x
  • Wu, J., McCarty, J. C., Jenkins, J. N., & Meredith, W. R. (2010). Breeding potential of introgressions into upland cotton: genetic effects and heterosis. Plant Breeding, 129(5), 526-532. https://doi.org/10.1111/j.1439-0523.2009.01715.x
  • Yang, Z., Gao, C., Zhang, Y., Yan, Q., Hu, W., Yang, L., ... & Li, F. (2023). Recent progression and future perspectives in cotton genomic breeding. Journal of Integrative Plant Biology, 65(2), 548-569. https://doi.org/10.1111/jipb.13388
  • Zeng, L., & Meredith Jr, W. R. (2010). Neppiness in an introgressed population of cotton: Genotypic variation and genotypic correlation. Journal of Cottm on Science, 14(1), 17–25.
Year 2023, Volume: 33 Issue: 4, 534 - 542, 31.12.2023
https://doi.org/10.29133/yyutbd.1292327

Abstract

References

  • Abdel-Aty, M. S., Sorour, F. A., Yehia, W. M. B., Kotb, H. M. K., Abdelghany, A. M., Lamlom, S. F., ... & Abdelsalam, N. R. (2023). Estimating the combining ability and genetic parameters for growth habit, yield, and fiber quality traits in some Egyptian cotton crosses. BMC Plant Biology, 23(1), 1-21. https://doi.org/10.1186/s12870-023-04131-z
  • Allard, R. W. (1960). Principles of Plant Breeding. John Willey and Sons, New York, 485 p.
  • Anonymous, (2022). 80th Plenary Meeting of the ICAC 29 November 2022 - 01 December 2022.
  • Azam, M. S., Mohammad, F., Ahmad, I., Khalil, I. H., Jadoon, S. A., & Nasim, A. (2013). Divergence in F3 segregating bread wheat populations. International Journal of Basic and Applied Sciences, 13(3), 94-99.
  • Balcı, Ş., Çınar, V. M. & Ünay, A. (2021). The effects of modified recurrent selection on fiber characteristics and neps in cotton (Gossypium hirsutum L.). ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, 31(2), 137-142. https://doi.org/10.18615/anadolu.1029812
  • Balcı, Ş., Çınar, V. M., & Ünay, A. (2020). A Study on genetic advance and heritability for quantitative traits in cotton (Gossypium hirsutum L.). Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 17(1), 81-84. https://doi.org/10.25308/aduziraat.709514
  • Basal, H., Demirok, B., Karahan, T., Ilker, E., & Gungor, H. (2017). Comparison of mean yield components and fiber quality parameters of advanced bulk generations in F2, F3 and F4 interspecific and intraspecific cotton populations. Turkish Journal of Field Crops, 22(1), 14-23. https://doi.org/10.17557/tjfc.301686
  • Bowman, D. T. (2000). Attributes of public and private cotton breeding programs. Journal of Cotton Science, 4(2), 130-136.
  • Chen, Z. J., Scheffler, B. E., Dennis, E., Triplett, B. A., Zhang, T., Guo, W., ... & Paterson, A. H. (2007). Toward sequencing cotton (Gossypium) genomes. Plant Physiology, 145(4), 1303-1310. https://doi.org/10.1104/pp.107.107672
  • Choo, T. M., & Reinbergs, E. (1982). Analyses of skewness and kurtosis for detecting gene interaction in a doubled haploid population1. Crop Science, 22(2), 231-235. https://doi.org/10.2135/cropsci1982.0011183X002200020008x
  • Clement, J. D., Constable, G. A., Stiller, W. N., & Liu, S. M. (2015). Early generation selection strategies for breeding better combinations of cotton yield and fibre quality. Field Crops Research, 172, 145-152. https://doi.org/10.1016/j.fcr.2014.11.009
  • Çakmak, F., Çınar, V.M., Balcı, Ş., Ünay, A. (2023). Yield and fiber quality balance in upland cotton (Gossypium hirsutum L.) breeding. Bangladesh Journal of Botany, 52(2), 283-290. https://doi.org/10.3329/bjb.v52i2.67025
  • Elhousary, A. (2023). Genetic analysis in the F1 and F2 cotton generations of diallel crosses. Annals of Agricultural Science, Moshtohor, 61(1), 1-11. https://doi.org/10.21608/assjm.2023.279160
  • El-Mansy, Y. M. (2005). Using genetic components for predicting new recombination in some cotton crosses. [Doctoral dissertation, Mansoura University, Egypt].
  • El-Shazly, M. W. M. (2013). Efficiency of intermating population system for breakup linking groups and predicting new genetic recombination in cotton. [Master’s dissertation, Mansoura University, Egypt].
  • El-Shazly, M. W., Hamed, H. H., & Mabrouk, A. H. (2023). Using biparental mating design to breakup undesirable linkage groups and obtain new recombinations in cotton (G. barbadense L.). Egyptian Journal of Plant Breeding, 27(2), 139–152. https://doi.org/10.12816/EJPB.2023.301678
  • Falconer, D. S., & Mackay, T. F. (1996). Introduction to Quantitative genetics. London, UK: Longman.
  • Fang, D. D., Jenkins, J. N., Deng, D. D., McCarty, J. C., Li, P., & Wu, J. (2014). Quantitative trait loci analysis of fiber quality traits using a random-mated recombinant inbred population in Upland cotton (Gossypium hirsutum L.). BMC Genomics, 15(1), 1-15. https://doi.org/10.1186/1471-2164-15-397
  • Fang, L., Wang, Q., Hu, Y., Jia, Y., Chen, J., Liu, B., ... & Zhang, T. (2017). Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nature Genetics, 49(7), 1089-1098. https://doi.org/10.1038/ng.3887
  • Fawad, A., Nadeem, M. A., Khalil, I., Barut, M., Ilker, Y. & Baloch, F. (2022). Estimation of genetic parameters in F3 segregating spring wheat populations for yield and yield related traits. Yuzuncu Yil University Journal of Agricultural Sciences, 32(1), 1-10. https://doi.org/10.29133/yyutbd.886006
  • Galanopoulou-Sendouca, S., & Roupakias, D. (1999). Performance of cotton F1 hybrids and its relation to the mean yield of advanced bulk generations. European Journal of Agronomy, 11(1), 53-62. https://doi.org/10.1016/S1161-0301(99)00018-0
  • Gore, M. A., Fang, D. D., Poland, J. A., Zhang, J., Percy, R. G., Cantrell, R. G., ... & Lipka, A. E. (2014). Linkage map construction and quantitative trait locus analysis of agronomic and fiber quality traits in cotton. The Plant Genome, 7(1), 1-10. https://doi.org/10.3835/plantgenome2013.07.0023
  • Huang, C., Nie, X., Shen, C., You, C., Li, W., Zhao, W., ... & Lin, Z. (2017). Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome‐wide association study using high‐density SNPs. Plant Biotechnology Journal, 15(11), 1374-1386. https://doi.org/10.1111/pbi.12722
  • Ishaq, M., Hassan, A., Munir, S., Shahzad, A., Anjam, M., Bhutta, M., & Qureshi, M. K. (2021). Effect of heritability, genetic advance and correlation on yield contributing traits in upland cotton. Journal of Agricultural Sciences, 27(3), 353-359. https://doi.org/10.15832/ankutbd.686698
  • JMP. (2018). SAS Institute Inc. 2018. JMP Statistical Software, Version 14. Cary, USA.
  • Kapur, S. K. (1981). Elements of Practical Statistics. Oxford and IBH Publishing Co, New Delhi.
  • Khan, N. U. (2003). Genetic analysis, combining ability and heterotic studies for yield, its components, fiber and oil quality traits in upland cotton (G. hirsutum L.). (PhD), Sindh Agriculture University, Tandojam, Pakistan.
  • Khan, N. U., Marwat, K. B., Hassan, G., Kumbhar, M. B., Farhatullah, Z. A., Soomro, N. K., ... & Aiman, U. (2009). Study of fiber quality traits in upland cotton using additive dominance model. Pakistan Journal of Botany, 41(3), 1271-1383.
  • Kumar, N., Markar, S., & Kumar, V. (2014). Studies on heritability and genetic advance estimates in timely sown bread wheat (Triticum aestivum L.). Bioscience Discovery, 5(1), 64-69.
  • Lingaswamy, M., Gopinath, M., & Murthy, K. G. (2013). Line x tester analysis for yield and yield attributes in upland Cotton (Gossypium hirsutum L.). Helix, 5, 378-382.
  • Ma, J., Geng, Y., Pei, W., Wu, M., Li, X., Liu, G., ... & Yu, J. (2018). Genetic variation of dynamic fiber elongation and developmental quantitative trait locus mapping of fiber length in upland cotton (Gossypium hirsutum L.). BMC Genomics, 19, 1-18. https://doi.org/10.1186/s12864-018-5309-2
  • May, O. L., & Green, C. C. (1994). Genetic variation for fiber properties in elite Pee Dee cotton populations. Crop Science, 34(3), 684-690. https://doi.org/10.2135/cropsci1994.0011183X003400030016x
  • Meredith Jr, W. R. (1979). Inbreeding Depression of Selected F3 Cotton Progenies1. Crop Science, 19(1), 86-88. https://doi.org/10.2135/cropsci1979.0011183X001900010020x
  • Meredith Jr, W. R., & Bridge, R. R. (1973). The Relationship Between F2 and Selected F3 Progenies in Cotton (Gossypium hirsutum L.). Crop Science, 13(3), 354-356. https://doi.org/10.2135/cropsci1973.0011183X001300030019x
  • Mızrak, R., Ekinci, R., & Başbağ, S. (2020). Evaluation of advanced cotton (G. hirsutum L.) lines by biplot analysis method. Yuzuncu Yıl University Journal of Agricultural Sciences, 30(4), 781-787. https://doi: 10.29133/yyutbd.698594
  • Monicashree, C., Balu, P. A., & Gunasekaran, M. (2017). Combining ability and heterosis studies on yield and fibre quality traits in upland cotton (Gossypium hirsutum L.). International Journal of Current Microbiology and Applied Sciences, 6(8), 912-927. http://dx.doi.org/10.20546/ijcmas
  • Percy, R. G., Cantrell, R. G., & Zhang, J. (2006). Genetic variation for agronomic and fiber properties in an introgressed recombinant inbred population of cotton. Crop Science, 46(3), 1311-1317. https://doi.org/10.2135/cropsci2005.08-0284
  • Prakash, G., Korekar, S. L., & Mankare, S. (2018). Combining ability analysis in Bt cotton (G. hirsutum L.) to harness high yield under contrasting planting densities through heterosis breeding. International Journal of Current Microbiology and Applied Sciences, 7, 1765-1774.
  • Rehman, A., Mustafa, N., DU, X., & Azhar, M. T. (2020). Heritability and correlation analysis of morphological and yield traits in genetically modified cotton. Journal of Cotton Research, 3(1), 1-9. https://doi.org/10.1186/s42397-020-00067-z
  • Savitha, P., & Kumari, R. U. (2015). Studies on skewness, kurtosis and parent progeny regression for yield and its related traits in segregating generations of rice. ORYZA-An International Journal on Rice, 52(2), 80-86.
  • Shahzad, K., Mubeen, I., Zhang, M., Zhang, X., Wu, J., & Xing, C. (2022). Progress and perspective on cotton breeding in Pakistan. Journal of Cotton Research, 5(1), 1-17. https://doi.org/10.1186/s42397-022-00137-4
  • Singh, R. K., & Chaudhary, B. D. (1985). Biometrical Methods in Quantitative Genetic Analysis. Kalyani Publishers, New Delhi, India.
  • Srinivas, B., Bhadru, D., Rao, M. V., & Gopinath, M. (2014). Genetic studies in yield and fibre quality traits in American cotton (Gossypium hirsutum L.). Agricultural Science Digest-A Research Journal, 34(4), 285-288. https://doi.org/10.5958/0976-0547.2014.01021.0
  • Swamy, M. L., Gopinath, M., & Murthy, K. G. K. (2013). Line× tester analysis for yield and yield attributes in upland cotton (Gossypium hirsutum L.). Helix, 5, 378-382.
  • Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics. Boston, MA: Pearson.
  • Usharani, C. V., Manjula, S. M., & Patil, S. S. (2016). Estimating combining ability through line × tester analysis in upland cotton. Research in Environment and Life Sciences, 9(5), 628-633.
  • Verhalen, L. M., Morrison, W. C., Al‐Rawi, B. A., Fun, K. C., & Murray, J. C. (1971). A diallel analysis of several agronomic traits in upland cotton for various characters of cotton (Gossypium hirsutum L.). Crop Science, 11(1), 92-96. https://doi.org/10.2135/cropsci1971.0011183X001100010032x
  • Wu, J., McCarty, J. C., Jenkins, J. N., & Meredith, W. R. (2010). Breeding potential of introgressions into upland cotton: genetic effects and heterosis. Plant Breeding, 129(5), 526-532. https://doi.org/10.1111/j.1439-0523.2009.01715.x
  • Yang, Z., Gao, C., Zhang, Y., Yan, Q., Hu, W., Yang, L., ... & Li, F. (2023). Recent progression and future perspectives in cotton genomic breeding. Journal of Integrative Plant Biology, 65(2), 548-569. https://doi.org/10.1111/jipb.13388
  • Zeng, L., & Meredith Jr, W. R. (2010). Neppiness in an introgressed population of cotton: Genotypic variation and genotypic correlation. Journal of Cottm on Science, 14(1), 17–25.
There are 50 citations in total.

Details

Primary Language English
Subjects Botany, Agricultural Engineering, Agricultural, Veterinary and Food Sciences, Agronomy
Journal Section Articles
Authors

Şerife Balcı 0000-0001-8348-3674

Volkan Mehmet Çınar 0000-0001-5822-5649

Aydın Ünay 0000-0002-7278-4428

Early Pub Date December 15, 2023
Publication Date December 31, 2023
Acceptance Date August 30, 2023
Published in Issue Year 2023 Volume: 33 Issue: 4

Cite

APA Balcı, Ş., Çınar, V. M., & Ünay, A. (2023). Performances of F3 and F4 Bulk Populations in Cotton (Gossypium hirsutum L.). Yuzuncu Yıl University Journal of Agricultural Sciences, 33(4), 534-542. https://doi.org/10.29133/yyutbd.1292327
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.