BibTex RIS Kaynak Göster

Normalized Thermodynamic Model for Intermittent Energy Systems and Application to Solar-Powered Adsorption Cooling Systems

Yıl 2011, Cilt: 14 Sayı: 3, 107 - 115, 25.07.2011

Öz

A new normalized model is developed to quantify and explore trends in coincidence of supply and demand in generic intermittent energy systems as key design and operating parameters are varied. This novel model is applied to seasonal-transient simulations for a solar-thermal powered adsorption system with and without heat recovery to investigate the coincidence between the solar-supplied cooling power and cooling load in terms of seasonal solar and loss fractions. Additionally, the system's basic performance trends are investigated as a number of parameters are varied. Results for the conditions explored include the following. The solar fraction increases and the loss fraction decreases with increases in storage capacity, and both fractions decrease with increases in maximum bed temperature. The required evacuated tube collector area is smaller than the flat plate collector area while the required mass of adsorbent is independent of collector and adsorption cycle types. Simulation results also show the effects of operating conditions and several design parameters on the system's COP.


Kaynakça

  • Storage Saturation
  • Adsorbent bed shell Sol sys tot wb Wet bulb Abbreviations COP ET FP
  • HRec Heat recovery adsorption cooling cycle HTF
  • SPAC Solar-thermal powered adsorption cooling TR
  • Thermal reservoir References
  • Baker, D. K. (2008). Thermodynamic limits to thermal regeneration in adsorption cooling cycles. International Journal of Refrigeration, 31(1), 55-64.
  • Baker, D. K., & Kaftanoglu, B. (2007). Limits to the Thermodynamic Performance of A Thermal Wave Adsorption Cooling Cycle. Paper presented at the International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT), Sun City, South Africa.
  • Baker, D. K., & Kaftanoglu, B. (2007). Predicted Impact of Collector and Zeolite Choice on the Thermodynamic and Economic Performance of a Solar-Powered Adsorption Cooling System. Experimental Heat Transfer, 20(2), 103 - 122.
  • Baker, D. K., & Kaftanoglu, B. (2008). Trends in COP for Adsorption Cooling Cycles with Thermal Regeneration and Finite Number of Beds. Paper presented at the Energy Sustainability 2008, Jacksonville, Florida, USA.
  • Baker, J. (2008). New technology and possible advances in energy storage. Energy Policy, 36(12), 4368-4373.
  • Battaglini, A., Lilliestam, J., Haas, A., & Patt, A. (2009). Development of SuperSmart Grids for a more efficient utilisation of electricity from renewable sources. Journal of Cleaner Production, 17(10), 911-918.
  • Ben Amar, N., Sun, L. M., & Meunier, F. (1996). Numerical analysis of adsorptive temperature wave regenerative heat pump Applied Thermal Engineering, 16, 405-418.
  • Benitez, L. E., Benitez, P. C., & van Kooten, G. C. (2008). The economics of wind power with energy storage. Energy Economics, 30(4), 1973-1989.
  • Brissette, F. (2005). Thermodynamic properties of water [MatLab]. Montreal: Université du Québec.
  • Cruickshank, C. A. (2009). Evaluation of a Stratified Multi- Tank Thermal Storage for Solar Heating Applications. Ph.D. Dissertation, Queen’s University, Ontario.
  • Denholm, P., & Margolis, R. M. (2007). Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies. Energy Policy, 35(9), 4424-4433.
  • Dieng, A. O., & Wang, R. Z. (2001). Literature review on solar adsorption technologies for ice-making and air- conditioning purposes and recent developments in solar technology. Renewable and Sustainable Energy Reviews, 5(4), 313-342.
  • Divya, K. C., & Østergaard, J. (2009). Battery energy storage technology for power systems--An overview. Electric Power Systems Research, 79(4), 511-520.
  • Duic, N., & da Graça Carvalho, M. (2004). Increasing renewable energy sources in island energy supply: case study Porto Santo. Renewable and Sustainable Energy Reviews, 8(4), 383-399.
  • Ibrahim, H., Ilinca, A., & Perron, J. (2008). Energy storage systems-Characteristics and comparisons. Renewable and Sustainable Energy Reviews, 12(5), 1221-1250.
  • Jebaraj, S., & Iniyan, S. (2006). A review of energy models. Renewable and Sustainable Energy Reviews, 10(4), 281-311.
  • Kélouwani, S., Agbossou, K., & Chahine, R. (2005). Model for energy conversion in renewable energy system with hydrogen storage. Journal of Power Sources, 140(2), 392-399.
  • Khan, M. Z. I., Alam, K. C. A., Saha, B. B., Akisawa, A., & Kashiwagi, T. (2007). Study on a re-heat two-stage adsorption chiller - The influence of thermal capacitance ratio, overall thermal conductance ratio and adsorbent mass on system performance. Applied Thermal Engineering, 27(10), 1677-1685.
  • Knob, P., Rüther, R., Jardim, C., & Beyer, H. G. (2004). Investigating the Peak Demand Reduction Capability of PV: A Case Study in Florianopolis, South Brazil. Paper presented at the 19th European Photovoltaic Solar Energy Conference, Paris, France.
  • Koomey, J., & Brown, R. E. (2002). The role of building technologies in reducing and controlling peak electricity demand. Berkeley: Lawrence Berkeley National Laboratory, University of California.
  • Korpaas, M., Holen, A. T., & Hildrum, R. (2003). Operation and sizing of energy storage for wind power plants in a market system. International Journal of Electrical Power & Energy Systems, 25(8), 599-606.
  • Korpås, M. (2004). Distributed Energy Systems with Wind Power and Energy Storage. Ph.D. Dissertation, Norwegian University of Science and Technology, Trondheim.
  • Lenzen, M. (2010). Current State of Development of Electricity-Generating Technologies: A Literature Review. Energies, 3(3), 462-591.
  • Liu, Y., & Leong, K. C. (2005). The effect of operating conditions on the performance of zeolite/water adsorption cooling Engineering, 25(10), 1403-1418. systems.
  • Applied Thermal energy storage (CAES) in future sustainable energy systems. Energy Conversion and Management, 50(5), 1172-1179.
  • Manolakos, D., Papadakis, G., Papantonis, D., & Kyritsis, S. (2004). A stand-alone photovoltaic power system for remote villages using pumped water energy storage. Energy, 29(1), 57-69.
  • Meunier, F. (2001). Adsorptive cooling: a clean technology. Clean Technologies and Environmental Policy, 3(1), 8- 20.
  • Moslehi, K., & Kumar, R. (2010). Smart Grid - A Reliability Perspective. Paper presented at the IEEE PES Conference on "Innovative Smart Grid Technologies", Gaithersburg, Maryland.
  • Myers, K. S., Klein, S. A., & Reindl, D. T. (2010). Assessment of High Penetration of Photovoltaics on Peak Demand and Annual Energy Use. Madison: University of Wisconsin.
  • Schmidt, P. S., Ezekoye, O., Howell, J. R., & Baker, D. K. (2005). Thermodynamics: an integrated learning system: Wiley.
  • Sharma, A., Tyagi, V. V., Chen, C. R., & Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13(2), 318-345.
  • Sumathy, K., Yeung, K. H., & Yong, L. (2003). Technology development in the solar adsorption refrigeration systems. Progress in Energy and Combustion Science, 29(4), 301-327.
  • Sward, B. K., LeVan, M. D., & Meunier, F. (2000). Adsorption heat pump modeling: the thermal wave process with local equilibrium. Applied Thermal Engineering, 20(8), 759-780.
  • TEİAŞ. (2007). The Distribution of Gross Electricity Generation by Primary Energy Resources and The Electric Utilities in Turkey. Ankara: Turkish Electricity Transmission Co. (TEIAS).
  • TEİAŞ. (2009). Turkish Electrical Energy 10-Year Generation Capacity Projection. Ankara: Turkish Electricity Transmission Co. (TEIAS).
  • Vosen, S. R., & Keller, J. O. (1999). Hybrid energy storage systems for stand-alone electric power systems: optimization of system performance and cost through control strategies. International Journal of Hydrogen Energy, 24(12), 1139-1156.
  • Wang, R. Z. (2001). Performance improvement of adsorption cooling by heat and mass recovery operation. International Journal of Refrigeration, 24(7), 602-611.
Yıl 2011, Cilt: 14 Sayı: 3, 107 - 115, 25.07.2011

Öz

Kaynakça

  • Storage Saturation
  • Adsorbent bed shell Sol sys tot wb Wet bulb Abbreviations COP ET FP
  • HRec Heat recovery adsorption cooling cycle HTF
  • SPAC Solar-thermal powered adsorption cooling TR
  • Thermal reservoir References
  • Baker, D. K. (2008). Thermodynamic limits to thermal regeneration in adsorption cooling cycles. International Journal of Refrigeration, 31(1), 55-64.
  • Baker, D. K., & Kaftanoglu, B. (2007). Limits to the Thermodynamic Performance of A Thermal Wave Adsorption Cooling Cycle. Paper presented at the International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT), Sun City, South Africa.
  • Baker, D. K., & Kaftanoglu, B. (2007). Predicted Impact of Collector and Zeolite Choice on the Thermodynamic and Economic Performance of a Solar-Powered Adsorption Cooling System. Experimental Heat Transfer, 20(2), 103 - 122.
  • Baker, D. K., & Kaftanoglu, B. (2008). Trends in COP for Adsorption Cooling Cycles with Thermal Regeneration and Finite Number of Beds. Paper presented at the Energy Sustainability 2008, Jacksonville, Florida, USA.
  • Baker, J. (2008). New technology and possible advances in energy storage. Energy Policy, 36(12), 4368-4373.
  • Battaglini, A., Lilliestam, J., Haas, A., & Patt, A. (2009). Development of SuperSmart Grids for a more efficient utilisation of electricity from renewable sources. Journal of Cleaner Production, 17(10), 911-918.
  • Ben Amar, N., Sun, L. M., & Meunier, F. (1996). Numerical analysis of adsorptive temperature wave regenerative heat pump Applied Thermal Engineering, 16, 405-418.
  • Benitez, L. E., Benitez, P. C., & van Kooten, G. C. (2008). The economics of wind power with energy storage. Energy Economics, 30(4), 1973-1989.
  • Brissette, F. (2005). Thermodynamic properties of water [MatLab]. Montreal: Université du Québec.
  • Cruickshank, C. A. (2009). Evaluation of a Stratified Multi- Tank Thermal Storage for Solar Heating Applications. Ph.D. Dissertation, Queen’s University, Ontario.
  • Denholm, P., & Margolis, R. M. (2007). Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies. Energy Policy, 35(9), 4424-4433.
  • Dieng, A. O., & Wang, R. Z. (2001). Literature review on solar adsorption technologies for ice-making and air- conditioning purposes and recent developments in solar technology. Renewable and Sustainable Energy Reviews, 5(4), 313-342.
  • Divya, K. C., & Østergaard, J. (2009). Battery energy storage technology for power systems--An overview. Electric Power Systems Research, 79(4), 511-520.
  • Duic, N., & da Graça Carvalho, M. (2004). Increasing renewable energy sources in island energy supply: case study Porto Santo. Renewable and Sustainable Energy Reviews, 8(4), 383-399.
  • Ibrahim, H., Ilinca, A., & Perron, J. (2008). Energy storage systems-Characteristics and comparisons. Renewable and Sustainable Energy Reviews, 12(5), 1221-1250.
  • Jebaraj, S., & Iniyan, S. (2006). A review of energy models. Renewable and Sustainable Energy Reviews, 10(4), 281-311.
  • Kélouwani, S., Agbossou, K., & Chahine, R. (2005). Model for energy conversion in renewable energy system with hydrogen storage. Journal of Power Sources, 140(2), 392-399.
  • Khan, M. Z. I., Alam, K. C. A., Saha, B. B., Akisawa, A., & Kashiwagi, T. (2007). Study on a re-heat two-stage adsorption chiller - The influence of thermal capacitance ratio, overall thermal conductance ratio and adsorbent mass on system performance. Applied Thermal Engineering, 27(10), 1677-1685.
  • Knob, P., Rüther, R., Jardim, C., & Beyer, H. G. (2004). Investigating the Peak Demand Reduction Capability of PV: A Case Study in Florianopolis, South Brazil. Paper presented at the 19th European Photovoltaic Solar Energy Conference, Paris, France.
  • Koomey, J., & Brown, R. E. (2002). The role of building technologies in reducing and controlling peak electricity demand. Berkeley: Lawrence Berkeley National Laboratory, University of California.
  • Korpaas, M., Holen, A. T., & Hildrum, R. (2003). Operation and sizing of energy storage for wind power plants in a market system. International Journal of Electrical Power & Energy Systems, 25(8), 599-606.
  • Korpås, M. (2004). Distributed Energy Systems with Wind Power and Energy Storage. Ph.D. Dissertation, Norwegian University of Science and Technology, Trondheim.
  • Lenzen, M. (2010). Current State of Development of Electricity-Generating Technologies: A Literature Review. Energies, 3(3), 462-591.
  • Liu, Y., & Leong, K. C. (2005). The effect of operating conditions on the performance of zeolite/water adsorption cooling Engineering, 25(10), 1403-1418. systems.
  • Applied Thermal energy storage (CAES) in future sustainable energy systems. Energy Conversion and Management, 50(5), 1172-1179.
  • Manolakos, D., Papadakis, G., Papantonis, D., & Kyritsis, S. (2004). A stand-alone photovoltaic power system for remote villages using pumped water energy storage. Energy, 29(1), 57-69.
  • Meunier, F. (2001). Adsorptive cooling: a clean technology. Clean Technologies and Environmental Policy, 3(1), 8- 20.
  • Moslehi, K., & Kumar, R. (2010). Smart Grid - A Reliability Perspective. Paper presented at the IEEE PES Conference on "Innovative Smart Grid Technologies", Gaithersburg, Maryland.
  • Myers, K. S., Klein, S. A., & Reindl, D. T. (2010). Assessment of High Penetration of Photovoltaics on Peak Demand and Annual Energy Use. Madison: University of Wisconsin.
  • Schmidt, P. S., Ezekoye, O., Howell, J. R., & Baker, D. K. (2005). Thermodynamics: an integrated learning system: Wiley.
  • Sharma, A., Tyagi, V. V., Chen, C. R., & Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13(2), 318-345.
  • Sumathy, K., Yeung, K. H., & Yong, L. (2003). Technology development in the solar adsorption refrigeration systems. Progress in Energy and Combustion Science, 29(4), 301-327.
  • Sward, B. K., LeVan, M. D., & Meunier, F. (2000). Adsorption heat pump modeling: the thermal wave process with local equilibrium. Applied Thermal Engineering, 20(8), 759-780.
  • TEİAŞ. (2007). The Distribution of Gross Electricity Generation by Primary Energy Resources and The Electric Utilities in Turkey. Ankara: Turkish Electricity Transmission Co. (TEIAS).
  • TEİAŞ. (2009). Turkish Electrical Energy 10-Year Generation Capacity Projection. Ankara: Turkish Electricity Transmission Co. (TEIAS).
  • Vosen, S. R., & Keller, J. O. (1999). Hybrid energy storage systems for stand-alone electric power systems: optimization of system performance and cost through control strategies. International Journal of Hydrogen Energy, 24(12), 1139-1156.
  • Wang, R. Z. (2001). Performance improvement of adsorption cooling by heat and mass recovery operation. International Journal of Refrigeration, 24(7), 602-611.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Regular Original Research Article
Yazarlar

Onur Taylan Bu kişi benim

Derek Baker

Bilgin Kaftanoglu Bu kişi benim

Yayımlanma Tarihi 25 Temmuz 2011
Yayımlandığı Sayı Yıl 2011 Cilt: 14 Sayı: 3

Kaynak Göster

APA Taylan, O., Baker, D., & Kaftanoglu, B. (2011). Normalized Thermodynamic Model for Intermittent Energy Systems and Application to Solar-Powered Adsorption Cooling Systems. International Journal of Thermodynamics, 14(3), 107-115.
AMA Taylan O, Baker D, Kaftanoglu B. Normalized Thermodynamic Model for Intermittent Energy Systems and Application to Solar-Powered Adsorption Cooling Systems. International Journal of Thermodynamics. Temmuz 2011;14(3):107-115.
Chicago Taylan, Onur, Derek Baker, ve Bilgin Kaftanoglu. “Normalized Thermodynamic Model for Intermittent Energy Systems and Application to Solar-Powered Adsorption Cooling Systems”. International Journal of Thermodynamics 14, sy. 3 (Temmuz 2011): 107-15.
EndNote Taylan O, Baker D, Kaftanoglu B (01 Temmuz 2011) Normalized Thermodynamic Model for Intermittent Energy Systems and Application to Solar-Powered Adsorption Cooling Systems. International Journal of Thermodynamics 14 3 107–115.
IEEE O. Taylan, D. Baker, ve B. Kaftanoglu, “Normalized Thermodynamic Model for Intermittent Energy Systems and Application to Solar-Powered Adsorption Cooling Systems”, International Journal of Thermodynamics, c. 14, sy. 3, ss. 107–115, 2011.
ISNAD Taylan, Onur vd. “Normalized Thermodynamic Model for Intermittent Energy Systems and Application to Solar-Powered Adsorption Cooling Systems”. International Journal of Thermodynamics 14/3 (Temmuz 2011), 107-115.
JAMA Taylan O, Baker D, Kaftanoglu B. Normalized Thermodynamic Model for Intermittent Energy Systems and Application to Solar-Powered Adsorption Cooling Systems. International Journal of Thermodynamics. 2011;14:107–115.
MLA Taylan, Onur vd. “Normalized Thermodynamic Model for Intermittent Energy Systems and Application to Solar-Powered Adsorption Cooling Systems”. International Journal of Thermodynamics, c. 14, sy. 3, 2011, ss. 107-15.
Vancouver Taylan O, Baker D, Kaftanoglu B. Normalized Thermodynamic Model for Intermittent Energy Systems and Application to Solar-Powered Adsorption Cooling Systems. International Journal of Thermodynamics. 2011;14(3):107-15.