Derleme
BibTex RIS Kaynak Göster

Su Kaynaklarında İleri Oksidasyon Prosesleri (İOP) ile Ötrofikasyon Kontrolü

Yıl 2018, Cilt: 8 Sayı: 2, 243 - 253, 31.12.2018

Öz

 Su
kaynaklarındaki ötrofikasyon (alg patlaması) problemi tüm dünyada ve özellikle
Türkiye gibi gelişmekte olan ülkelerde önemli bir su kirliliği problemi olarak
karşımıza çıkmaktadır. Sucul ortamda Siyano
bakterilerin
sebep olduğu bu problem dünya genelinde hem halk sağlığı hem de ekolojik döngü
üzerinde önemli etkileri olan çevresel bir problemdir.
 Göller, nehirler, körfezler ve su
rezervuarları için önemli bir tehdit haline gelmeye başlayan ötrofikasyon,
çoğunlukla tam arıtılmamış atıksuların deşarjı, şehirleşme ve tarımsal
faaliyetler nedeniyle su ortamına aşırı besi maddesi girişinden
kaynaklanmaktır.
Siyanobakteriler, ötrofikasyon
süresince
insanlar, hayvanlar ve su
canlıları üzerinde zararlı olan siyanobakteriyel toksin olarak adlandırılan birçok
mikrokirletici bileşikler üretirler.
Bu
mikrokirleticiler hem su hayatını ve su canlılarını olumsuz etkilemekte hem de
yüzey suları vasıtasıyla içme suyu kaynaklarına karışarak insan sağlığını tehdit
etmektedirler. Bu nedenle son yıllarda yapılan çalışmalar
Siyanobakterilerin
ürettiği siyanobakteriyel toksinlerin (siyanotoksinler) İleri Oksidasyon
Prosesleri (İOP) ile arıtılması üzerine yoğunlaşmıştır.



Bu çalışma ise ötrofikasyona
sebep olan siyanobakterilerin ve siyanobakteriyel toksinlerin genel bir
tanımlanmasını yaparak, İOP ile arıtılabilirliği konusunda yapılmış çalışmaları
özetlemektedir. Siyanobakterilerin ve siyanobakteriyel toksinlerin İOP ile arıtıldığı
çalışmaların, elektrokimyasal arıtım, ozonlama, fotokatalitik oksidasyon,
Fenton oksidasyonu, ultrases gibi prosesler üzerine yoğunlaştığı görülmektedir.
Bunlar arasında ultrases, son yıllarda siyanobakteriler ve siyanobakteriyel
toksinler için popüler bir arıtma tekniği olarak ön plana çıkmakta ve büyük
ölçekli arıtma çalışmaları ile yerinde uygulama başarısı gösterdiği için
ötrofikasyon kontrolünde gelecek vadeden bir arıtma metodu olarak
değerlendirilmektedir.  

Kaynakça

  • 1. Anonim, 2014. Toxin leaves 500,000 in northwest Ohio without drinking water, https://www.reuters.com/article/us-usa-water-ohio/toxin-leaves-500000-in-northwest-ohio-ithout-drinking-water-idUSKBN0G20L120140802?feedType=RSS (Erişim Tarihi: 08.12.2017)
  • 2. Cheng X Y & Li S J (2006). An analysis on the evolvement processes of lake eutrophication and their characteristics of the typical lakes in the middle and lower reaches of Yangtze River. Chinese Science Bulletin 51(13): 1603-1613
  • 3. CSB (2012). Yer Üstü Su Kalitesi Yönetmeliği, T. C. Resmi Gazete, 28483, Değişik ibare: RG-15/4/2015-29327, 30.11.2012
  • 4. Ding Y et al (2009). Parameters optimization of ultrasound algae removal technology and bloom removal study in Taihu Lake. Journal of Southeast University (Natural Science Edition)
  • 5. Donati C, Drikas M, Hayes R, Newcombe G (1994). Microcystin-LR adsorption by powdered activated carbon Water Res. 28 (8): 1735–1742
  • 6. EPA (2017). Nutrient Pollution, The Effects: Human Health, United States Environmental Protection Agency
  • 7. Eren Z (2009). İleri Oksidasyon Prosesleri İle Tekstil Boyar Maddelerinin ve Tekstil Atıksularının Arıtılması. Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi (Basılmış)
  • 8. Eren Z & Acar F N (2006). Effect of Fenton’s reagent on the degradability of CI Reactive Yellow 15. Color. Technol. 122: 259-263
  • 9. Ghernaout B, Ghernaout D, Saiba A (2010). Algae and cyanotoxins removal by coagulation/flocculation: a review. Desalination Water Treat. 20 (1–3): 133–143
  • 10. He X, Liu Y L, Conklin A, Westrick J, Weavers L K, Dionysiou D D, Lenhart J J, Mouser P J, Szlag D, Walker H W (2016). Toxic Cyanobacteria and drinking water: Impacts, detection, and treatment. Harmful Algae 54: 174–193
  • 11. Hitzfeld B C, Hoger S J, Dietrich D R (2000). Cyanobacterial toxins: removal during drinking water treatment, and human risk assessment. Environ. Health Perspect 108: 113–122
  • 12. Ho L, Dreyfus J, Boyer J, Lowe T, Bustamante H, Duker P, Meli T, Newcombe G (2012). Fate of Cyanobacteria and their metabolites during water treatment sludge management processes. Sci. Total Environ. 424: 232–238
  • 13. Hudder A, Song W, O’Shea K E, Walsh P J (2007). Toxicogenomic evaluation of microcystin-LR treated with ultrasonic oxidation. Toxicol. Appl. Pharmacol. 220 (3): 357–364
  • 14. Jasim S Y, Saththasivam J (2017). Advanced oxidation processes to remove cyanotoxins in water. Desalination 406: 83–87
  • 15. Jochimsen E M, Carmichael W W, An J S, Cardo D M, Cookson S T, Holmes C E, Antunes M B, de Melo Filho D A, Lyra T M, Bareto V S, Azevedo S M, Jarvis W R (1998). Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N. Engl. J. Med. 338: 873–878
  • 16. Lee J, Walker H W (2008). Mechanisms and factors influencing the removal of microcystin-LR by ultrafiltration membranes. Journal of Membrane Science 320: 240–247
  • 17. Li L, Gao N Y, Deng Y, Yao J J, Zhang K J, Li H J, Yin D D, Ou H S, Guo J W (2009). Experimental and model comparisons of H2O2 assisted UV photodegradation of Microcystin-LR in simulated drinking water. J. Zhejiang Univ. Sci. A 10: 1660–1669
  • 18. Lee TJ, Nakano K, Matsumura M (2002). A novel strategy for Cyanobacterial bloom control by ultrasonic irradiation. Water Science Technology 46 (6–7): 207–215
  • 19. Ma B Z, Chen Y F, Hao H W, Wu M S, Wang B, Lv H G, Zhang G M (2005). Influence of ultrasonic field on microcystins produced by bloom-forming algae. Colloids Surf. B: Biointerfaces 41 (2–3): 197–201
  • 20. Mason T J (1990). Chemistry with Ultrasound. Critical Reports on Applied Chemistry: 28, 189 p, Newyork, USA
  • 21. Meglic A, Pecman A, Rozina T, Lestan D, Sedmak B (2017). Electrochemical inactivation of Cyanobacteria and microcystin degradation using a boron-doped diamond anode — A potential tool for Cyanobacterial bloom control. Journal of Environmental Sciences 53: 248-261
  • 22. Momani F A, Smith D W, El-Din M G (2008). Degradation of Cyanobacteria toxin by advanced oxidation processes. Journal of Hazardous Materials 150: 238–249
  • 23. Ou H, Gao N, Deng Y, Qiao J, Wang H (2012). Immediate and long-term impacts of UV-C irradiation on photosynthetic capacity, survival and microcystin-LR release risk of Microcystis aeruginosa. Water Res. 46 (4): 1241–1250
  • 24. Rastogi R P, Sinha R P, Moh S H, Lee T K, Kottuparambil S, Kim Y J, Rhee J S, Choi E M, Brown M T, Ha ̈der D P (2014). Ultraviolet radiation and cyano- bacteria. J. Photochem. Photobiol. B: Biol. 141: 154–169
  • 25. Richardson C J, King R S, Qian S S, Vaithiyanathan P, Qualls R G, Stow C A (2007). Estimating ecological thresholds for phosphorus in the Everglades. Environmental Science and Technology 41(23): 8084-8091
  • 26. Rose K, Kelly D, Kemker C, Fitch K, Card A (2014). Algae, Phytoplankton and Chlorophyl, Fondriest Environmental, Inc. Fundamentals of Environmental Measurements
  • 27. Sağlamtimur N D & Sağlamtimur B (2018). Sucul ortamlarda ötrofikasyon durumu ve senaryoları. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7:1, 75-82
  • 28. Song W H, Teshiba T, Rein K, O’Shea K E (2005). Ultrasonically Induced Degradation and Detoxification of Microcystin-LR (Cyanobacterial Toxin). Environ. Sci. Technol. 39 (16): 6300–6305
  • 29. Suslick K S (1990). Sonochemistry Science 247: 1439-45
  • 30. Suslick K S & Price G J (1999). Applications of ultrasound to materials chemistry. Annu. Rev. Mater. Sci. 29: 295–326
  • 31. Tarr M A (2003). Chemical Degradation Methods for Wastes and Pollutants, Environmental and Industrial Applications, University of New Orleans, USA
  • 32. Teixeira M R & Rosa M J (2005). Microcystins removal by nanofiltration membranes. Sep. Purif. Technol. 46 (3): 192–201
  • 33. Vinodgopal K, Peller J, Makogon O, Kamat P V (1998). Ultrasonic mineralization of a reactive textile azo dye, Remazol Black B. Water Research 32 (12): 3646-3650
  • 34. Voncina D B & Le-Marechal A M (2003). Reactive dye decolorization using combined ultrasound/H2O2. Dyes and Pigments 59: 173-179
  • 35. Wang X, Wang X, Zhao J, Song J, Wang J, Ma R, Ma J (2017). Solar light-driven photocatalytic destruction of Cyanobacteria by F-Ce-TiO2/expanded perlite floating composites. Chemical Engineering Journal 320: 253–263
  • 36. Wert E C, Dong M M, Rosario-Ortiz F L (2013). Using digital flow cytometry to assess the degradation of three Cyanobacteria species after oxidation processes. Water Res. 47 (11): 3752–3761
  • 37. WHO (1998). Guidelines for Drinking-Water Quality Second Edition – Volume 2, Health Criteria and Other Supporting Information – Addendum, World Health Organization, Geneva
  • 38. WHO (2002). Eutrophication and health, World Health Organization Regional Office for Europe, France
  • 39. Wu T Y Guo N, Teh C Y, Hay J X W (2013). Theory and Fundamentals of Ultrasound. Advances in Ultrasound Technology for Environmental Remediation Chapter 2, Springer, Netherlands
  • 40. Wu X, Joyce E M, Mason T J (2011). The effects of ultrasound on Cyanobacteria. Harmful Algae 10: 738–743
  • 41. Yang X, Wu X, Hao H, He Z (2008). Mechanisms and assessment of water eutrophication. J Zhejiang Univ Sci B, 9(3): 197-209
  • 42. Youssef Z, Colombeau L, Yesmurzayeva N, Baros F, Vanderesse R, Hamieh T, Toufaily J, Frochot C, Roques-Carmes T (2018). Dye-sensitized nanoparticles for heterogeneous photocatalysis: Cases studies with TiO2, ZnO, fullerene and graphene for water purification. Dyes and Pigments 159: 49-71
  • 43. Zegura B, Straser A, Filipic M (2011). Genotoxicity and potential carcinogenicity of Cyanobacterial toxins – a review. Mutation Research 727: 16–41
Yıl 2018, Cilt: 8 Sayı: 2, 243 - 253, 31.12.2018

Öz

Kaynakça

  • 1. Anonim, 2014. Toxin leaves 500,000 in northwest Ohio without drinking water, https://www.reuters.com/article/us-usa-water-ohio/toxin-leaves-500000-in-northwest-ohio-ithout-drinking-water-idUSKBN0G20L120140802?feedType=RSS (Erişim Tarihi: 08.12.2017)
  • 2. Cheng X Y & Li S J (2006). An analysis on the evolvement processes of lake eutrophication and their characteristics of the typical lakes in the middle and lower reaches of Yangtze River. Chinese Science Bulletin 51(13): 1603-1613
  • 3. CSB (2012). Yer Üstü Su Kalitesi Yönetmeliği, T. C. Resmi Gazete, 28483, Değişik ibare: RG-15/4/2015-29327, 30.11.2012
  • 4. Ding Y et al (2009). Parameters optimization of ultrasound algae removal technology and bloom removal study in Taihu Lake. Journal of Southeast University (Natural Science Edition)
  • 5. Donati C, Drikas M, Hayes R, Newcombe G (1994). Microcystin-LR adsorption by powdered activated carbon Water Res. 28 (8): 1735–1742
  • 6. EPA (2017). Nutrient Pollution, The Effects: Human Health, United States Environmental Protection Agency
  • 7. Eren Z (2009). İleri Oksidasyon Prosesleri İle Tekstil Boyar Maddelerinin ve Tekstil Atıksularının Arıtılması. Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi (Basılmış)
  • 8. Eren Z & Acar F N (2006). Effect of Fenton’s reagent on the degradability of CI Reactive Yellow 15. Color. Technol. 122: 259-263
  • 9. Ghernaout B, Ghernaout D, Saiba A (2010). Algae and cyanotoxins removal by coagulation/flocculation: a review. Desalination Water Treat. 20 (1–3): 133–143
  • 10. He X, Liu Y L, Conklin A, Westrick J, Weavers L K, Dionysiou D D, Lenhart J J, Mouser P J, Szlag D, Walker H W (2016). Toxic Cyanobacteria and drinking water: Impacts, detection, and treatment. Harmful Algae 54: 174–193
  • 11. Hitzfeld B C, Hoger S J, Dietrich D R (2000). Cyanobacterial toxins: removal during drinking water treatment, and human risk assessment. Environ. Health Perspect 108: 113–122
  • 12. Ho L, Dreyfus J, Boyer J, Lowe T, Bustamante H, Duker P, Meli T, Newcombe G (2012). Fate of Cyanobacteria and their metabolites during water treatment sludge management processes. Sci. Total Environ. 424: 232–238
  • 13. Hudder A, Song W, O’Shea K E, Walsh P J (2007). Toxicogenomic evaluation of microcystin-LR treated with ultrasonic oxidation. Toxicol. Appl. Pharmacol. 220 (3): 357–364
  • 14. Jasim S Y, Saththasivam J (2017). Advanced oxidation processes to remove cyanotoxins in water. Desalination 406: 83–87
  • 15. Jochimsen E M, Carmichael W W, An J S, Cardo D M, Cookson S T, Holmes C E, Antunes M B, de Melo Filho D A, Lyra T M, Bareto V S, Azevedo S M, Jarvis W R (1998). Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N. Engl. J. Med. 338: 873–878
  • 16. Lee J, Walker H W (2008). Mechanisms and factors influencing the removal of microcystin-LR by ultrafiltration membranes. Journal of Membrane Science 320: 240–247
  • 17. Li L, Gao N Y, Deng Y, Yao J J, Zhang K J, Li H J, Yin D D, Ou H S, Guo J W (2009). Experimental and model comparisons of H2O2 assisted UV photodegradation of Microcystin-LR in simulated drinking water. J. Zhejiang Univ. Sci. A 10: 1660–1669
  • 18. Lee TJ, Nakano K, Matsumura M (2002). A novel strategy for Cyanobacterial bloom control by ultrasonic irradiation. Water Science Technology 46 (6–7): 207–215
  • 19. Ma B Z, Chen Y F, Hao H W, Wu M S, Wang B, Lv H G, Zhang G M (2005). Influence of ultrasonic field on microcystins produced by bloom-forming algae. Colloids Surf. B: Biointerfaces 41 (2–3): 197–201
  • 20. Mason T J (1990). Chemistry with Ultrasound. Critical Reports on Applied Chemistry: 28, 189 p, Newyork, USA
  • 21. Meglic A, Pecman A, Rozina T, Lestan D, Sedmak B (2017). Electrochemical inactivation of Cyanobacteria and microcystin degradation using a boron-doped diamond anode — A potential tool for Cyanobacterial bloom control. Journal of Environmental Sciences 53: 248-261
  • 22. Momani F A, Smith D W, El-Din M G (2008). Degradation of Cyanobacteria toxin by advanced oxidation processes. Journal of Hazardous Materials 150: 238–249
  • 23. Ou H, Gao N, Deng Y, Qiao J, Wang H (2012). Immediate and long-term impacts of UV-C irradiation on photosynthetic capacity, survival and microcystin-LR release risk of Microcystis aeruginosa. Water Res. 46 (4): 1241–1250
  • 24. Rastogi R P, Sinha R P, Moh S H, Lee T K, Kottuparambil S, Kim Y J, Rhee J S, Choi E M, Brown M T, Ha ̈der D P (2014). Ultraviolet radiation and cyano- bacteria. J. Photochem. Photobiol. B: Biol. 141: 154–169
  • 25. Richardson C J, King R S, Qian S S, Vaithiyanathan P, Qualls R G, Stow C A (2007). Estimating ecological thresholds for phosphorus in the Everglades. Environmental Science and Technology 41(23): 8084-8091
  • 26. Rose K, Kelly D, Kemker C, Fitch K, Card A (2014). Algae, Phytoplankton and Chlorophyl, Fondriest Environmental, Inc. Fundamentals of Environmental Measurements
  • 27. Sağlamtimur N D & Sağlamtimur B (2018). Sucul ortamlarda ötrofikasyon durumu ve senaryoları. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7:1, 75-82
  • 28. Song W H, Teshiba T, Rein K, O’Shea K E (2005). Ultrasonically Induced Degradation and Detoxification of Microcystin-LR (Cyanobacterial Toxin). Environ. Sci. Technol. 39 (16): 6300–6305
  • 29. Suslick K S (1990). Sonochemistry Science 247: 1439-45
  • 30. Suslick K S & Price G J (1999). Applications of ultrasound to materials chemistry. Annu. Rev. Mater. Sci. 29: 295–326
  • 31. Tarr M A (2003). Chemical Degradation Methods for Wastes and Pollutants, Environmental and Industrial Applications, University of New Orleans, USA
  • 32. Teixeira M R & Rosa M J (2005). Microcystins removal by nanofiltration membranes. Sep. Purif. Technol. 46 (3): 192–201
  • 33. Vinodgopal K, Peller J, Makogon O, Kamat P V (1998). Ultrasonic mineralization of a reactive textile azo dye, Remazol Black B. Water Research 32 (12): 3646-3650
  • 34. Voncina D B & Le-Marechal A M (2003). Reactive dye decolorization using combined ultrasound/H2O2. Dyes and Pigments 59: 173-179
  • 35. Wang X, Wang X, Zhao J, Song J, Wang J, Ma R, Ma J (2017). Solar light-driven photocatalytic destruction of Cyanobacteria by F-Ce-TiO2/expanded perlite floating composites. Chemical Engineering Journal 320: 253–263
  • 36. Wert E C, Dong M M, Rosario-Ortiz F L (2013). Using digital flow cytometry to assess the degradation of three Cyanobacteria species after oxidation processes. Water Res. 47 (11): 3752–3761
  • 37. WHO (1998). Guidelines for Drinking-Water Quality Second Edition – Volume 2, Health Criteria and Other Supporting Information – Addendum, World Health Organization, Geneva
  • 38. WHO (2002). Eutrophication and health, World Health Organization Regional Office for Europe, France
  • 39. Wu T Y Guo N, Teh C Y, Hay J X W (2013). Theory and Fundamentals of Ultrasound. Advances in Ultrasound Technology for Environmental Remediation Chapter 2, Springer, Netherlands
  • 40. Wu X, Joyce E M, Mason T J (2011). The effects of ultrasound on Cyanobacteria. Harmful Algae 10: 738–743
  • 41. Yang X, Wu X, Hao H, He Z (2008). Mechanisms and assessment of water eutrophication. J Zhejiang Univ Sci B, 9(3): 197-209
  • 42. Youssef Z, Colombeau L, Yesmurzayeva N, Baros F, Vanderesse R, Hamieh T, Toufaily J, Frochot C, Roques-Carmes T (2018). Dye-sensitized nanoparticles for heterogeneous photocatalysis: Cases studies with TiO2, ZnO, fullerene and graphene for water purification. Dyes and Pigments 159: 49-71
  • 43. Zegura B, Straser A, Filipic M (2011). Genotoxicity and potential carcinogenicity of Cyanobacterial toxins – a review. Mutation Research 727: 16–41
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme Makaleler
Yazarlar

Zeynep Eren Bu kişi benim 0000-0003-1633-2547

Yayımlanma Tarihi 31 Aralık 2018
Gönderilme Tarihi 1 Ekim 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 8 Sayı: 2

Kaynak Göster

APA Eren, Z. (2018). Su Kaynaklarında İleri Oksidasyon Prosesleri (İOP) ile Ötrofikasyon Kontrolü. Ordu Üniversitesi Bilim Ve Teknoloji Dergisi, 8(2), 243-253.