BibTex RIS Kaynak Göster

REGIONAL FIRST ORDER PERIODIC AUTOREGRESSIVE MODELS FOR MONTHLY FLOWS

Yıl 2008, Cilt: 14 Sayı: 1, 11 - 21, 01.01.2008

Öz

First order periodic autoregressive models is of mostly used models in modeling of time dependency of hydrological flow processes. In these models, periodicity of the correlogram is preserved as well as time dependency of processes. However, the parameters of these models, namely, inter-monthly lag-1 autocorrelation coefficients may be often estimated erroneously from short samples, since they are statistics of high order moments. Therefore, to constitute a regional model may be a solution that can produce more reliable and decisive estimates, and derive models and model parameters in any required point of the basin considered. In this study, definitions of homogeneous region for lag-1 autocorrelation coefficients are made; five parametric and non parametric models are proposed to set regional models of lag-1 autocorrelation coefficients. Regional models are applied on 30 stream flow gauging stations in Seyhan and Ceyhan basins, and tested by criteria of relative absolute bias, simple and relative root of mean square errors.

Kaynakça

  • Bayazıt, M. 1981. Hidrolojide İstatistik Yöntemler. İstanbul: İTÜ Matbaası, Sayı: 1197.
  • Bayazıt, M. 1996. İnşaat mühendisliğinde olasılık yöntemler. İstanbul: İstanbul Teknik Üniversitesi İnşaat Fakültesi Matbaası, Sayı : 1573.
  • Bayazıt, M. 2006. Çok Değişkenli İstatistik Analiz ve Hidrolojide Uygulamaları, İstanbul: Su Vakfı.
  • Beard, L. R. 1967. Hydrologic Simulation in Water Yield Areas. American Society of Civil Engineers. Journal of Irrigation and Drainage Div., 93, N. IRI.
  • Becker, A. 1992. Criteria for a Hydrologically Sound Structuring of Large Scale Land Surface Process Models, Advances. in Theoretical Hydrology 22, 97-112.
  • Benzeden, E. 1981. Kısa Süreli Aylık Akış Dizileri ile Kurulan Matematik Modellerin Periyodik Bileşen Yapısının İyileştirilmesi. Ege Üniversitesi, İnşaat Müh. Bölümü, İzmir.
  • Chow, V. T. 1964. Sect. 8-I: Sequential Generation of Hydrologic Information, In Handbook of Hydrology, (Ed.: Chow V. T). Newyork: Mc.Hill.
  • Hosking, J. R. M. ve Wallis, J. R. 1997. Regional Frequency Analysis: An Approach Based on LMoments. Cambridge University Press.
  • Johnson, D. E. 1998. Applied Multivariate Methods for Data Analysis, USA: Kansas State University.
  • Özçelik, C. 2007. Aylık Akış Dizileri İçin Genelleştirilmiş Periyodik Bileşen Modelleri. İzmir: DEÜ, FBE Doktora Tezi.
  • Rossi, F. and Villani P. 1994. Regional Flood Estimation Methods, In Coping with Floods (Eds: Rossi, G., Harmancıoğlu, N. and Yevjevich, V.), (135-169) Colorado: Kuwer Academic Publications.
  • Salas, J. D. 1978. Transfer of Information to Improve Estimate of Flood Frequencies. Hydrologic Analysis for Highway Engineering 22, 1-228.
  • Salas, J. D. and Delleur, J. W., Yevjevich, J. and Lane, W. L. 1980. Applied Modeling of Hydrologic Time Series. Michigan, Water Resources Publications.
  • Thomas, H. A. and Fiering, M. B. 1962. Mathemetical Synthesis of Streamflow Sequences for the Analysis of River Basins by Simulation. Harvard University Press 459-493.
  • Yevjevich, V. 1963. Fluctuations of Wet and Dry Years, Colarado: Fortcollins, Hydrology papers.
  • Yevjevich, V. 1972. Stochastic Process in Hydrology. Colorado: Water Resources Publications, 276 p.
  • Yevjevich, V. and Karplus A. K. 1973. Area Time Structure of the Monthly Precipitation Process, Fortcollins: Hydrology Papers.

AYLIK AKIŞLAR IÇIN BÖLGESEL BIRINCI MERTEBE PERIYODIK OTOREGRESIF MODELLER

Yıl 2008, Cilt: 14 Sayı: 1, 11 - 21, 01.01.2008

Öz

Birinci mertebe periyodik otoregresif modeller, hidrolojik akıs süreçlerinin iç bagımlılık yapısını modellemede en sık kullanılan modellerden birisidir. Bu modellerde akıs sürecinin iç bagımlılıgının yanında, korelogramın periyodikligi de korunmaktadır. Ancak, model parametreleri (aylararası 1-aralıklı otokorelasyon katsayıları) yüksek mertebe momentler içeren istatistikler olması nedeniyle, eldeki kısa süreli gözlem kayıtlarından çogu zaman yanılgılı bir biçimde kestirilebilmektedir. Bu nedenle, bölgesel bir model olusturmak, daha tutarlı ve güvenilir kestirimler yapabilecek ve havza içerisinde gerek duyulan her noktada model ve model parametreleri türetebilecek bir çözüm olarak ortaya çıkmaktadır. Bu çalısmada, aylararası 1-aralıklı otokorelasyon katsayıları için homojen bölge tanımları yapılmakta, parametrik ve parametrik olmayan 5 adet bölgesel model seçenegi önerilmektedir. Bölgesel modeller Seyhan ve Ceyhan havzalarında yer alan 30 akım gözlem istasyonunun gözlemleri kullanılarak, göreli mutlak yanlılık, basit ve göreli ortalama karesel yanılgıların karekökü ölçütleriyle sınanmaktadır.

Kaynakça

  • Bayazıt, M. 1981. Hidrolojide İstatistik Yöntemler. İstanbul: İTÜ Matbaası, Sayı: 1197.
  • Bayazıt, M. 1996. İnşaat mühendisliğinde olasılık yöntemler. İstanbul: İstanbul Teknik Üniversitesi İnşaat Fakültesi Matbaası, Sayı : 1573.
  • Bayazıt, M. 2006. Çok Değişkenli İstatistik Analiz ve Hidrolojide Uygulamaları, İstanbul: Su Vakfı.
  • Beard, L. R. 1967. Hydrologic Simulation in Water Yield Areas. American Society of Civil Engineers. Journal of Irrigation and Drainage Div., 93, N. IRI.
  • Becker, A. 1992. Criteria for a Hydrologically Sound Structuring of Large Scale Land Surface Process Models, Advances. in Theoretical Hydrology 22, 97-112.
  • Benzeden, E. 1981. Kısa Süreli Aylık Akış Dizileri ile Kurulan Matematik Modellerin Periyodik Bileşen Yapısının İyileştirilmesi. Ege Üniversitesi, İnşaat Müh. Bölümü, İzmir.
  • Chow, V. T. 1964. Sect. 8-I: Sequential Generation of Hydrologic Information, In Handbook of Hydrology, (Ed.: Chow V. T). Newyork: Mc.Hill.
  • Hosking, J. R. M. ve Wallis, J. R. 1997. Regional Frequency Analysis: An Approach Based on LMoments. Cambridge University Press.
  • Johnson, D. E. 1998. Applied Multivariate Methods for Data Analysis, USA: Kansas State University.
  • Özçelik, C. 2007. Aylık Akış Dizileri İçin Genelleştirilmiş Periyodik Bileşen Modelleri. İzmir: DEÜ, FBE Doktora Tezi.
  • Rossi, F. and Villani P. 1994. Regional Flood Estimation Methods, In Coping with Floods (Eds: Rossi, G., Harmancıoğlu, N. and Yevjevich, V.), (135-169) Colorado: Kuwer Academic Publications.
  • Salas, J. D. 1978. Transfer of Information to Improve Estimate of Flood Frequencies. Hydrologic Analysis for Highway Engineering 22, 1-228.
  • Salas, J. D. and Delleur, J. W., Yevjevich, J. and Lane, W. L. 1980. Applied Modeling of Hydrologic Time Series. Michigan, Water Resources Publications.
  • Thomas, H. A. and Fiering, M. B. 1962. Mathemetical Synthesis of Streamflow Sequences for the Analysis of River Basins by Simulation. Harvard University Press 459-493.
  • Yevjevich, V. 1963. Fluctuations of Wet and Dry Years, Colarado: Fortcollins, Hydrology papers.
  • Yevjevich, V. 1972. Stochastic Process in Hydrology. Colorado: Water Resources Publications, 276 p.
  • Yevjevich, V. and Karplus A. K. 1973. Area Time Structure of the Monthly Precipitation Process, Fortcollins: Hydrology Papers.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makale
Yazarlar

Ceyhun Özçelik Bu kişi benim

Yayımlanma Tarihi 1 Ocak 2008
Yayımlandığı Sayı Yıl 2008 Cilt: 14 Sayı: 1

Kaynak Göster

APA Özçelik, C. . (2008). AYLIK AKIŞLAR IÇIN BÖLGESEL BIRINCI MERTEBE PERIYODIK OTOREGRESIF MODELLER. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 14(1), 11-21.
AMA Özçelik C. AYLIK AKIŞLAR IÇIN BÖLGESEL BIRINCI MERTEBE PERIYODIK OTOREGRESIF MODELLER. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Ocak 2008;14(1):11-21.
Chicago Özçelik, Ceyhun. “AYLIK AKIŞLAR IÇIN BÖLGESEL BIRINCI MERTEBE PERIYODIK OTOREGRESIF MODELLER”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 14, sy. 1 (Ocak 2008): 11-21.
EndNote Özçelik C (01 Ocak 2008) AYLIK AKIŞLAR IÇIN BÖLGESEL BIRINCI MERTEBE PERIYODIK OTOREGRESIF MODELLER. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 14 1 11–21.
IEEE C. . Özçelik, “AYLIK AKIŞLAR IÇIN BÖLGESEL BIRINCI MERTEBE PERIYODIK OTOREGRESIF MODELLER”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 14, sy. 1, ss. 11–21, 2008.
ISNAD Özçelik, Ceyhun. “AYLIK AKIŞLAR IÇIN BÖLGESEL BIRINCI MERTEBE PERIYODIK OTOREGRESIF MODELLER”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 14/1 (Ocak 2008), 11-21.
JAMA Özçelik C. AYLIK AKIŞLAR IÇIN BÖLGESEL BIRINCI MERTEBE PERIYODIK OTOREGRESIF MODELLER. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2008;14:11–21.
MLA Özçelik, Ceyhun. “AYLIK AKIŞLAR IÇIN BÖLGESEL BIRINCI MERTEBE PERIYODIK OTOREGRESIF MODELLER”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 14, sy. 1, 2008, ss. 11-21.
Vancouver Özçelik C. AYLIK AKIŞLAR IÇIN BÖLGESEL BIRINCI MERTEBE PERIYODIK OTOREGRESIF MODELLER. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2008;14(1):11-2.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.