Araştırma Makalesi
BibTex RIS Kaynak Göster

Patlama, yangın ve toksik yayılım fiziksel etki alanının belirlenmesi

Yıl 2017, Cilt: 23 Sayı: 7, 845 - 853, 27.12.2017

Öz

Çalışmada,
patlama, yangın ve toksik yayılım ile sonuçlanan endüstriyel kazaların etki
alanlarının belirlenmesine yönelik metodoloji geliştirilmiştir. Afet riskli
alanlarının derecelendirilmesi için risk matrisi oluşturulmuştur. Sanayiciler
ile kontrol ve izlemede görevli ilgili kişi ya da kurumların hangi durumda
hangi etki alanı belirleme aracını kullanabileceği açıklanmaya ve standart bir
yaklaşım oluşturulmaya çalışılmıştır. Patlama, yangın ve toksik yayılım etkisi
oluşturabilecek bir kuruluş için aynı miktarda (30000Ib) toksik gaz (klor),
toksik sıvı (hidrazin) ve yanabilen madde (propan) üzerinden örnek uygulama
çalışmaları yürütülmüştür. Örnek uygulamalar, tesis dışı risk analizine dayanan
korelasyonlar ve ücretsiz ALOHA yazılımı kullanılarak gerçekleştirilmiştir.
Korelasyonlara ait alternatif senaryo sonuçları ALOHA yazılımı ile elde edilen
sonuçlarla uyumlu olarak belirlenmiştir. Böylece, etki alanını belirleyebilmek
için daha az veri bilgisi gerektiren korelasyonların öncelikli olarak pratik
bir şekilde uygulanabileceği tespit edilmiştir. En geniş sonlanma noktası
mesafesi (54.2 km-en kötü durum senaryosu, 60 dk. kırsal alan) örnek toksik
sıvı (hidrazin) için elde edilmiştir. Korelasyonlar değerlendirildiğinde,
kırsal alan için tüm sonlanma noktası mesafelerinin kentsel alana göre yüksek
olduğu belirlenmiştir. ALOHA yazılımında ise kırsal ve kentsel durum için
tehlike alanı mesafelerinin çok büyük bir değişim göstermediği tespit
edilmiştir. Örnek uygulama çalışmaları sonucunda kuruluş,  yüksek risk seviyesinde belirlenmiştir.

Kaynakça

  • Büyük Endüstriyel Kazaların Önlenmesi ve Etkilerinin Azaltılması Hakkında Yönetmelik, 30.12.2013 Tarih, 28867 Mükerrer Sayılı Resmi Gazete.
  • Jiang B, Su M, Liu Z, Cai F, Yuan S, Shi S, Lin B. “Effects of changes in fuel volume on the explosion-proof distance and the multiparameter attenuation characteristics of methane-air explosions in a semi-confined pipe”. Journal of Loss Prevention in the Process Industries, 39, 17-23, 2016.
  • Brzozowska L. “Computer simulation of impacts of a chlorine tanker truck accident”. Transportation Research Part D: Transport and Environment, 43, 107-122, 2016.
  • Cao H, Li T, Li S, Fan T. “An integrated emergency response model for toxic gas release accidents based on cellular automata”. Annals of Operations Research, 255(1-2), 617-638, 2016.
  • Shariff AM, Wahab NA, Rusli R. “Assessing the hazards from a Bleve and minimizing its impacts using the inherent safety consept”. Journal of Loss Prevention in the Process Industries, 41, 303-314, 2016.
  • Ebrahemzadih M, Maleki A, Darvishi E, Abadi MM, Dehestaniathar S. “The analysis of process accidents due to risks in the petrochemical ındustries-the case study of radiation ıntensity determination proportional to distance from tank level”. Open Journal of Safety Science and Technology, 5(2),21-26, 2015.
  • Sochet I, Sauvan PE, Boulanger R, Nozeres F. “Effect of a gas charge explosion at the closed end of a gas storage system”. Journal of Loss Prevention in the Process Industries, 27, 42-48, 2014.
  • Pitblado R, Alderman J, Thomas JK. “Facilitating consistent siting hazard distance predictions using the TNO multi-energy model”. Journal of Loss Prevention in the Process Industries, 30, 287-295, 2014.
  • Ji W, Wen-hua S. “Fire and Explosion Index calculation method incorporating classified safety measure credits”. Journal of Loss Prevention in the Process Industries, 26, 1128-1133, 2013.
  • Tauseef SM, Rashtchian D, Abbasi T, Abbasi SA, “A method for simulation of vapour cloud explosions based on computational fluid dynamics (CFD)”. Journal of Loss Prevention in the Process Industries, 24, 638-647, 2011.
  • Angan S, Gupta AK, Mishra IM. “Engineering layout of fuel tanks in a tank farm”. Journal of Loss Prevention in the Process Industries, 24, 568-574, 2011.
  • Sandercock P, Mark L. “Fire investigation and ignitable liquid residue analysis-a review: 2001-2007”. Forensic Science International, 176(2-3), 93-110, 2008.
  • Shariff AM, Rusli R, Leong CT, Radhakrishnan VR, Buang A. “Inherent safety tool for explosion consequences study”. Journal of Loss Prevention in the Process Industries, 19(5), 409-418, 2006.
  • Siuta D, Markowski AS, Mannan MS. “Uncertainty techniques in liquefied natural gas (LNG) dispersion calculations”. Journal of Loss Prevention in the Process Industries, 26(3), 418-426, 2013.
  • Kao CS, Hu KH. “Acrylic reactor runaway and explosion accident analysis”. Journal of Loss Prevention in the Process Industries, 15(3), 213-222, 2002.
  • Ciccarelli G, Fthenakis VM, Boccio JL. “A method of analysis for gas explosions: H2Se case study”. Journal of Loss Prevention in the Process Industries, 12(2), 157-165, 1999.
  • Planas-Cuchi E, Vı´lchez JA, Pe´rez-Alavedra FX, Casal J. “Effects of fire on a container storage system-a case study”. Journal of Loss Prevention in the Process Industries, 11(5), 323-331, 1998.
  • Risk Management Program Guidance for Offsite Consequence Analysis. “United States Environmental Protection Agency”. https://www.hsdl.org/?abstract&did=32802&advancedadvanced (01.12.2015).
  • Yellow Book. “Methods for the Calculation of Physical Effects Due to releases of hazardous materials (liquids and Gases)”. http://content.publicatiereeksgevaarlijkestoffen.nl/docments/PGS2/PGS2-1997-v0.1-physical-effects.pdf (24.12.2015).
  • Purple Book. “Guidelines for Quantitative Risk Assessment”. http://content.publicatiereeksgevaarlijkestoffen.nl/docments/PGS3/PGS3-1999-v0.1-quantitative-risk-assessment.pdf (06.01.2016).
  • Green Book. “Methods for the determination of possible damage to people and objects resulting from releases of hazardous materials”. http://tr.scribd.com/doc/61170131/Green-Book-Methods-for-the-Determination-of-Possible-Damage-CPR-16E#scribd (06.01.2016)
  • Red Book “Methods for determining and processing probabilities”. http://content.publicatiereeksgevaarlijkestoffen.nl/documents/PGS4/PGS4-1997-v0.1-probabilities.pdf (06.01.2016).

Determination of explosion, fire and toxic emission physical effect areas

Yıl 2017, Cilt: 23 Sayı: 7, 845 - 853, 27.12.2017

Öz

In the
study, a methodology was developed for the determination of effect areas
considering explosion, fire and toxic emissions of industrial accidents. A risk
matrix was established for grading of disaster risk areas. It was tried to
explain that manufacturers and control and monitoring of the relevant person or
institution in charge of in which state and with which tool could be used to
determine the impact area and to create a standard approach. The case studies
were carried out over the same amount (13 620 kg) of toxic gases (chlorine),
toxic liquids (hydrazine) and flammable substances (propane) which might pose
explosion, fire and toxic emissions affects for an establishment. The case
studies were performed with using correlations based on offsite consequence
analysis and free ALOHA software. The results of alternative scenario
correlation were determined in accordance with the results obtained with the
ALOHA software. Thus, it was determined that correlations required less
information in order to determine effect area may be implemented in a practical
way primarily. The largest end-point distance (54.2 km-worst case scenario, 60 min,
rural areas) was obtained for sample toxic liquid (hydrazine). When
correlations were evaluated, all endpoint distance for rural areas were found
to be higher than in urban areas. Threat zone distances were found to be not change
so much in ALOHA software for rural and urban areas. The establishment was
obtained at a high risk level as a result of case studies.

Kaynakça

  • Büyük Endüstriyel Kazaların Önlenmesi ve Etkilerinin Azaltılması Hakkında Yönetmelik, 30.12.2013 Tarih, 28867 Mükerrer Sayılı Resmi Gazete.
  • Jiang B, Su M, Liu Z, Cai F, Yuan S, Shi S, Lin B. “Effects of changes in fuel volume on the explosion-proof distance and the multiparameter attenuation characteristics of methane-air explosions in a semi-confined pipe”. Journal of Loss Prevention in the Process Industries, 39, 17-23, 2016.
  • Brzozowska L. “Computer simulation of impacts of a chlorine tanker truck accident”. Transportation Research Part D: Transport and Environment, 43, 107-122, 2016.
  • Cao H, Li T, Li S, Fan T. “An integrated emergency response model for toxic gas release accidents based on cellular automata”. Annals of Operations Research, 255(1-2), 617-638, 2016.
  • Shariff AM, Wahab NA, Rusli R. “Assessing the hazards from a Bleve and minimizing its impacts using the inherent safety consept”. Journal of Loss Prevention in the Process Industries, 41, 303-314, 2016.
  • Ebrahemzadih M, Maleki A, Darvishi E, Abadi MM, Dehestaniathar S. “The analysis of process accidents due to risks in the petrochemical ındustries-the case study of radiation ıntensity determination proportional to distance from tank level”. Open Journal of Safety Science and Technology, 5(2),21-26, 2015.
  • Sochet I, Sauvan PE, Boulanger R, Nozeres F. “Effect of a gas charge explosion at the closed end of a gas storage system”. Journal of Loss Prevention in the Process Industries, 27, 42-48, 2014.
  • Pitblado R, Alderman J, Thomas JK. “Facilitating consistent siting hazard distance predictions using the TNO multi-energy model”. Journal of Loss Prevention in the Process Industries, 30, 287-295, 2014.
  • Ji W, Wen-hua S. “Fire and Explosion Index calculation method incorporating classified safety measure credits”. Journal of Loss Prevention in the Process Industries, 26, 1128-1133, 2013.
  • Tauseef SM, Rashtchian D, Abbasi T, Abbasi SA, “A method for simulation of vapour cloud explosions based on computational fluid dynamics (CFD)”. Journal of Loss Prevention in the Process Industries, 24, 638-647, 2011.
  • Angan S, Gupta AK, Mishra IM. “Engineering layout of fuel tanks in a tank farm”. Journal of Loss Prevention in the Process Industries, 24, 568-574, 2011.
  • Sandercock P, Mark L. “Fire investigation and ignitable liquid residue analysis-a review: 2001-2007”. Forensic Science International, 176(2-3), 93-110, 2008.
  • Shariff AM, Rusli R, Leong CT, Radhakrishnan VR, Buang A. “Inherent safety tool for explosion consequences study”. Journal of Loss Prevention in the Process Industries, 19(5), 409-418, 2006.
  • Siuta D, Markowski AS, Mannan MS. “Uncertainty techniques in liquefied natural gas (LNG) dispersion calculations”. Journal of Loss Prevention in the Process Industries, 26(3), 418-426, 2013.
  • Kao CS, Hu KH. “Acrylic reactor runaway and explosion accident analysis”. Journal of Loss Prevention in the Process Industries, 15(3), 213-222, 2002.
  • Ciccarelli G, Fthenakis VM, Boccio JL. “A method of analysis for gas explosions: H2Se case study”. Journal of Loss Prevention in the Process Industries, 12(2), 157-165, 1999.
  • Planas-Cuchi E, Vı´lchez JA, Pe´rez-Alavedra FX, Casal J. “Effects of fire on a container storage system-a case study”. Journal of Loss Prevention in the Process Industries, 11(5), 323-331, 1998.
  • Risk Management Program Guidance for Offsite Consequence Analysis. “United States Environmental Protection Agency”. https://www.hsdl.org/?abstract&did=32802&advancedadvanced (01.12.2015).
  • Yellow Book. “Methods for the Calculation of Physical Effects Due to releases of hazardous materials (liquids and Gases)”. http://content.publicatiereeksgevaarlijkestoffen.nl/docments/PGS2/PGS2-1997-v0.1-physical-effects.pdf (24.12.2015).
  • Purple Book. “Guidelines for Quantitative Risk Assessment”. http://content.publicatiereeksgevaarlijkestoffen.nl/docments/PGS3/PGS3-1999-v0.1-quantitative-risk-assessment.pdf (06.01.2016).
  • Green Book. “Methods for the determination of possible damage to people and objects resulting from releases of hazardous materials”. http://tr.scribd.com/doc/61170131/Green-Book-Methods-for-the-Determination-of-Possible-Damage-CPR-16E#scribd (06.01.2016)
  • Red Book “Methods for determining and processing probabilities”. http://content.publicatiereeksgevaarlijkestoffen.nl/documents/PGS4/PGS4-1997-v0.1-probabilities.pdf (06.01.2016).
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Makale
Yazarlar

Saliha Çetinyokuş 0000-0001-9955-6428

Yayımlanma Tarihi 27 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 23 Sayı: 7

Kaynak Göster

APA Çetinyokuş, S. (2017). Patlama, yangın ve toksik yayılım fiziksel etki alanının belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(7), 845-853.
AMA Çetinyokuş S. Patlama, yangın ve toksik yayılım fiziksel etki alanının belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2017;23(7):845-853.
Chicago Çetinyokuş, Saliha. “Patlama, yangın Ve Toksik yayılım Fiziksel Etki alanının Belirlenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 23, sy. 7 (Aralık 2017): 845-53.
EndNote Çetinyokuş S (01 Aralık 2017) Patlama, yangın ve toksik yayılım fiziksel etki alanının belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 23 7 845–853.
IEEE S. Çetinyokuş, “Patlama, yangın ve toksik yayılım fiziksel etki alanının belirlenmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 23, sy. 7, ss. 845–853, 2017.
ISNAD Çetinyokuş, Saliha. “Patlama, yangın Ve Toksik yayılım Fiziksel Etki alanının Belirlenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 23/7 (Aralık 2017), 845-853.
JAMA Çetinyokuş S. Patlama, yangın ve toksik yayılım fiziksel etki alanının belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2017;23:845–853.
MLA Çetinyokuş, Saliha. “Patlama, yangın Ve Toksik yayılım Fiziksel Etki alanının Belirlenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 23, sy. 7, 2017, ss. 845-53.
Vancouver Çetinyokuş S. Patlama, yangın ve toksik yayılım fiziksel etki alanının belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2017;23(7):845-53.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.