Araştırma Makalesi
BibTex RIS Kaynak Göster

Dairesel bir kanalda soğutma şartları altında MHD sıvı lityum akışın sayısal olarak incelenmesi

Yıl 2018, Cilt: 24 Sayı: 1, 30 - 35, 27.02.2018

Öz

Bu
çalışmada, lityum sıvısı dıştan manyetik alan indüksiyonuna maruz bırakılan üç
boyutlu dairesel bir kanalda sayısal olarak incelenmiştir. Manyetik alan,
kanala akış yönüne dik olarak uygulanmıştır. Re=2250 ve manyetik alan kuvveti
sırasıyla 0T, 0.04T, 0.08T ve 0.12T olarak seçilmiştir. Bunun yanında, akışkan
sıcaklığı 473.15 K iken cidar sıcaklığı 373.15 K’dir. Hesaplamalar ANSYS-Fluent
ticari yazılımı ile gerçekleştirilmiştir. Manyetik alanın akışkan hızı, basınç
ve sıcaklık üzerindeki etkileri grafiksel olarak sunulmuştur. Manyetik alan
etkisinin akışkan hızını azaltırken, basıncı arttırdığı gözlemlenmiştir. Ayrıca,
manyetik alan boru uzunluğu boyunca kanalın farklı bölgelerinde, sıcaklığı
farklı şekilde etkilediği gözlemlenmiştir.

Kaynakça

  • Salman BH, Mohammed HA, Kherbeet ASh. “Heat transfer enhancement of nanofluids flow in microtube with constant heat flux”. International Communications in Heat and Mass Transfer, 39(8), 1195-1204, 2012.
  • Gajbhiye NL, Eswaran V. “Numerical simulation of MHD flow and heat transfer in a rectangular and smoothly constricted enclosure”. International Journal of Heat and Mass Transfer, 83, 441-449, 2015.
  • Sun ZHI, Zhang X, Guo M, Pandelaers L, Vleugels J, Van der Biest O, Van Reusel K. and Blanpian B. “Strong magnetic field effects on solid–liquid and particle-particle interactions during the processing of a conducting liquid containing non-conducting particles”. Journal of Colloid and Interface Science, 375(1), 203-212, 2012.
  • Öztop HF, Rahma MM, Ahsan A, Hasanuzzaman M, Saidur R, Al-Salem K, Rahim NA. “MHD natural convection in an enclosure from two semi-circular heaters on the bottom wall”. International Journal of Heat and Mass Transfer, 55 (7), 1844-1854, 2012.
  • Di Piazza I, Ciofalo M, “MHD free convection in a liquid-metal filled cubic enclosure. I. Differential heating”. International Journal of Heat and Mass Transfer, 45(7), 1477-1492, 2002.
  • Pekmen B, Tezer-Sezgin M. “Numerical solution of buoyancy MHD flow with magnetic potential”. International Journal of Heat and Mass Transfer, 71, 172-182, 2014.
  • Mejri I, Mahmoudi A, Abbasi MA, Omri, A. “Magnetic field effect on entropy generation in a nanofluid-filled enclosure with sinusoidal heating on both side walls”. Powder Technology, 266, 340-353, 2014.
  • Recebli Z, Selimli, S, Gedik, E. “Three dimensional numerical analysis of magnetic field effect on convective heat transfer during the MHD steady state laminar flow of liquid lithium in a cylindrical pipe”. Computers & Fluids, 88, 410-417, 2013.
  • Kim CN, “Liquid metal magnetohydrodynamic flows in an electrically conducting rectangular duct with sudden expansion”. Computers & Fluids, 89, 232-241, 2014.
  • Ke Y, Wang HY, Wu YC. “MHD simulation of the liquid metal/helium gas dual-cooled waste transmutation blanket for FDS”. Fusion Engineering and Design, 69(1), 431-435, 2003.
  • Zaloğlu A, Yalçınkaya G. “Paralel iki levha arasındaki viskoz akışkanın MHD radyal titreşimli akışı”. İTÜ dergisi/d, 2(5), 53-60, 2003.
  • Kumar A, Singh AK. “Unsteady MHD free convective flow past a semi-infinite vertical wall with induced magnetic field”. Applied Mathematics and Computation, 222, 462-471, 2013.
  • Gedik E. Silindirik Borularda Manyetohidrodinamik Akışın Deneysel Olarak İncelenmesi ve Hesaplamalı Akışkanlar Dinamiği ile Sayısal Analizi. Doktora Tezi, Karabük Üniversitesi, Karabük, Türkiye, 2012.
  • Aoyagi M, Ito S, Hashizume H, Muroga, T. “MHD pressure drop characteristics in a three-surface-multi-layered channel under a strong magnetic field”. Fusion Engineering and Design, 85 (7), 1181-1184, 2010.
  • Ellahi R. “The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions”. Applied Mathematical Modelling, 37(3), 1451-1467, 2013.
  • Nasrin R, Alim MA. “Control volume finite element simulation of MHD forced and natural convection in a vertical channel with a heat-generating pipe”. International Journal of Heat and Mass Transfer, 55(11), 2813-2821, 2012.
  • Malvandi A, Safaei MR, Kaffash MH, Ganji DD. “MHD mixed convectionin a vertical annulus filled with Al2O3–water nanofluid considering nanoparticle migration”. Journal of Magnetism and Magnetic Materials, 382, 296-306, 2015.
  • Sheikholeslami M, Hatami M, Ganji DD. “Analytical investigation of MHD nanofluid flow in a semi-porous channel”. Powder Technology, 246, 327-336, 2013.
  • Kiyasatfar M, Pourmahmoud N. “Laminar MHD flow and heat transfer of power-law fluids in square microchannels”. International Journal of Thermal Sciences, 99, 26-35, 2016.
  • Sheikholeslami M, Vajravelu K, Rashidi MM. “Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field”. International Journal of Heat and Mass Transfer, 92, 339-348, 2016.
  • Karimipour A, D’Orazio A, Shadloo MS. “The effects of different nano particles of Al2O3 and Ag on the MHD nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump”. Physica E, 86, 146-153, 2017.
  • Davison HW. “Compilation of thermophysical properties of liquid lithium”. National Aeronautics and Space Administration, Washington, USA, 4, 1968.

Numerically investigation of MHD liquid lithium flow under cooling conditions in a circular channel

Yıl 2018, Cilt: 24 Sayı: 1, 30 - 35, 27.02.2018

Öz

In
this study, the lithium fluid was numerically analyzed in a three-dimensional
circular channel exposed to external magnetic field induction. The magnetic
field is applied perpendicular to the flow direction of the channel. Re=2250
and the magnetic field strength was selected as 0T, 0.04T, 0.08T and 0.12T,
respectively. Besides, while the fluid temperature is 473.15 K, the wall
temperature is 373.15 K. Calculations were performed with ANSYS-Fluent
commercial software. The effect of the magnetic field on the fluid velocity, pressure
and temperature has presented graphically. While the magnetic field seriously
has reduced the fluid velocity, the pressure has observed to increase. Also, it
has been observed that the magnetic field affects the temperature differently
in different regions of the channel along the pipe length.

Kaynakça

  • Salman BH, Mohammed HA, Kherbeet ASh. “Heat transfer enhancement of nanofluids flow in microtube with constant heat flux”. International Communications in Heat and Mass Transfer, 39(8), 1195-1204, 2012.
  • Gajbhiye NL, Eswaran V. “Numerical simulation of MHD flow and heat transfer in a rectangular and smoothly constricted enclosure”. International Journal of Heat and Mass Transfer, 83, 441-449, 2015.
  • Sun ZHI, Zhang X, Guo M, Pandelaers L, Vleugels J, Van der Biest O, Van Reusel K. and Blanpian B. “Strong magnetic field effects on solid–liquid and particle-particle interactions during the processing of a conducting liquid containing non-conducting particles”. Journal of Colloid and Interface Science, 375(1), 203-212, 2012.
  • Öztop HF, Rahma MM, Ahsan A, Hasanuzzaman M, Saidur R, Al-Salem K, Rahim NA. “MHD natural convection in an enclosure from two semi-circular heaters on the bottom wall”. International Journal of Heat and Mass Transfer, 55 (7), 1844-1854, 2012.
  • Di Piazza I, Ciofalo M, “MHD free convection in a liquid-metal filled cubic enclosure. I. Differential heating”. International Journal of Heat and Mass Transfer, 45(7), 1477-1492, 2002.
  • Pekmen B, Tezer-Sezgin M. “Numerical solution of buoyancy MHD flow with magnetic potential”. International Journal of Heat and Mass Transfer, 71, 172-182, 2014.
  • Mejri I, Mahmoudi A, Abbasi MA, Omri, A. “Magnetic field effect on entropy generation in a nanofluid-filled enclosure with sinusoidal heating on both side walls”. Powder Technology, 266, 340-353, 2014.
  • Recebli Z, Selimli, S, Gedik, E. “Three dimensional numerical analysis of magnetic field effect on convective heat transfer during the MHD steady state laminar flow of liquid lithium in a cylindrical pipe”. Computers & Fluids, 88, 410-417, 2013.
  • Kim CN, “Liquid metal magnetohydrodynamic flows in an electrically conducting rectangular duct with sudden expansion”. Computers & Fluids, 89, 232-241, 2014.
  • Ke Y, Wang HY, Wu YC. “MHD simulation of the liquid metal/helium gas dual-cooled waste transmutation blanket for FDS”. Fusion Engineering and Design, 69(1), 431-435, 2003.
  • Zaloğlu A, Yalçınkaya G. “Paralel iki levha arasındaki viskoz akışkanın MHD radyal titreşimli akışı”. İTÜ dergisi/d, 2(5), 53-60, 2003.
  • Kumar A, Singh AK. “Unsteady MHD free convective flow past a semi-infinite vertical wall with induced magnetic field”. Applied Mathematics and Computation, 222, 462-471, 2013.
  • Gedik E. Silindirik Borularda Manyetohidrodinamik Akışın Deneysel Olarak İncelenmesi ve Hesaplamalı Akışkanlar Dinamiği ile Sayısal Analizi. Doktora Tezi, Karabük Üniversitesi, Karabük, Türkiye, 2012.
  • Aoyagi M, Ito S, Hashizume H, Muroga, T. “MHD pressure drop characteristics in a three-surface-multi-layered channel under a strong magnetic field”. Fusion Engineering and Design, 85 (7), 1181-1184, 2010.
  • Ellahi R. “The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions”. Applied Mathematical Modelling, 37(3), 1451-1467, 2013.
  • Nasrin R, Alim MA. “Control volume finite element simulation of MHD forced and natural convection in a vertical channel with a heat-generating pipe”. International Journal of Heat and Mass Transfer, 55(11), 2813-2821, 2012.
  • Malvandi A, Safaei MR, Kaffash MH, Ganji DD. “MHD mixed convectionin a vertical annulus filled with Al2O3–water nanofluid considering nanoparticle migration”. Journal of Magnetism and Magnetic Materials, 382, 296-306, 2015.
  • Sheikholeslami M, Hatami M, Ganji DD. “Analytical investigation of MHD nanofluid flow in a semi-porous channel”. Powder Technology, 246, 327-336, 2013.
  • Kiyasatfar M, Pourmahmoud N. “Laminar MHD flow and heat transfer of power-law fluids in square microchannels”. International Journal of Thermal Sciences, 99, 26-35, 2016.
  • Sheikholeslami M, Vajravelu K, Rashidi MM. “Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field”. International Journal of Heat and Mass Transfer, 92, 339-348, 2016.
  • Karimipour A, D’Orazio A, Shadloo MS. “The effects of different nano particles of Al2O3 and Ag on the MHD nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump”. Physica E, 86, 146-153, 2017.
  • Davison HW. “Compilation of thermophysical properties of liquid lithium”. National Aeronautics and Space Administration, Washington, USA, 4, 1968.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makale
Yazarlar

Murat Erdem 0000-0003-0287-1881

Müjdat Fırat Bu kişi benim 0000-0001-6978-9044

Yasin Varol 0000-0003-2989-7125

Yayımlanma Tarihi 27 Şubat 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 24 Sayı: 1

Kaynak Göster

APA Erdem, M., Fırat, M., & Varol, Y. (2018). Dairesel bir kanalda soğutma şartları altında MHD sıvı lityum akışın sayısal olarak incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(1), 30-35.
AMA Erdem M, Fırat M, Varol Y. Dairesel bir kanalda soğutma şartları altında MHD sıvı lityum akışın sayısal olarak incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Şubat 2018;24(1):30-35.
Chicago Erdem, Murat, Müjdat Fırat, ve Yasin Varol. “Dairesel Bir Kanalda soğutma şartları altında MHD sıvı Lityum akışın sayısal Olarak Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24, sy. 1 (Şubat 2018): 30-35.
EndNote Erdem M, Fırat M, Varol Y (01 Şubat 2018) Dairesel bir kanalda soğutma şartları altında MHD sıvı lityum akışın sayısal olarak incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24 1 30–35.
IEEE M. Erdem, M. Fırat, ve Y. Varol, “Dairesel bir kanalda soğutma şartları altında MHD sıvı lityum akışın sayısal olarak incelenmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 24, sy. 1, ss. 30–35, 2018.
ISNAD Erdem, Murat vd. “Dairesel Bir Kanalda soğutma şartları altında MHD sıvı Lityum akışın sayısal Olarak Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24/1 (Şubat 2018), 30-35.
JAMA Erdem M, Fırat M, Varol Y. Dairesel bir kanalda soğutma şartları altında MHD sıvı lityum akışın sayısal olarak incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24:30–35.
MLA Erdem, Murat vd. “Dairesel Bir Kanalda soğutma şartları altında MHD sıvı Lityum akışın sayısal Olarak Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 24, sy. 1, 2018, ss. 30-35.
Vancouver Erdem M, Fırat M, Varol Y. Dairesel bir kanalda soğutma şartları altında MHD sıvı lityum akışın sayısal olarak incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24(1):30-5.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.