Araştırma Makalesi
BibTex RIS Kaynak Göster

Grafen oksit (GO) ve indirgenmiş grafen oksit (RGO) dolgulu PVC kompozitlerin mekanik özelliklerinin karşılaştırılması

Yıl 2019, Cilt: 25 Sayı: 1, 43 - 48, 26.02.2019

Öz

Grafen
türevleri (grafen oksit-GO, indirgenmiş grafen oksit-RGO, çok tabakalı grafen-MLG
vb.) polimer malzemelerin özelliklerini iyileştirmek için yüksek potansiyele
sahip dolgu maddeleri olarak bilinmektedirler. Bu çalışmada kompozitlerin
mekanik özelliklerinde ki değişim dolgu tipine ve dolgu miktarına göre
incelenmiştir. Kompozitler, dolgu maddeleri olarak GO ve RGO, matriks olarak
polivinil klorür (PVC) ile hazırlanmıştır. X-ışını kırınımı (XRD) sonuçları, GO
ve RGO tabakalarının polimer matriksde homojen dağıldığını göstermiştir.
Taramalı elektron mikroskobu (SEM) çalışmaları, RGO içeren kompozitin düz ve
pürüzsüz, GO içeren kompozitin ise

dolgu- matriks etkileşimi daha iyi olduğu için yüksek oranda gözenekli
morfoloji sergilediklerini ortaya koymuştur. Yüksek GO (ağırlıkça %1) ve düşük
RGO (ağırlıkça %0.1) içeren kompozitlerin mekanik özellikleri önemli bir
iyileşme sergilemiştir. Dolgu maddesi içermeyen PVC’ye nazaran ağırlıkça %1 GO
ve %0.1 RGO içeren kompozitlerin çekme mukavemetleri sırasıyla %84 ve %42
artmıştır. RGO ilavesi kompozit yapıyı rijitleştirdiğinden, RGO içeren kompozitler
GO içeren kompozitlere kıyasla daha yüksek mikrosertlik ve daha düşük yüzde
uzama değerleri sergilemişlerdir.

Kaynakça

  • Marathe DS, Joshi PS. “Characterization of highly filled wood flour-PVC composites: Morphological and thermal studies”. Journal of Applied Polymer Science, 11(1), 90-96, 2009.
  • Janajreha I, Alshraha M, Zamzam S. “Mechanical recycling of PVC plastic waste streams from cable industry: A case study”. Sustainable Cities and Society, 18, 13-20, 2015.
  • Wang H, Xie G, Fang M, Ying Z, Tong Y, Zeng Y. “Electrical and mechanical properties of antistatic PVC films containing multi-layer graphene”. Composites Part B, 79, 444-450, 2015.
  • Hu J, Jia X, Li C, Ma Z, Zhang G, Sheng W, Zhang X, Wei Z. “Effect of interfacial interaction between graphene oxide derivatives and poly(vinyl chloride) upon the mechanical properties of their nanocomposites”. Journal of Materials Science, 49(7), 943-2951, 2014.
  • Deshmukh K, Joshi GM. “Thermo-mechanical properties of poly (vinyl chloride)/graphene oxide as high performance nanocomposites”. Polymer Testing, 34, 211-219, 2014.
  • Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. “Graphene and Graphene Oxide: Synthesis, Properties, and Applications”. Advances Materials, 22, 3906-3924, 2010.
  • Kim F, Cote LJ, Huang J. “Graphene Oxide: Surface Activity and Two-Dimensional Assembly”. Advances Materials, 22, 1954-1958, 2010.
  • Joshi GM, Deshmukh K. “Optimized Quality Factor of Graphene Oxide-Reinforced PVC Nanocomposite”. Journal of Electronic Materials, 43(4), 1161-1165, 2014.
  • Jin Y, Huang S, Zhang M, Jia M, Hu D. “A Green and Efficient Method to Produce Graphene for Electrochemical Capacitors From Graphene Oxide Using Sodium Carbonate As A Reducing Agent”. Applied Surface Science, 268, 541-546, 2013.
  • Wang H, Yuan X, Wu Y, Huang H, Peng X, Zeng G, Zhong H, Liang J, Ren M. “Graphene-Based Materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation”. Advances in Colloid and Interface Science, 195-196, 19-40, 2013.
  • Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. “Graphene Based Materials: Past, Present and Future”. Progress in Materials Science, 56, 1178-1271, 2011.
  • Dağcı K. Poli (Pyronin Y) Ince Filmlerinin ve Müstakil Grafen/Poli(Pyronin Y)/Gümüş Nanopartikül Elektrotların Hazırlanması, Karakterizasyonu ve Nitritin Amperometrik Tayininde Kullanılması. Doktora Tezi, Atatürk Üniversitesi, Erzurum, Türkiye, 2015.
  • Liu Y, Zhang Y, Ma G, Wang Z, Liu K, Liu H. “Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor”. Electrochimica Acta, 88, 519-525, 2013.
  • Kamisan AI, Kamisan AS, Ali RMd, Tunku Kudin TI, Hassan OH, Halim NA, Yahya MZA. “Synthesis of graphene via green reduction of graphene oxide with simple sugars”. Advanced Materials Research, 1107, 542-546, 2015.
  • Wang Y, Shi Z, Yin J. “Facile Synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites”. ACS Applied Materials & Interfaces, 3, 1127-1133, 2011.
  • Fernandez-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon JMD. “Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions”. Journal of Physical Chemistry C, 114, 6426-6432, 2010.
  • Hummers WS, Offeman RE. “Preparation of graphitic oxide”. Journal of the American Chemical Society, 80(6), 1339,1958.
  • Gurunathan S, Han JW, Kim E, Kwon DN, Park JK, Kim JH. “Enhanced green fluorescent protein-mediated synthesis of biocompatible graphene”. Journal of Nanobiotechnology, 12(41), 1-16, 2014.
  • Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S. “Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability”. Carbon, 49, 198-205, 2011.
  • Bora C, Bharali P, Baglari S, Dolui SK, Konwar BK. “Strong and conductive reduced graphene oxide/polyester resin composite films with improved mechanical strength, thermal stability and its antibacterial activity”. Composites Science and Technology, 87, 1-7, 2013.
  • Safarpour M, Khataee A, Vatanpour V. “Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance”. Journal of Membrane Science, 489, 43-54, 2015.
  • Li D, Zhang B, Xuan F. “The sequestration of Sr(II) and Cs(I) from aqueous solutions by magnetic graphene oxides”. Journal of Molecular Liquids, 209, 508-514, 2015.
  • Zheng YT, Cao DR, Wang DS, Chen JJ. “Study on the interface modification of bagasse fibre and the mechanical properties of its composite with PVC”. Composites: Part A, 38, 20-25, 2007.
  • Duttagupta SP, Chen XL, Jenekhe SA, Fauchet PM. “Microhardness of porous silicon films and composites”. Solid State Communications, 101, 33-37, 1997.
  • Crespo JE, Sanchez L, Garcıa D, Lopez J. “Study of the mechanical and morphological properties of plasticized pvc composites containing rice husk fillers”. Journal of Reinforced Plastics and Composites, 27(3), 229-243, 2008.

A comparison study on mechanical properties of PVC composites filled by graphene oxide (GO) and reduced graphene oxide (RGO)

Yıl 2019, Cilt: 25 Sayı: 1, 43 - 48, 26.02.2019

Öz

Graphene
derivatives (graphene oxide-GO, reduced graphene oxide-RGO, multi-layer
grapheme-MLG, etc.) generally are considered to be extremely significant
fillers to improve properties of polymer materials. In this work, the
mechanical properties of the composites according to filler type and filler
loading were investigated. The composites were prepared using GO, RGO as the
fillers and polyvinyl chloride (PVC) as a matrix. The X-ray diffraction (XRD)
studies on the composites showed that the GO and RGO layers well-dispersed in
polymer matrix. The scanning electron microscopy (SEM) showed that the
composite with RGO exhibited smooth and clean surfaces, but the surface images
of the composite with GO showed highly porous morphology because of the good
filler-matrix interaction. The composites at a high GO loading

(1% wt.) and a low RGO loading (0.1% wt.) indicated a prominent improvement in
the mechanical properties. When compared the unfilled PVC, the tensile strength
of the composite with 1 wt.% loading of the GO and 0.1 wt.% loading of the RGO
increased by 84% and 42%, respectively. The composite with RGO showed a higher
microhardness value compared to that of the composite with GO, but the
elongation at break of the composite with RGO decreased because RGO loading
increased the brittleness of composite structure.

Kaynakça

  • Marathe DS, Joshi PS. “Characterization of highly filled wood flour-PVC composites: Morphological and thermal studies”. Journal of Applied Polymer Science, 11(1), 90-96, 2009.
  • Janajreha I, Alshraha M, Zamzam S. “Mechanical recycling of PVC plastic waste streams from cable industry: A case study”. Sustainable Cities and Society, 18, 13-20, 2015.
  • Wang H, Xie G, Fang M, Ying Z, Tong Y, Zeng Y. “Electrical and mechanical properties of antistatic PVC films containing multi-layer graphene”. Composites Part B, 79, 444-450, 2015.
  • Hu J, Jia X, Li C, Ma Z, Zhang G, Sheng W, Zhang X, Wei Z. “Effect of interfacial interaction between graphene oxide derivatives and poly(vinyl chloride) upon the mechanical properties of their nanocomposites”. Journal of Materials Science, 49(7), 943-2951, 2014.
  • Deshmukh K, Joshi GM. “Thermo-mechanical properties of poly (vinyl chloride)/graphene oxide as high performance nanocomposites”. Polymer Testing, 34, 211-219, 2014.
  • Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. “Graphene and Graphene Oxide: Synthesis, Properties, and Applications”. Advances Materials, 22, 3906-3924, 2010.
  • Kim F, Cote LJ, Huang J. “Graphene Oxide: Surface Activity and Two-Dimensional Assembly”. Advances Materials, 22, 1954-1958, 2010.
  • Joshi GM, Deshmukh K. “Optimized Quality Factor of Graphene Oxide-Reinforced PVC Nanocomposite”. Journal of Electronic Materials, 43(4), 1161-1165, 2014.
  • Jin Y, Huang S, Zhang M, Jia M, Hu D. “A Green and Efficient Method to Produce Graphene for Electrochemical Capacitors From Graphene Oxide Using Sodium Carbonate As A Reducing Agent”. Applied Surface Science, 268, 541-546, 2013.
  • Wang H, Yuan X, Wu Y, Huang H, Peng X, Zeng G, Zhong H, Liang J, Ren M. “Graphene-Based Materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation”. Advances in Colloid and Interface Science, 195-196, 19-40, 2013.
  • Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. “Graphene Based Materials: Past, Present and Future”. Progress in Materials Science, 56, 1178-1271, 2011.
  • Dağcı K. Poli (Pyronin Y) Ince Filmlerinin ve Müstakil Grafen/Poli(Pyronin Y)/Gümüş Nanopartikül Elektrotların Hazırlanması, Karakterizasyonu ve Nitritin Amperometrik Tayininde Kullanılması. Doktora Tezi, Atatürk Üniversitesi, Erzurum, Türkiye, 2015.
  • Liu Y, Zhang Y, Ma G, Wang Z, Liu K, Liu H. “Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor”. Electrochimica Acta, 88, 519-525, 2013.
  • Kamisan AI, Kamisan AS, Ali RMd, Tunku Kudin TI, Hassan OH, Halim NA, Yahya MZA. “Synthesis of graphene via green reduction of graphene oxide with simple sugars”. Advanced Materials Research, 1107, 542-546, 2015.
  • Wang Y, Shi Z, Yin J. “Facile Synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites”. ACS Applied Materials & Interfaces, 3, 1127-1133, 2011.
  • Fernandez-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon JMD. “Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions”. Journal of Physical Chemistry C, 114, 6426-6432, 2010.
  • Hummers WS, Offeman RE. “Preparation of graphitic oxide”. Journal of the American Chemical Society, 80(6), 1339,1958.
  • Gurunathan S, Han JW, Kim E, Kwon DN, Park JK, Kim JH. “Enhanced green fluorescent protein-mediated synthesis of biocompatible graphene”. Journal of Nanobiotechnology, 12(41), 1-16, 2014.
  • Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S. “Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability”. Carbon, 49, 198-205, 2011.
  • Bora C, Bharali P, Baglari S, Dolui SK, Konwar BK. “Strong and conductive reduced graphene oxide/polyester resin composite films with improved mechanical strength, thermal stability and its antibacterial activity”. Composites Science and Technology, 87, 1-7, 2013.
  • Safarpour M, Khataee A, Vatanpour V. “Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance”. Journal of Membrane Science, 489, 43-54, 2015.
  • Li D, Zhang B, Xuan F. “The sequestration of Sr(II) and Cs(I) from aqueous solutions by magnetic graphene oxides”. Journal of Molecular Liquids, 209, 508-514, 2015.
  • Zheng YT, Cao DR, Wang DS, Chen JJ. “Study on the interface modification of bagasse fibre and the mechanical properties of its composite with PVC”. Composites: Part A, 38, 20-25, 2007.
  • Duttagupta SP, Chen XL, Jenekhe SA, Fauchet PM. “Microhardness of porous silicon films and composites”. Solid State Communications, 101, 33-37, 1997.
  • Crespo JE, Sanchez L, Garcıa D, Lopez J. “Study of the mechanical and morphological properties of plasticized pvc composites containing rice husk fillers”. Journal of Reinforced Plastics and Composites, 27(3), 229-243, 2008.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makale
Yazarlar

Ferda Mindivan

Yayımlanma Tarihi 26 Şubat 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 25 Sayı: 1

Kaynak Göster

APA Mindivan, F. (2019). Grafen oksit (GO) ve indirgenmiş grafen oksit (RGO) dolgulu PVC kompozitlerin mekanik özelliklerinin karşılaştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(1), 43-48.
AMA Mindivan F. Grafen oksit (GO) ve indirgenmiş grafen oksit (RGO) dolgulu PVC kompozitlerin mekanik özelliklerinin karşılaştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Şubat 2019;25(1):43-48.
Chicago Mindivan, Ferda. “Grafen Oksit (GO) Ve Indirgenmiş Grafen Oksit (RGO) Dolgulu PVC Kompozitlerin Mekanik özelliklerinin karşılaştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25, sy. 1 (Şubat 2019): 43-48.
EndNote Mindivan F (01 Şubat 2019) Grafen oksit (GO) ve indirgenmiş grafen oksit (RGO) dolgulu PVC kompozitlerin mekanik özelliklerinin karşılaştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25 1 43–48.
IEEE F. Mindivan, “Grafen oksit (GO) ve indirgenmiş grafen oksit (RGO) dolgulu PVC kompozitlerin mekanik özelliklerinin karşılaştırılması”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 25, sy. 1, ss. 43–48, 2019.
ISNAD Mindivan, Ferda. “Grafen Oksit (GO) Ve Indirgenmiş Grafen Oksit (RGO) Dolgulu PVC Kompozitlerin Mekanik özelliklerinin karşılaştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25/1 (Şubat 2019), 43-48.
JAMA Mindivan F. Grafen oksit (GO) ve indirgenmiş grafen oksit (RGO) dolgulu PVC kompozitlerin mekanik özelliklerinin karşılaştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25:43–48.
MLA Mindivan, Ferda. “Grafen Oksit (GO) Ve Indirgenmiş Grafen Oksit (RGO) Dolgulu PVC Kompozitlerin Mekanik özelliklerinin karşılaştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 25, sy. 1, 2019, ss. 43-48.
Vancouver Mindivan F. Grafen oksit (GO) ve indirgenmiş grafen oksit (RGO) dolgulu PVC kompozitlerin mekanik özelliklerinin karşılaştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25(1):43-8.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.