Araştırma Makalesi
BibTex RIS Kaynak Göster

Topological R-Module Groupoid Coverings

Yıl 2019, Cilt: 23 Sayı: 1, 272 - 276, 01.04.2019
https://doi.org/10.19113/sdufenbed.478565

Öz










In this
paper, firstly a topological
R-module groupoid is
defined as a groupoid object in the category of topological
R-modules. Then it
is proved that
the
fundamental groupoid 
 is a topological R-module groupoid, where R is a discrete topological
ring with identity 1R and N is
a topological R-module whose
underlying space has a universal covering. 
Finally,
it is proved that the categories 
 and   are equivalent, where  UModCov/N is a full
subcategory of 
  in which 
for objects
  both N and   have universal coverings and  GdMCov/ is the full subcategory of GdMCov/ in which for objects   both and  N
have universal  coverings.
    

Kaynakça

  • [1] Brown, R. and Spencer, C.B., 1976. G-groupoids, crossed modules and the fundamental groupoid of a topological group. Proc. Konn. Ned. Akad. v. Wet., 79, 296-302.
  • [2] Brown, R., 1987. From Groups to Groupoids: A Brief Survey. Bull. London Math. Soc., 19, 113-134.
  • [3] Mucuk, O., 1998. Coverings and ring-groupoids. Geor. Math. J., 5, 475-482.
  • [4] Alemdar N. and Mucuk O., 2012. The Liftings of R-Modules to Covering Groupoid. Hacettepe Journal of Mathematics and Statistics; 41(6), 813 - 822.
  • [5] Brown, R. and Mucuk, O., 1994. Covering groups of non-connected topological groups revisited. Math. Proc. Camb. Phill. Soc., 115, 97-110.
  • [6] Mucuk, O., 1993. Covering groups of non-connected topological groups and the monodromy groupoid of a topological groupoid, PhD Thesis, University of Wales.
  • [7] İçen, İ., Özcan, F. and Gürsoy, M. H., 2005. Topological group-groupoids and their coverings. Indian Journal of Pure and Applied Mathematics 36(9), 493-502.
  • [8] Brown, R., 2006. Topology and groupoids. BookSurge LLC, North Carolina.
  • [9] Mackenzi, K., 1987. Lie Groupoids and Lie Algebroids in Differantial Geometry. London Math. Soc. Lec. Notes Series. Cambridge uni. Press.
  • [10] Hardy, J.L.P., 1974. Topological groupoids: Coverings and Universal constructions. PhD Thesis, University College of North Wales.
  • [11] Brown, R. and Danesh-Naruie, G., 1975. The fundamental groupoid as a topological groupoid. Proc. Edinburgh Math. Soc., 19 (2), 237-244.
  • [12] Mucuk, O., Şahan,T. and Alemdar, N., 2013. Normality and Quotients in Crossed Modules and Group-groupoids. Appl. Categor. Struct., 23, 415-428.
  • [13] Mucuk, O., Kılıçarslan, B., Şahan, T., Alemdar, N., 2011. Group-groupoid and monodromy groupoid. Topology Appl., 158, 2034-2042.
  • [14] Alemdar N. and Mucuk O., 2013. Existence of covering topological R-Modules. Filomat, 27(6), 1121 - 1126.

Topolojik R-Modül Grupoid Örtüleri

Yıl 2019, Cilt: 23 Sayı: 1, 272 - 276, 01.04.2019
https://doi.org/10.19113/sdufenbed.478565

Öz

Bu makalede ilk olarak bir topolojik R-modül grupoid, topolojik R-modüllerin kategorisinde
bir grupoid obje olarak tanımlandı. Daha sonra
 , birim elemanı  olan birimli bir diskre topolojik halka ve  topolojik uzayı 
evrensel örtüye sahip olan bir topolojik
-modül
olmak üzere
  temel grupoidinin bir
topolojik
-modül
grupoid olduğu gösterildi. Son olarak da 
  objeleri için N ve  birer evrensel örtüye sahip olacak şekilde ModCov/N kategorisinin bir dolu alt
kategorisi U
ModCov/N ve    objeleri için de N ve   birer evrensel  örtüye 
sahip  olacak  şekilde 
GdMCov/  kategorisinin  bir  dolu alt kategorisi olan  GdMCov/  tanımlanıp,   ve   kategorilerinin denk kategoriler
olduğu ispatlanmıştır.

Kaynakça

  • [1] Brown, R. and Spencer, C.B., 1976. G-groupoids, crossed modules and the fundamental groupoid of a topological group. Proc. Konn. Ned. Akad. v. Wet., 79, 296-302.
  • [2] Brown, R., 1987. From Groups to Groupoids: A Brief Survey. Bull. London Math. Soc., 19, 113-134.
  • [3] Mucuk, O., 1998. Coverings and ring-groupoids. Geor. Math. J., 5, 475-482.
  • [4] Alemdar N. and Mucuk O., 2012. The Liftings of R-Modules to Covering Groupoid. Hacettepe Journal of Mathematics and Statistics; 41(6), 813 - 822.
  • [5] Brown, R. and Mucuk, O., 1994. Covering groups of non-connected topological groups revisited. Math. Proc. Camb. Phill. Soc., 115, 97-110.
  • [6] Mucuk, O., 1993. Covering groups of non-connected topological groups and the monodromy groupoid of a topological groupoid, PhD Thesis, University of Wales.
  • [7] İçen, İ., Özcan, F. and Gürsoy, M. H., 2005. Topological group-groupoids and their coverings. Indian Journal of Pure and Applied Mathematics 36(9), 493-502.
  • [8] Brown, R., 2006. Topology and groupoids. BookSurge LLC, North Carolina.
  • [9] Mackenzi, K., 1987. Lie Groupoids and Lie Algebroids in Differantial Geometry. London Math. Soc. Lec. Notes Series. Cambridge uni. Press.
  • [10] Hardy, J.L.P., 1974. Topological groupoids: Coverings and Universal constructions. PhD Thesis, University College of North Wales.
  • [11] Brown, R. and Danesh-Naruie, G., 1975. The fundamental groupoid as a topological groupoid. Proc. Edinburgh Math. Soc., 19 (2), 237-244.
  • [12] Mucuk, O., Şahan,T. and Alemdar, N., 2013. Normality and Quotients in Crossed Modules and Group-groupoids. Appl. Categor. Struct., 23, 415-428.
  • [13] Mucuk, O., Kılıçarslan, B., Şahan, T., Alemdar, N., 2011. Group-groupoid and monodromy groupoid. Topology Appl., 158, 2034-2042.
  • [14] Alemdar N. and Mucuk O., 2013. Existence of covering topological R-Modules. Filomat, 27(6), 1121 - 1126.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Nazmiye Alemdar 0000-0002-0819-6613

Yayımlanma Tarihi 1 Nisan 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 23 Sayı: 1

Kaynak Göster

APA Alemdar, N. (2019). Topolojik R-Modül Grupoid Örtüleri. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(1), 272-276. https://doi.org/10.19113/sdufenbed.478565
AMA Alemdar N. Topolojik R-Modül Grupoid Örtüleri. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Nisan 2019;23(1):272-276. doi:10.19113/sdufenbed.478565
Chicago Alemdar, Nazmiye. “Topolojik R-Modül Grupoid Örtüleri”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, sy. 1 (Nisan 2019): 272-76. https://doi.org/10.19113/sdufenbed.478565.
EndNote Alemdar N (01 Nisan 2019) Topolojik R-Modül Grupoid Örtüleri. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 1 272–276.
IEEE N. Alemdar, “Topolojik R-Modül Grupoid Örtüleri”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 23, sy. 1, ss. 272–276, 2019, doi: 10.19113/sdufenbed.478565.
ISNAD Alemdar, Nazmiye. “Topolojik R-Modül Grupoid Örtüleri”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/1 (Nisan 2019), 272-276. https://doi.org/10.19113/sdufenbed.478565.
JAMA Alemdar N. Topolojik R-Modül Grupoid Örtüleri. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2019;23:272–276.
MLA Alemdar, Nazmiye. “Topolojik R-Modül Grupoid Örtüleri”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 23, sy. 1, 2019, ss. 272-6, doi:10.19113/sdufenbed.478565.
Vancouver Alemdar N. Topolojik R-Modül Grupoid Örtüleri. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2019;23(1):272-6.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.