Araştırma Makalesi
BibTex RIS Kaynak Göster

Impacts of three different magnetic field applications on seed germination and seedling development of Melissa officinalis L.

Yıl 2024, Cilt: 17 Sayı: 1, 18 - 25, 15.04.2024
https://doi.org/10.46309/biodicon.2023.1261058

Öz

The herb Melissa officinalis L., most commonly recognized as lemon balm, has been used as a treatment for problems with the brain and central nervous system, headaches, nervousness, digestive disorders, respiratory and circulatory conditions, various types of cancer and rheumatism. This investigation was designated to compare the impacts of 3 discrete magnetic field strengths (50 mT, 100 mT and 150 mT) with various time periods of exposure (5 min, 15 min, 30 min, 1 hr and 3 hr) on M. officinalis seed germination (rate and onset) and seedling growth (length of shoot-root, weight of fresh-dry and water content). The seeds, which were surface sterilized in petri plates, were subjected to different applications, including exposure to various magnetic fields and control (without exposure). Germination was assessed by observing the radicular protrusion. The number of germinated seeds was recorded over 20 days. In all 3 magnetic field applications, exposure to magnetic field for 1 hr caused the highest number of seed germination (36%, 52% and 50% for 50 mT, 100 mT and 150 mT, respectively) comparing to control (28%). The onset of seed germination was earlier with magnetic field application (day 7) compared to control (day 11). Growth elements and water contents of the seedling were assessed in order to understand the impact of different magnetic field applications. Implementation of 100 mT and 150 mT magnetic field for 1 hr increased shoot and root length in addition to fresh weight of the seedlings. The maximum dry weight increase was provided by 150 mT-5 min, 15 min and 30 min. The highest water content (%) was observed with exposure to 150 mT (68%) and 100 mT (66%) for 1 hr compared to control (44%). Magnetic field intensity of 100 mT and 150 mT for 1 hr was the most efficient in the seed germination and seedling growth.

Destekleyen Kurum

Bolu Abant İzzet Baysal Üniversity

Proje Numarası

BAP 2016.03.01.1027

Teşekkür

We are grateful to Dr. Asaf Tolga Ülgen for his technical supports

Kaynakça

  • [1] Petrisor, G., Motelica, L., Craciun, L. N., Oprea, O. C., Ficai, D., & Ficai, A. (2022). Melissa officinalis: Composition, pharmacological effects and derived release systems—A review. International Journal of Molecular Sciences, 23(7), 3591. https://doi.org/10.3390/ijms23073591
  • [2] Shakeri, A., Sahebkar, A., & Javadi, B. (2016). Melissa officinalis L.–A review of its traditional uses, phytochemistry and pharmacology. Journal of Ehnopharmacology, 188, 204-228. https://doi.org/10.1016/j.jep.2016.05.010
  • [3] Davis, P.H. (1978). Flora of Turkey and the East Aegean Islands. Vol. 6. England: Edinburgh University Press.
  • [4] Ulgen, C., Yıldırım, A.B., & Turker, A.U., (2023). Melissa officinalis: Antibacterial and antioxidant potential, phenolic profile and enzyme activities. KSU Journal of Agriculture and Nature, 26, 1075-1085. https://doi.org/10.18016/ksutarimdoga.vi.1170784
  • [5] Uzun, M., & Kaya, A. (2019). Traditional medicinal plants used for oral and dental diseases in Turkey. Biological Diversity and Conservation, 12, 138-148.
  • [6] Ulgen, C., Yildirim, A. B., Sahin, G., & Turker, A. U. (2021). Do magnetic field applications affect in vitro regeneration, growth, phenolic profiles, antioxidant potential and defense enzyme activities (SOD, CAT and PAL) in lemon balm (Melissa officinalis L.)? Industrial Crops and Products, 169, 113624. https://doi.org/10.1016/j.indcrop.2021.113624
  • [7] Reina, F. G., & Pascual, L. A. (2001). Influence of a stationary magnetic field on water relations in lettuce seeds. Part I: Theoretical considerations. Bioelectromagnetics, 22(8), 589-595. https://doi.org/10.1002/bem.88
  • [8] Ghanati, F., Abdolmaleki, P., Vaezzadeh, M., Rajabbeigi, E., & Yazdani, M. (2007). Application of magnetic field and iron in order to change medicinal products of Ocimum basilicum. The Environmentalist, 27, 429-434. https://doi.org/10.1007/s10669-007-9079-7
  • [9] Racuciu, M. (2012). Influence of extremely low frequency magnetic field on assimilatory pigments and nucleic acids in Zea mays and Curcubita pepo seedlings. Romanian Biotechnological Letters, 17(5), 7663.
  • [10] Racuciu, M., Creanga, D., & Horga, I. (2008). Plant growth under static magnetic field influence. Romanian Journal of Physics, 53(1-2), 353-359.
  • [11] Racuciu, M., Galugaru, G., & Creanga, D. E. (2006). Static magnetic field influence on some plant growth. Romanian Journal of Physics, 51(1/2), 245.
  • [12] Yalçin, S., & Tayyar, Ş. (2011). Oğulotu tohumlarının çimlenmesi ve fide gelişimi üzerine manyetik alanın etkisi. Yuzuncu Yıl University Journal of Agricultural Sciences, 21(3), 190-197. https://dergipark.org.tr/tr/pub/yyutbd/issue/21981/236019
  • [13] Florez, M., Carbonell, M. V., & Martínez, E. (2007). Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth. Environmental and Experimental Botany, 59(1), 68-75. https://doi.org/10.1016/j.envexpbot.2005.10.006
  • [14] Florez, M., Carbonell, M. V., & Martínez, E. (2004). Early sprouting and first stages of growth of rice seeds exposed to a magnetic field. Electromagnetic Biology and Medicine, 23(2), 157-166. https://doi.org/10.1081/LEBM-200042316
  • [15] Florez, M., Martínez, E., & Carbonell, M. V. (2012). Effect of magnetic field treatment on germination of medicinal plants Salvia officinalis L. and Calendula officinalis L. Polish Journal of Environmental Studies, 21(1), 57-63. [16] Ulgen, C., Yıldırım, A. B., & Turker, A. U. (2017). Effect of magnetic field treatments on seed germination of Melissa officinalis L. International Journal of Secondary Metabolite, 4(3, Special Issue 1), 43-49. https://doi.org/10.21448/ijsm.356283
  • [17] Ulgen, C., Yıldırım, A. B, & Turker, A. U. (2020). Enhancement of plant regeneration in lemon balm (Melissa officinalis L.) with different magnetic field applications. International Journal of Secondary Metabolite, 7(2), 99-108. https://doi.org/10.21448/ijsm.677102
  • [18] Turfan, N., Yer, E. N., Ayan, S., Hasdemir, B., & Hancerliogullari, A. (2016). The effect of magnetic field application on chemical composition in Fagus orientalis Lipsky. seed. Biological Diversity and Conservation, 9/2 (S1), 75-83.
  • [19] Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15, 473–497.
  • [20] Zar J. H. (1996). Biostatistical analysis. 3rd ed. USA: Prentice-Hall.
  • [21] Vashisth, A., & Nagarajan, S. (2008). Exposure of seeds to static magnetic field enhances germination and early growth characteristics in chickpea (Cicer arietinum L.). Bioelectromagnetics, 29(7), 571-578. https://doi.org/10.1002/bem.20426
  • [22] Souza Torres, A. D., Porras Leon, E., & Casate Fernandez, R. (1999). Effect of magnetic treatment of tomato seeds (Lycopersicon esculentum Mill) on germination and seedling growth. Investigacion Agraria. Produccion y Proteccion Vegetales (Espana), 14(3), 67-74.
  • [23] Gholami, A., Sharafi, S., & Abbasdokht, H. (2010). Effect of magnetic field on seed germination of two wheat cultivars. International Journal of Agricultural and Biosystems Engineering, 4(8), 675-677.
  • [24] Fischer, G., Tausz, M., Köck, M., & Grill, D. (2004). Effects of weak 162\over3 Hz magnetic fields on growth parameters of young sunflower and wheat seedlings. Bioelectromagnetics, 25(8), 638-641. https://doi.org/10.1002/bem.20058
  • [25] Aladjadjiyan, A., & Ylieva, T. (2003). Influence of stationary magnetic field on the early stages of the development of tobacco seeds (Nicotiana tabacum L.). Journal of Central European Agriculture, 4(2), 131-138.
  • [26] Pittman, U. J., & Ormrod, D. P. (1970). Physiological and chemical features of magnetically treated winter wheat seeds and resultant seedlings. Canadian Journal of Plant Science, 50(3), 211-217. https://doi.org/10.4141/cjps70-044
  • [27] Kavi, P. S. (1977). The effect of magnetic treatment of soybean seed on its moisture absorbing capacity. Science and Culture, 43(9), 405-406.
  • [28] Carbonell, M. V., Martinez, E., & Amaya, J. M. (2000). Stimulation of germination in rice (Oryza sativa L.) by a static magnetic field. Electro-and Magnetobiology, 19(1), 121-128. https://doi.org/10.1081/JBC-100100303
  • [29] Martinez, E., Carbonell, M. V., & Amaya, J. M. (2000). A static magnetic field of 125 mT stimulates the initial growth stages of barley (Hordeum vulgare L.). Electro-and Magnetobiology, 19(3), 271-277. https://doi.org/10.1081/JBC-100102118
  • [30] Martinez, E., Carbonell, M. V., & Florez, M. (2002). Magnetic biostimulation of initial growth stages of wheat (Triticum aestivum, L.). Electromagnetic Biology and Medicine, 21(1), 43-53. https://doi.org/10.1081/JBC-120003110

Üç farklı manyetik alan uygulamasının M. offininalis tohum çimlenmesi ve fide büyümesi üzerine etkileri

Yıl 2024, Cilt: 17 Sayı: 1, 18 - 25, 15.04.2024
https://doi.org/10.46309/biodicon.2023.1261058

Öz

Oğul otu olarak da bilinen Melissa officinalis L. bitkisi, beyin ve merkezi sinir sistemi ile ilgili sorunlar, baş ağrıları, sinirlilik, sindirim bozuklukları, solunum ve dolaşım rahatsızlıkları, çeşitli kanser türleri ve romatizma tedavisinde kullanılmaktadır. Bu araştırma, M. officinalis tohum çimlenmesi (hızı ve başlangıcı) ve fide büyümesi (sürgün-kök uzunluğu, yaş-kuru ağırlık ve su içeriği) üzerine çeşitli maruz kalma süreleri (5 dk, 15 dk, 30 dk, 1 s ve 3 s) ile 3 farklı manyetik alan şiddetinin (50 mT, 100 mT ve 150 mT) etkilerinin karşılaştırılmasını amaçlamaktadır. Petri kaplarında yüzey sterilizasyonu yapılan tohumlar, çeşitli manyetik alan maruziyeti ve kontrol (maruz bırakmadan) olmak üzere farklı uygulamalara tabi tutulmuştur. Çimlenme, radiküler çıkıntı gözlemlendiğinde değerlendirilmiştir. Çimlenen tohumların sayısı 20 gün boyunca kaydedilmiştir. Üç manyetik alan uygulamasının hepsinde, 1 saat boyunca manyetik alana maruz kalma, kontrol (%28) ile karşılaştırıldığında en yüksek sayıda tohum çimlenmesine (50 mT, 100 mT ve 150 mT için sırasıyla %36, %52 ve %50) neden olmuştur. Tohum çimlenmesinin başlangıcı, manyetik alan uygulamasıyla (7. gün) kontrole (11. gün) kıyasla daha erken olmuştur. Farklı manyetik alan uygulamalarının etkisini anlamak için fidelerin büyüme elementleri ve su içerikleri karşılaştırılmıştır. 1 saat süreyle 100 mT ve 150 mT manyetik alan uygulaması fidelerin taze ağırlığına ek olarak gövde ve kök uzunluğunu artırmıştır. En fazla kuru ağırlık,artışı 150 mT-5 dk, 15 dk ve 30 dk ile sağlanmıştır. Kontrole (%44) kıyasla en yüksek su içeriği (%) 1 saat süreyle 150 mT (%68) ve 100 mT (%66) maruziyetinde gözlemlenmiştir. 1 saat boyunca 100 mT ve 150 mT manyetik alan yoğunluğu, tohum çimlenmesi ve fide büyümesinde en etkili olmuştur.

Proje Numarası

BAP 2016.03.01.1027

Kaynakça

  • [1] Petrisor, G., Motelica, L., Craciun, L. N., Oprea, O. C., Ficai, D., & Ficai, A. (2022). Melissa officinalis: Composition, pharmacological effects and derived release systems—A review. International Journal of Molecular Sciences, 23(7), 3591. https://doi.org/10.3390/ijms23073591
  • [2] Shakeri, A., Sahebkar, A., & Javadi, B. (2016). Melissa officinalis L.–A review of its traditional uses, phytochemistry and pharmacology. Journal of Ehnopharmacology, 188, 204-228. https://doi.org/10.1016/j.jep.2016.05.010
  • [3] Davis, P.H. (1978). Flora of Turkey and the East Aegean Islands. Vol. 6. England: Edinburgh University Press.
  • [4] Ulgen, C., Yıldırım, A.B., & Turker, A.U., (2023). Melissa officinalis: Antibacterial and antioxidant potential, phenolic profile and enzyme activities. KSU Journal of Agriculture and Nature, 26, 1075-1085. https://doi.org/10.18016/ksutarimdoga.vi.1170784
  • [5] Uzun, M., & Kaya, A. (2019). Traditional medicinal plants used for oral and dental diseases in Turkey. Biological Diversity and Conservation, 12, 138-148.
  • [6] Ulgen, C., Yildirim, A. B., Sahin, G., & Turker, A. U. (2021). Do magnetic field applications affect in vitro regeneration, growth, phenolic profiles, antioxidant potential and defense enzyme activities (SOD, CAT and PAL) in lemon balm (Melissa officinalis L.)? Industrial Crops and Products, 169, 113624. https://doi.org/10.1016/j.indcrop.2021.113624
  • [7] Reina, F. G., & Pascual, L. A. (2001). Influence of a stationary magnetic field on water relations in lettuce seeds. Part I: Theoretical considerations. Bioelectromagnetics, 22(8), 589-595. https://doi.org/10.1002/bem.88
  • [8] Ghanati, F., Abdolmaleki, P., Vaezzadeh, M., Rajabbeigi, E., & Yazdani, M. (2007). Application of magnetic field and iron in order to change medicinal products of Ocimum basilicum. The Environmentalist, 27, 429-434. https://doi.org/10.1007/s10669-007-9079-7
  • [9] Racuciu, M. (2012). Influence of extremely low frequency magnetic field on assimilatory pigments and nucleic acids in Zea mays and Curcubita pepo seedlings. Romanian Biotechnological Letters, 17(5), 7663.
  • [10] Racuciu, M., Creanga, D., & Horga, I. (2008). Plant growth under static magnetic field influence. Romanian Journal of Physics, 53(1-2), 353-359.
  • [11] Racuciu, M., Galugaru, G., & Creanga, D. E. (2006). Static magnetic field influence on some plant growth. Romanian Journal of Physics, 51(1/2), 245.
  • [12] Yalçin, S., & Tayyar, Ş. (2011). Oğulotu tohumlarının çimlenmesi ve fide gelişimi üzerine manyetik alanın etkisi. Yuzuncu Yıl University Journal of Agricultural Sciences, 21(3), 190-197. https://dergipark.org.tr/tr/pub/yyutbd/issue/21981/236019
  • [13] Florez, M., Carbonell, M. V., & Martínez, E. (2007). Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth. Environmental and Experimental Botany, 59(1), 68-75. https://doi.org/10.1016/j.envexpbot.2005.10.006
  • [14] Florez, M., Carbonell, M. V., & Martínez, E. (2004). Early sprouting and first stages of growth of rice seeds exposed to a magnetic field. Electromagnetic Biology and Medicine, 23(2), 157-166. https://doi.org/10.1081/LEBM-200042316
  • [15] Florez, M., Martínez, E., & Carbonell, M. V. (2012). Effect of magnetic field treatment on germination of medicinal plants Salvia officinalis L. and Calendula officinalis L. Polish Journal of Environmental Studies, 21(1), 57-63. [16] Ulgen, C., Yıldırım, A. B., & Turker, A. U. (2017). Effect of magnetic field treatments on seed germination of Melissa officinalis L. International Journal of Secondary Metabolite, 4(3, Special Issue 1), 43-49. https://doi.org/10.21448/ijsm.356283
  • [17] Ulgen, C., Yıldırım, A. B, & Turker, A. U. (2020). Enhancement of plant regeneration in lemon balm (Melissa officinalis L.) with different magnetic field applications. International Journal of Secondary Metabolite, 7(2), 99-108. https://doi.org/10.21448/ijsm.677102
  • [18] Turfan, N., Yer, E. N., Ayan, S., Hasdemir, B., & Hancerliogullari, A. (2016). The effect of magnetic field application on chemical composition in Fagus orientalis Lipsky. seed. Biological Diversity and Conservation, 9/2 (S1), 75-83.
  • [19] Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15, 473–497.
  • [20] Zar J. H. (1996). Biostatistical analysis. 3rd ed. USA: Prentice-Hall.
  • [21] Vashisth, A., & Nagarajan, S. (2008). Exposure of seeds to static magnetic field enhances germination and early growth characteristics in chickpea (Cicer arietinum L.). Bioelectromagnetics, 29(7), 571-578. https://doi.org/10.1002/bem.20426
  • [22] Souza Torres, A. D., Porras Leon, E., & Casate Fernandez, R. (1999). Effect of magnetic treatment of tomato seeds (Lycopersicon esculentum Mill) on germination and seedling growth. Investigacion Agraria. Produccion y Proteccion Vegetales (Espana), 14(3), 67-74.
  • [23] Gholami, A., Sharafi, S., & Abbasdokht, H. (2010). Effect of magnetic field on seed germination of two wheat cultivars. International Journal of Agricultural and Biosystems Engineering, 4(8), 675-677.
  • [24] Fischer, G., Tausz, M., Köck, M., & Grill, D. (2004). Effects of weak 162\over3 Hz magnetic fields on growth parameters of young sunflower and wheat seedlings. Bioelectromagnetics, 25(8), 638-641. https://doi.org/10.1002/bem.20058
  • [25] Aladjadjiyan, A., & Ylieva, T. (2003). Influence of stationary magnetic field on the early stages of the development of tobacco seeds (Nicotiana tabacum L.). Journal of Central European Agriculture, 4(2), 131-138.
  • [26] Pittman, U. J., & Ormrod, D. P. (1970). Physiological and chemical features of magnetically treated winter wheat seeds and resultant seedlings. Canadian Journal of Plant Science, 50(3), 211-217. https://doi.org/10.4141/cjps70-044
  • [27] Kavi, P. S. (1977). The effect of magnetic treatment of soybean seed on its moisture absorbing capacity. Science and Culture, 43(9), 405-406.
  • [28] Carbonell, M. V., Martinez, E., & Amaya, J. M. (2000). Stimulation of germination in rice (Oryza sativa L.) by a static magnetic field. Electro-and Magnetobiology, 19(1), 121-128. https://doi.org/10.1081/JBC-100100303
  • [29] Martinez, E., Carbonell, M. V., & Amaya, J. M. (2000). A static magnetic field of 125 mT stimulates the initial growth stages of barley (Hordeum vulgare L.). Electro-and Magnetobiology, 19(3), 271-277. https://doi.org/10.1081/JBC-100102118
  • [30] Martinez, E., Carbonell, M. V., & Florez, M. (2002). Magnetic biostimulation of initial growth stages of wheat (Triticum aestivum, L.). Electromagnetic Biology and Medicine, 21(1), 43-53. https://doi.org/10.1081/JBC-120003110
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji , Biyokimya ve Hücre Biyolojisi (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Canan Ulgen 0000-0002-8272-3370

Arzu Turker 0000-0001-9617-6673

Proje Numarası BAP 2016.03.01.1027
Erken Görünüm Tarihi 18 Ocak 2024
Yayımlanma Tarihi 15 Nisan 2024
Gönderilme Tarihi 10 Mayıs 2023
Kabul Tarihi 12 Kasım 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 17 Sayı: 1

Kaynak Göster

APA Ulgen, C., & Turker, A. (2024). Impacts of three different magnetic field applications on seed germination and seedling development of Melissa officinalis L. Biological Diversity and Conservation, 17(1), 18-25. https://doi.org/10.46309/biodicon.2023.1261058

18385183861838718388183892276122760