Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 32 Sayı: 2, 75 - 82, 31.12.2023
https://doi.org/10.38042/biotechstudies.1332403

Öz

Kaynakça

  • Aleem, A., Akbar Samad, A. B., & Slenker, A. K. (2022). Emerging Variants of SARS-CoV-2 And Novel Therapeutics Against Coronavirus (COVID-19). In StatPearls. https://www.ncbi.nlm.nih.gov/pubmed/34033342
  • Are, E. B., Song, Y., Stockdale, J. E., Tupper, P., & Colijn, C. (2023). COVID-19 endgame: From pandemic to endemic? Vaccination, reopening and evolution in low- and high-vaccinated populations. J Theor Biol, 559, 111368. https://doi.org/10.1016/j.jtbi.2022.111368
  • Barton, M. I., MacGowan, S. A., Kutuzov, M. A., Dushek, O., Barton, G. J., & van der Merwe, P. A. (2021). Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. Elife, 10. https://doi.org/10.7554/eLife.70658
  • Chatterjee, S., Bhattacharya, M., Nag, S., Dhama, K., & Chakraborty, C. (2023). A Detailed Overview of SARS-CoV-2 Omicron: Its Sub-Variants, Mutations and Pathophysiology, Clinical Characteristics, Immunological Landscape, Immune Escape, and Therapies. Viruses, 15(1). https://doi.org/10.3390/v15010167
  • Das, S., Samanta, S., Banerjee, J., Pal, A., Giri, B., Kar, S. S., & Dash, S. K. (2022). Is Omicron the end of pandemic or start of a new innings? Travel Med Infect Dis, 48, 102332. https://doi.org/10.1016/j.tmaid.2022.102332
  • Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis, 20(5), 533-534.https://doi.org/10.1016/S1473-3099(20)30120-1
  • Elbe, S., & Buckland-Merrett, G. (2017). Data, disease and diplomacy: GISAID's innovative contribution to global health. Glob Chall, 1(1), 33-46. https://doi.org/10.1002/gch2.1018
  • Eyre, D. W., Taylor, D., Purver, M., Chapman, D., Fowler, T., Pouwels, K. B., Walker, A. S., & Peto, T. E. A. (2022). Effect of Covid-19 Vaccination on Transmission of Alpha and Delta Variants. N Engl J Med, 386(8), 744-756. https://doi.org/10.1056/NEJMoa2116597
  • Jackson, C. B., Farzan, M., Chen, B., & Choe, H. (2022). Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol, 23(1), 3-20. https://doi.org/10.1038/s41580-021-00418-x
  • Jawad, B., Adhikari, P., Podgornik, R., & Ching, W. Y. (2021). Key Interacting Residues between RBD of SARS-CoV-2 and ACE2 Receptor: Combination of Molecular Dynamics Simulation and Density Functional Calculation. J Chem Inf Model, 61(9), 4425-4441. https://doi.org/10.1021/acs.jcim.1c00560
  • Kalyoncu, S., Yilmaz, S., Kuyucu, A. Z., Sayili, D., Mert, O., Soyturk, H., Gullu, S., Akinturk, H., Citak, E., Arslan, M., Taskinarda, M. G., Tarman, I. O., Altun, G. Y., Ozer, C., Orkut, R., Demirtas, A., Tilmensagir, I., Keles, U., Ulker, C., Inan, M. (2023). Process development for an effective COVID-19 vaccine candidate harboring recombinant SARS-CoV-2 delta plus receptor binding domain produced by Pichia pastoris. Sci Rep, 13(1), 5224. https://doi.org/10.1038/s41598-023-32021-9
  • Kastritis, P. L., & Bonvin, A. M. (2013). On the binding affinity of macromolecular interactions: daring to ask why proteins interact. J R Soc Interface, 10(79), 20120835. https://doi.org/10.1098/rsif.2012.0835
  • Kim, S., Liu, Y., Ziarnik, M., Cao, Y., Zhang, X. F., & Im, W. (2022). Binding of Human ACE2 and RBD of Omicron Enhanced by Unique Interaction Patterns Among SARS-CoV-2 Variants of Concern. bioRxiv. https://doi.org/10.1101/2022.01.24.477633
  • Letko, M., Marzi, A., & Munster, V. (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol, 5(4), 562-569. https://doi.org/10.1038/s41564-020-0688-y
  • Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S. M., Lau, E. H. Y., Wong, J. Y., Xing, X., Xiang, N., Wu, Y., Li, C., Chen, Q., Li, D., Liu, T., Zhao, J., Liu, M., Feng, Z. (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med, 382(13), 1199-1207. https://doi.org/10.1056/NEJMoa2001316
  • Liu, H., Zhang, Q., Wei, P., Chen, Z., Aviszus, K., Yang, J., Downing, W., Jiang, C., Liang, B., Reynoso, L., Downey, G. P., Frankel, S. K., Kappler, J., Marrack, P., & Zhang, G. (2021). The basis of a more contagious 501Y.V1 variant of SARS-CoV-2. Cell Res, 31(6), 720-722. https://doi.org/10.1038/s41422-021-00496-8
  • Liu, J., Li, Y., Liu, Q., Yao, Q., Wang, X., Zhang, H., Chen, R., Ren, L., Min, J., Deng, F., Yan, B., Liu, L., Hu, Z., Wang, M., & Zhou, Y. (2021). SARS-CoV-2 cell tropism and multiorgan infection. Cell Discov, 7(1), 17. https://doi.org/10.1038/s41421-021-00249-2
  • Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., . . . Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 395(10224), 565-574. https://doi.org/10.1016/S0140-6736(20)30251-8
  • Madeira, F., Pearce, M., Tivey, A. R. N., Basutkar, P., Lee, J., Edbali, O., Madhusoodanan, N., Kolesnikov, A., & Lopez, R. (2022). Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res, 50(W1), W276-279. https://doi.org/10.1093/nar/gkac240
  • Markov, P. V., Ghafari, M., Beer, M., Lythgoe, K., Simmonds, P., Stilianakis, N. I., & Katzourakis, A. (2023). The evolution of SARS-CoV-2. Nat Rev Microbiol. https://doi.org/10.1038/s41579-023-00878-2
  • Miller, B. R., 3rd, McGee, T. D., Jr., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. J Chem Theory Comput, 8(9), 3314-3321. https://doi.org/10.1021/ct300418h
  • Rambaut, A., Holmes, E. C., O'Toole, A., Hill, V., McCrone, J. T., Ruis, C., du Plessis, L., & Pybus, O. G. (2020). A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol, 5(11), 1403-1407. https://doi.org/10.1038/s41564-020-0770-5
  • Rana, R., Kant, R., Huirem, R. S., Bohra, D., & Ganguly, N. K. (2022). Omicron variant: Current insights and future directions. Microbiol Res, 265, 127204. https://doi.org/10.1016/j.micres.2022.127204
  • Vangone, A., & Bonvin, A. M. (2015). Contacts-based prediction of binding affinity in protein-protein complexes. Elife, 4, e07454. https://doi.org/10.7554/eLife.07454
  • Wang, C., Greene, D., Xiao, L., Qi, R., & Luo, R. (2017). Recent Developments and Applications of the MMPBSA Method. Front Mol Biosci, 4, 87. https://doi.org/10.3389/fmolb.2017.00087
  • Wang, Y., Yan, J., & Goult, B. T. (2019). Force-Dependent Binding Constants. Biochemistry, 58(47), 4696-4709. https://doi.org/10.1021/acs.biochem.9b00453
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, 46(W1), W296-W303. https://doi.org/10.1093/nar/gky427
  • Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: a web server for predicting the binding affinity of protein-protein complexes. Bioinformatics, 32(23), 3676-3678. https://doi.org/10.1093/bioinformatics/btw514

Omicron variants bind to human angiotensin-converting enzyme 2 (ACE2) much stronger due to higher number of charged-charged interactions

Yıl 2023, Cilt: 32 Sayı: 2, 75 - 82, 31.12.2023
https://doi.org/10.38042/biotechstudies.1332403

Öz

Since the start of COVID-19 pandemic, several mutant variants of SARS-CoV-2 have emerged with different virulence and transmissibility patterns. Some of these variants have been labeled as variants of concern (VOC). There are mainly five strain clades with VOC status: Alpha, Beta, Gamma, Delta, and Omicron. Omicron sub-variants have been currently in circulation around the world, and they show faster transmissibility and lower virulence compared to others. Receptor binding domain (RBD) of SARS-CoV-2 spike protein is the region where it binds to human angiotensin-converting enzyme 2 (hACE2) on the host cell. Mutations on RBD might have direct or indirect effects on differential disease patterns of these variants. In this study, we analyzed sequence and structures of SARS-CoV-2 variants’ RBD domains and documented their predicted affinities and contact interactions with hACE2. We found that Omicron sub-variants have much higher hACE2 affinities compared to other VOC strains. To understand reasons behind this, we checked biophysical characteristics of RBD-hACE2 contacts. Surprisingly, number of charged-charged interactions of Omicron sub-variants were on average 4-fold higher. These higher charged residue mutations on epitope region of Omicron sub-variants leading to stronger affinity for hACE2 might shed light onto why Omicron has less severe disease symptoms.

Kaynakça

  • Aleem, A., Akbar Samad, A. B., & Slenker, A. K. (2022). Emerging Variants of SARS-CoV-2 And Novel Therapeutics Against Coronavirus (COVID-19). In StatPearls. https://www.ncbi.nlm.nih.gov/pubmed/34033342
  • Are, E. B., Song, Y., Stockdale, J. E., Tupper, P., & Colijn, C. (2023). COVID-19 endgame: From pandemic to endemic? Vaccination, reopening and evolution in low- and high-vaccinated populations. J Theor Biol, 559, 111368. https://doi.org/10.1016/j.jtbi.2022.111368
  • Barton, M. I., MacGowan, S. A., Kutuzov, M. A., Dushek, O., Barton, G. J., & van der Merwe, P. A. (2021). Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. Elife, 10. https://doi.org/10.7554/eLife.70658
  • Chatterjee, S., Bhattacharya, M., Nag, S., Dhama, K., & Chakraborty, C. (2023). A Detailed Overview of SARS-CoV-2 Omicron: Its Sub-Variants, Mutations and Pathophysiology, Clinical Characteristics, Immunological Landscape, Immune Escape, and Therapies. Viruses, 15(1). https://doi.org/10.3390/v15010167
  • Das, S., Samanta, S., Banerjee, J., Pal, A., Giri, B., Kar, S. S., & Dash, S. K. (2022). Is Omicron the end of pandemic or start of a new innings? Travel Med Infect Dis, 48, 102332. https://doi.org/10.1016/j.tmaid.2022.102332
  • Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis, 20(5), 533-534.https://doi.org/10.1016/S1473-3099(20)30120-1
  • Elbe, S., & Buckland-Merrett, G. (2017). Data, disease and diplomacy: GISAID's innovative contribution to global health. Glob Chall, 1(1), 33-46. https://doi.org/10.1002/gch2.1018
  • Eyre, D. W., Taylor, D., Purver, M., Chapman, D., Fowler, T., Pouwels, K. B., Walker, A. S., & Peto, T. E. A. (2022). Effect of Covid-19 Vaccination on Transmission of Alpha and Delta Variants. N Engl J Med, 386(8), 744-756. https://doi.org/10.1056/NEJMoa2116597
  • Jackson, C. B., Farzan, M., Chen, B., & Choe, H. (2022). Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol, 23(1), 3-20. https://doi.org/10.1038/s41580-021-00418-x
  • Jawad, B., Adhikari, P., Podgornik, R., & Ching, W. Y. (2021). Key Interacting Residues between RBD of SARS-CoV-2 and ACE2 Receptor: Combination of Molecular Dynamics Simulation and Density Functional Calculation. J Chem Inf Model, 61(9), 4425-4441. https://doi.org/10.1021/acs.jcim.1c00560
  • Kalyoncu, S., Yilmaz, S., Kuyucu, A. Z., Sayili, D., Mert, O., Soyturk, H., Gullu, S., Akinturk, H., Citak, E., Arslan, M., Taskinarda, M. G., Tarman, I. O., Altun, G. Y., Ozer, C., Orkut, R., Demirtas, A., Tilmensagir, I., Keles, U., Ulker, C., Inan, M. (2023). Process development for an effective COVID-19 vaccine candidate harboring recombinant SARS-CoV-2 delta plus receptor binding domain produced by Pichia pastoris. Sci Rep, 13(1), 5224. https://doi.org/10.1038/s41598-023-32021-9
  • Kastritis, P. L., & Bonvin, A. M. (2013). On the binding affinity of macromolecular interactions: daring to ask why proteins interact. J R Soc Interface, 10(79), 20120835. https://doi.org/10.1098/rsif.2012.0835
  • Kim, S., Liu, Y., Ziarnik, M., Cao, Y., Zhang, X. F., & Im, W. (2022). Binding of Human ACE2 and RBD of Omicron Enhanced by Unique Interaction Patterns Among SARS-CoV-2 Variants of Concern. bioRxiv. https://doi.org/10.1101/2022.01.24.477633
  • Letko, M., Marzi, A., & Munster, V. (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol, 5(4), 562-569. https://doi.org/10.1038/s41564-020-0688-y
  • Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S. M., Lau, E. H. Y., Wong, J. Y., Xing, X., Xiang, N., Wu, Y., Li, C., Chen, Q., Li, D., Liu, T., Zhao, J., Liu, M., Feng, Z. (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med, 382(13), 1199-1207. https://doi.org/10.1056/NEJMoa2001316
  • Liu, H., Zhang, Q., Wei, P., Chen, Z., Aviszus, K., Yang, J., Downing, W., Jiang, C., Liang, B., Reynoso, L., Downey, G. P., Frankel, S. K., Kappler, J., Marrack, P., & Zhang, G. (2021). The basis of a more contagious 501Y.V1 variant of SARS-CoV-2. Cell Res, 31(6), 720-722. https://doi.org/10.1038/s41422-021-00496-8
  • Liu, J., Li, Y., Liu, Q., Yao, Q., Wang, X., Zhang, H., Chen, R., Ren, L., Min, J., Deng, F., Yan, B., Liu, L., Hu, Z., Wang, M., & Zhou, Y. (2021). SARS-CoV-2 cell tropism and multiorgan infection. Cell Discov, 7(1), 17. https://doi.org/10.1038/s41421-021-00249-2
  • Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., . . . Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 395(10224), 565-574. https://doi.org/10.1016/S0140-6736(20)30251-8
  • Madeira, F., Pearce, M., Tivey, A. R. N., Basutkar, P., Lee, J., Edbali, O., Madhusoodanan, N., Kolesnikov, A., & Lopez, R. (2022). Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res, 50(W1), W276-279. https://doi.org/10.1093/nar/gkac240
  • Markov, P. V., Ghafari, M., Beer, M., Lythgoe, K., Simmonds, P., Stilianakis, N. I., & Katzourakis, A. (2023). The evolution of SARS-CoV-2. Nat Rev Microbiol. https://doi.org/10.1038/s41579-023-00878-2
  • Miller, B. R., 3rd, McGee, T. D., Jr., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. J Chem Theory Comput, 8(9), 3314-3321. https://doi.org/10.1021/ct300418h
  • Rambaut, A., Holmes, E. C., O'Toole, A., Hill, V., McCrone, J. T., Ruis, C., du Plessis, L., & Pybus, O. G. (2020). A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol, 5(11), 1403-1407. https://doi.org/10.1038/s41564-020-0770-5
  • Rana, R., Kant, R., Huirem, R. S., Bohra, D., & Ganguly, N. K. (2022). Omicron variant: Current insights and future directions. Microbiol Res, 265, 127204. https://doi.org/10.1016/j.micres.2022.127204
  • Vangone, A., & Bonvin, A. M. (2015). Contacts-based prediction of binding affinity in protein-protein complexes. Elife, 4, e07454. https://doi.org/10.7554/eLife.07454
  • Wang, C., Greene, D., Xiao, L., Qi, R., & Luo, R. (2017). Recent Developments and Applications of the MMPBSA Method. Front Mol Biosci, 4, 87. https://doi.org/10.3389/fmolb.2017.00087
  • Wang, Y., Yan, J., & Goult, B. T. (2019). Force-Dependent Binding Constants. Biochemistry, 58(47), 4696-4709. https://doi.org/10.1021/acs.biochem.9b00453
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, 46(W1), W296-W303. https://doi.org/10.1093/nar/gky427
  • Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: a web server for predicting the binding affinity of protein-protein complexes. Bioinformatics, 32(23), 3676-3678. https://doi.org/10.1093/bioinformatics/btw514
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enzimler, Reseptörler ve Membran Biyolojisi, Viroloji, Tıbbi Biyoteknolojik Tanılama
Bölüm Research Articles
Yazarlar

Sibel Kalyoncu Bu kişi benim 0000-0003-2264-0757

Erken Görünüm Tarihi 25 Temmuz 2023
Yayımlanma Tarihi 31 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 32 Sayı: 2

Kaynak Göster

APA Kalyoncu, S. (2023). Omicron variants bind to human angiotensin-converting enzyme 2 (ACE2) much stronger due to higher number of charged-charged interactions. Biotech Studies, 32(2), 75-82. https://doi.org/10.38042/biotechstudies.1332403


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services