Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 16 Sayı: 3, 714 - 730, 31.12.2023
https://doi.org/10.18185/erzifbed.1341086

Öz

Kaynakça

  • [1] Cavallo, G., Metrangolo P., Milan, R., Pilati T., Priimag, A., Resnati G., Terraneo G., (2016) The halogen bond, Chemical reviews, 11 6(4) 2478-2601.
  • [2] Leigh, G. J. (Ed.). (2011). Principles of chemical nomenclature: a guide to IUPAC recommendations. Royal Society of Chemistry.
  • [3] Ibupoto, Z. H., Khun K., Willander M., (2013) A selective iodide ion sensor electrode based on functionalized ZnO nanotubes, Sensors, 13 (2) 1984 - 1997.
  • [4] Mequanint, T., Moges G., Tessma M., Mehretu S. (2012) All-solid-state iodide selective electrode for iodimetry of iodized salts and vitamin C, Oriental Journal of Chemistry, 28 (4), 1547.
  • [5] Shokrollahi, A., Ghaedi M., Montazerozohori M., Hosaini O., Ghaedi, H. (2007) Construction of Suitable Iodide–Selective Electrode Based on Phenyl Mercury (II)(2‐mercaptobezothiozolate) Carrier, Analytical letters, 40 (9) 1714-1735.
  • [6] Alizadeh, T., Zargr F. (2020) Highly selective and sensitive iodide sensor based on carbon paste electrode modified with nanosized sulfate-doped α-Fe2O3, Materials Chemistry and Physics, 240, 122118.
  • [7] Amini, M. K., Ghaedi M., Rafi A., Habibi M. H., Zohory M. M. (2003) Iodide selective electrodes based on bis (2-mercaptobenzo-thiazolato) mercury (II) and bis (4-chlorothiophenolato) mercury (II) carriers, Sensors, 3 (11) 509-523.
  • [8] Ghaedi, M., Shojaie A. F., Montazerozohori M., Karami B., Gharaghani S. (2005) Iodide‐Selective Electrodes Based on Bis [N (2‐methyl‐phenyl) 4‐Nitro‐thiobenzamidato] mercury (II), Electroanalysis, 17 (19) 1746-1754.
  • [9] Abramović, B., Horvath K., Gaal F. (1993) Automatic titrimetric determination of iodide in some pharmaceutical contrasting preparations, Journal of pharmaceutical and biomedical analysis, 11 (6) 447-450.
  • [10] Drozd, A. V., Loboichenko V. M., Tishakova T. S. (2011) Spectrophotometric determination of iodides by the products of fluorescein halogenation using electrochemical oxidation, Journal of analytical chemistry, 66 131-134.
  • [11] Malon, A., Radu A., Qin W., Qin Y., Ceresa A., Maj-Zurawska M., Pretsch E. (2003) Improving the detection limit of anion-selective electrodes: An iodide-selective membrane with a nanomolar detection limit, Analytical chemistry, 75 (15) 3865-3871.
  • [12] Schwehr, K. A., Santschi P. H. (2003) Sensitive determination of iodine species, including organo-iodine, for freshwater and seawater samples using high performance liquid chromatography and spectrophotometric detection, Analytica Chimica Acta, 482 (1) 59-71.
  • [13] Huang, Z., Zhu Z., Subhani Q., Yan W., Guo W., Zhu Y. (2012) Simultaneous determination of iodide and iodate in povidone iodine solution by ion chromatography with homemade and exchange capacity controllable columns and column-switching technique, Journal of Chromatography A, 1251, 154-159.
  • [14] Malongo, T. K., Patris S., Macours P., Cotton F., Nsangu J., Kauffmann J. M. (2008) Highly sensitive determination of iodide by ion chromatography with amperometric detection at a silver-based carbon paste electrode, Talanta, 76 (3) 540-547.
  • [15] Švancara, I., Konvalina J., Schachl K., Kalcher K., Vytřas K. (1998) Stripping voltammetric determination of iodide with synergistic accumulation at a carbon paste electrode, Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 10 (6) 435-441.
  • [16] Yeom, J. S., Won M. S., Shim Y. B. (1999) Voltammetric determination of the iodide ion with a quinine copper (II) complex modified carbon paste electrode, Journal of electroanalytical Chemistry, 463 (1) 16-23.
  • [17] Rajbhandari, A., Yadav A. P., Manandhar K., Pradhananga R. R. (2010) Characterization of home-made silver sulphide based iodide selective electrode, Talanta, 82 (4) 1448-1454.
  • [18] Xu, W. J., Yuan R., Chai Y. Q., Zhang T. T., Liang W. B., Wu X. (2008) Fabrication of an iodide-selective electrode based on phthalocyaninatotitanium (IV) oxide and the selective determination of iodide in actual samples, Analytical and bioanalytical chemistry, 392, 297-303.
  • [19] Shahrokhian, S., Taghani A., Moattar F. (2002) Iodide‐selective electrode based on copper phthalocyanine, Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 14 (23) 1621-1628.
  • [20] Topcu, C., Coldur,F., Caglar,B., Ozdokur K. V., Cubuk O. (2022) Solid‐state electrochemical sensor based on a cross‐linked copper (II)‐doped copolymer and carbon nanotube material for selective and sensitive detection of monohydrogen phosphate, Electroanalysis, 34 (3) 474-484.
  • [21] Topcu, C., Lacin G., Yilmaz V., Coldur F., Caglar B., Cubuk O., Isildak I. (2018) Electrochemical determination of copper (II) in water samples using a novel ion-selective electrode based on a graphite oxide–imprinted polymer composite, Analytical Letters, 51 (12) 1890-1910.
  • [22] Poursaberi, T., Hosseini M., Taghizadeh M., Pirelahi H., Shamsipur M., Ganjali M. R. (2002) A selective membrane electrode for iodide ion based on a thiopyrilium ion derivative as a new ionophore, Microchemical journal, 72 (1), 77-83.
  • [23] Bahar, D. U., Topcu C., Ozcimen D., Isildak I. (2020) A novel borate ion selective electrode based on carbon nanotube-silver borate, International Journal of Electrochemical Science, 15 (1) 899-914.
  • [24] Topcu, C., Caglar B., Guner E. K., Coldur F., Caglar S., Yıldırım Ö., Cubuk O. (2019) Novel copper (II)-selective potentiometric sensor based on a folic acid-functionalized carbon nanotube material, Analytical Letters, 52 (16) 2524-2545.
  • [25] Topcu, C. (2016) Highly selective direct determination of chlorate ions by using a newly developed potentiometric electrode based on modified smectite, Talanta, 161, 623-631.
  • [26] Topcu, C., Caglar B., Onder A., Coldur F., Caglar S., Guner E. K., Tabak A. (2018) Structural characterization of chitosan-smectite nanocomposite and its application in the development of a novel potentiometric monohydrogen phosphate-selective sensor, Materials Research Bulletin, 98, 288-299.
  • [27] Umezawa, Y., Bühlmann P., Umezawa K., Tohda K., Amemiya, S. (2000) Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic cations (technical report), Pure and Applied Chemistry, 72 (10) 1851-2082.
  • [28] Pouretedal, H. R., Keshavarz M. H. (2004) Copper (I)-bathocuproine complex as carrier in iodide-selective electrode, Talanta, 62 (1) 221-225.
  • [29] Vlascici, D., Plesu N., Fagadar-Cosma G., Lascu A., Petric M., Crisan M., Fagadar-Cosma E. (2018) Potentiometric sensors for iodide and bromide based on Pt (II)-porphyrin, Sensors, 18 (7) 2297.
  • [30] Topcu, C., Coldur F., Andac M., Isildak I., Senyuz N., Bati H. (2011) Ag+-selective poly (vinyl chloride) Membrane Electrode Based on [N, N'-ethylenebis-(3-methoxy salicylaldimine)], Current Analytical Chemistry, 7 (2) 136-145.
  • [31] Gholami, M., Ghasemi A. M., Loghavi M., Behkami S., Ahamdi-Dokht-Faraghe A. (2013) Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density, Chemical Papers, 67 (8) 1079-1086.
  • [32] Jalali, F., Rajabi M. J., Bahrami G., Shamsipur M. (2005) Preparation of a novel iodide-selective electrode based on iodide-miconazole ion-pair and its application to pharmaceutical analysis, Analytical sciences, 21 (12) 1533-1535.

Potentiometric Monitoring of Iodide Ions Using a Highly Selective Iodide Sensor Based on AgI-Cu2S-Multi Walled Carbon Nano Tube Material

Yıl 2023, Cilt: 16 Sayı: 3, 714 - 730, 31.12.2023
https://doi.org/10.18185/erzifbed.1341086

Öz

In this work, a new iodide selective sensor based on an AgI-Cu2S-Multiwalled carbonnanotube-Graphite-Paraffin oil composite material was described for highly selective potentiometric determination of iodide ions. To obtain the best potentiometric performance characteristics of the sensor, the sensor components was optimized and the sensor was formed by properly pressing of the optimized sensor components. The experimental results were showed that the most appropriate potentiometric response was achieved with the sensor materials containing a compositions of G:MWCNT:AgI:Cu2S:PO in the ratio 50:5:20:5:20 (% w/w). The developed sensor display a wide linear working range (1.0×10-5-1.0×10-1 molL-1) for iodide ions. In this linear working range, the Nernstian slope of the sensor was 51.5±1.0 mV and the correlation coefficient (R2) was determined as 0.9991. The sensor was of a very low response time (5s). The repeatability of the sensor potential response was very good and its response remained unchanged in the pH range of 6.0-9.0. The interference effect on the sensor response of different anionic species was tested by the separate solution method (SSM) and the sensor selectivity was quite good. The life time of the sensor was measured as 13 weeks and the sensor was successfully used as indicator sensor for the potentiometric titrations of iodide ions with silver nitrate solution. Additionally, the sensor was successfully applied for the direct detection of iodide ions in environmental water samples.

Kaynakça

  • [1] Cavallo, G., Metrangolo P., Milan, R., Pilati T., Priimag, A., Resnati G., Terraneo G., (2016) The halogen bond, Chemical reviews, 11 6(4) 2478-2601.
  • [2] Leigh, G. J. (Ed.). (2011). Principles of chemical nomenclature: a guide to IUPAC recommendations. Royal Society of Chemistry.
  • [3] Ibupoto, Z. H., Khun K., Willander M., (2013) A selective iodide ion sensor electrode based on functionalized ZnO nanotubes, Sensors, 13 (2) 1984 - 1997.
  • [4] Mequanint, T., Moges G., Tessma M., Mehretu S. (2012) All-solid-state iodide selective electrode for iodimetry of iodized salts and vitamin C, Oriental Journal of Chemistry, 28 (4), 1547.
  • [5] Shokrollahi, A., Ghaedi M., Montazerozohori M., Hosaini O., Ghaedi, H. (2007) Construction of Suitable Iodide–Selective Electrode Based on Phenyl Mercury (II)(2‐mercaptobezothiozolate) Carrier, Analytical letters, 40 (9) 1714-1735.
  • [6] Alizadeh, T., Zargr F. (2020) Highly selective and sensitive iodide sensor based on carbon paste electrode modified with nanosized sulfate-doped α-Fe2O3, Materials Chemistry and Physics, 240, 122118.
  • [7] Amini, M. K., Ghaedi M., Rafi A., Habibi M. H., Zohory M. M. (2003) Iodide selective electrodes based on bis (2-mercaptobenzo-thiazolato) mercury (II) and bis (4-chlorothiophenolato) mercury (II) carriers, Sensors, 3 (11) 509-523.
  • [8] Ghaedi, M., Shojaie A. F., Montazerozohori M., Karami B., Gharaghani S. (2005) Iodide‐Selective Electrodes Based on Bis [N (2‐methyl‐phenyl) 4‐Nitro‐thiobenzamidato] mercury (II), Electroanalysis, 17 (19) 1746-1754.
  • [9] Abramović, B., Horvath K., Gaal F. (1993) Automatic titrimetric determination of iodide in some pharmaceutical contrasting preparations, Journal of pharmaceutical and biomedical analysis, 11 (6) 447-450.
  • [10] Drozd, A. V., Loboichenko V. M., Tishakova T. S. (2011) Spectrophotometric determination of iodides by the products of fluorescein halogenation using electrochemical oxidation, Journal of analytical chemistry, 66 131-134.
  • [11] Malon, A., Radu A., Qin W., Qin Y., Ceresa A., Maj-Zurawska M., Pretsch E. (2003) Improving the detection limit of anion-selective electrodes: An iodide-selective membrane with a nanomolar detection limit, Analytical chemistry, 75 (15) 3865-3871.
  • [12] Schwehr, K. A., Santschi P. H. (2003) Sensitive determination of iodine species, including organo-iodine, for freshwater and seawater samples using high performance liquid chromatography and spectrophotometric detection, Analytica Chimica Acta, 482 (1) 59-71.
  • [13] Huang, Z., Zhu Z., Subhani Q., Yan W., Guo W., Zhu Y. (2012) Simultaneous determination of iodide and iodate in povidone iodine solution by ion chromatography with homemade and exchange capacity controllable columns and column-switching technique, Journal of Chromatography A, 1251, 154-159.
  • [14] Malongo, T. K., Patris S., Macours P., Cotton F., Nsangu J., Kauffmann J. M. (2008) Highly sensitive determination of iodide by ion chromatography with amperometric detection at a silver-based carbon paste electrode, Talanta, 76 (3) 540-547.
  • [15] Švancara, I., Konvalina J., Schachl K., Kalcher K., Vytřas K. (1998) Stripping voltammetric determination of iodide with synergistic accumulation at a carbon paste electrode, Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 10 (6) 435-441.
  • [16] Yeom, J. S., Won M. S., Shim Y. B. (1999) Voltammetric determination of the iodide ion with a quinine copper (II) complex modified carbon paste electrode, Journal of electroanalytical Chemistry, 463 (1) 16-23.
  • [17] Rajbhandari, A., Yadav A. P., Manandhar K., Pradhananga R. R. (2010) Characterization of home-made silver sulphide based iodide selective electrode, Talanta, 82 (4) 1448-1454.
  • [18] Xu, W. J., Yuan R., Chai Y. Q., Zhang T. T., Liang W. B., Wu X. (2008) Fabrication of an iodide-selective electrode based on phthalocyaninatotitanium (IV) oxide and the selective determination of iodide in actual samples, Analytical and bioanalytical chemistry, 392, 297-303.
  • [19] Shahrokhian, S., Taghani A., Moattar F. (2002) Iodide‐selective electrode based on copper phthalocyanine, Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 14 (23) 1621-1628.
  • [20] Topcu, C., Coldur,F., Caglar,B., Ozdokur K. V., Cubuk O. (2022) Solid‐state electrochemical sensor based on a cross‐linked copper (II)‐doped copolymer and carbon nanotube material for selective and sensitive detection of monohydrogen phosphate, Electroanalysis, 34 (3) 474-484.
  • [21] Topcu, C., Lacin G., Yilmaz V., Coldur F., Caglar B., Cubuk O., Isildak I. (2018) Electrochemical determination of copper (II) in water samples using a novel ion-selective electrode based on a graphite oxide–imprinted polymer composite, Analytical Letters, 51 (12) 1890-1910.
  • [22] Poursaberi, T., Hosseini M., Taghizadeh M., Pirelahi H., Shamsipur M., Ganjali M. R. (2002) A selective membrane electrode for iodide ion based on a thiopyrilium ion derivative as a new ionophore, Microchemical journal, 72 (1), 77-83.
  • [23] Bahar, D. U., Topcu C., Ozcimen D., Isildak I. (2020) A novel borate ion selective electrode based on carbon nanotube-silver borate, International Journal of Electrochemical Science, 15 (1) 899-914.
  • [24] Topcu, C., Caglar B., Guner E. K., Coldur F., Caglar S., Yıldırım Ö., Cubuk O. (2019) Novel copper (II)-selective potentiometric sensor based on a folic acid-functionalized carbon nanotube material, Analytical Letters, 52 (16) 2524-2545.
  • [25] Topcu, C. (2016) Highly selective direct determination of chlorate ions by using a newly developed potentiometric electrode based on modified smectite, Talanta, 161, 623-631.
  • [26] Topcu, C., Caglar B., Onder A., Coldur F., Caglar S., Guner E. K., Tabak A. (2018) Structural characterization of chitosan-smectite nanocomposite and its application in the development of a novel potentiometric monohydrogen phosphate-selective sensor, Materials Research Bulletin, 98, 288-299.
  • [27] Umezawa, Y., Bühlmann P., Umezawa K., Tohda K., Amemiya, S. (2000) Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic cations (technical report), Pure and Applied Chemistry, 72 (10) 1851-2082.
  • [28] Pouretedal, H. R., Keshavarz M. H. (2004) Copper (I)-bathocuproine complex as carrier in iodide-selective electrode, Talanta, 62 (1) 221-225.
  • [29] Vlascici, D., Plesu N., Fagadar-Cosma G., Lascu A., Petric M., Crisan M., Fagadar-Cosma E. (2018) Potentiometric sensors for iodide and bromide based on Pt (II)-porphyrin, Sensors, 18 (7) 2297.
  • [30] Topcu, C., Coldur F., Andac M., Isildak I., Senyuz N., Bati H. (2011) Ag+-selective poly (vinyl chloride) Membrane Electrode Based on [N, N'-ethylenebis-(3-methoxy salicylaldimine)], Current Analytical Chemistry, 7 (2) 136-145.
  • [31] Gholami, M., Ghasemi A. M., Loghavi M., Behkami S., Ahamdi-Dokht-Faraghe A. (2013) Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density, Chemical Papers, 67 (8) 1079-1086.
  • [32] Jalali, F., Rajabi M. J., Bahrami G., Shamsipur M. (2005) Preparation of a novel iodide-selective electrode based on iodide-miconazole ion-pair and its application to pharmaceutical analysis, Analytical sciences, 21 (12) 1533-1535.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sensör Teknolojisi , Elektrokimya
Bölüm Makaleler
Yazarlar

Cihan Topcu 0000-0003-0613-5873

Aybüke Coşkun 0009-0006-4131-418X

Rabia Rana Yılmaz 0000-0003-1789-1527

Betül Hilal Atasoy 0000-0002-7945-4958

Erken Görünüm Tarihi 25 Aralık 2023
Yayımlanma Tarihi 31 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 16 Sayı: 3

Kaynak Göster

APA Topcu, C., Coşkun, A., Yılmaz, R. R., Atasoy, B. H. (2023). Potentiometric Monitoring of Iodide Ions Using a Highly Selective Iodide Sensor Based on AgI-Cu2S-Multi Walled Carbon Nano Tube Material. Erzincan University Journal of Science and Technology, 16(3), 714-730. https://doi.org/10.18185/erzifbed.1341086