Araştırma Makalesi
BibTex RIS Kaynak Göster

Hidrotermal Reaksiyon Sıcaklığının CuO İnce Filmlerin Yapısal ve Optik Özelliklerine Etkisi

Yıl 2024, Cilt: 17 Sayı: 1, 196 - 209, 28.03.2024
https://doi.org/10.18185/erzifbed.1392027

Öz

Bakır oksitler cihaz uygulamaları için incelenen ilk yarı iletkenlerden biridir. Bu çalışmada, CuO ince filmler, herhangi bir yüzey aktif madde kullanılmadan, hidrotermal yöntemle flor katkılı kalay oksit (FTO) altlıklar üzerine büyütülmüş ve reaksiyon sıcaklığının filmlerin özellikleri üzerine etkisi araştırılmıştır. Farklı reaksiyon sıcaklıklarında büyütülen CuO ince filmler, X-ışını kırınımı (XRD), taramalı elektron mikroskobu (SEM), enerji dağılımlı X-ışını analizi (EDAX), Raman spektroskopisi ve optik soğurma ölçümleri kullanılarak yapısal ve optik özellikleri açısından karakterize edilmiştir. XRD sonuçları, tüm filmlerin herhangi bir safsızlık fazı içermeyen, monoklinik kristal yapıya sahip, polikristal CuO'dan oluştuğunu ortaya çıkarmıştır. SEM görüntüleri, krizantem benzeri yapıların oluştuğunu ve hidrotermal reaksiyon sıcaklığının artmasıyla bu yapıların sayısının arttığını göstermiştir. EDAX ölçümleri Cu ve O elementlerinin varlığını kanıtlamış ve tüm filmlerin Cu/O oranlarının bire yakın olduğunu göstermiştir. Raman spektrumları tüm filmlerde kristal CuO oluşumunu doğrulamıştır. Optik soğurma ölçümlerinden CuO ince filmlerinin doğrudan yasak enerji aralığı değerlerinin hidrotermal reaksiyon sıcaklığına bağlı olarak 1,34 eV ile 1,41 eV arasında olduğu bulunmuştur.

Kaynakça

  • [1] T.K.S. Wong, S. Zhuk, S. Masudy-Panah, G.K. Dalapati, “Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells”, Materials 9 (2016) 271–292.
  • [2] G.G. Welegergs, Z.M. Mehabaw, H.G. Gebretinsae, M.G. Tsegay, L. Kotsedi, Z. Khumalo, N. Matinisie, Z.T. Aytuna, S. Mathur, Z.Y. Nuru, S. Dube, M. Maaza, “Electrodeposition of nanostructured copper oxide (CuO) coatings as spectrally solar selective absorber: Structural, optical and electrical properties”, Infrared Physics and Technology 133 (2023) 104820.
  • [3] N. Ozer, C.M. Lampert, “Electrochromic characterization of sol—gel deposited coatings”, Solar Energy Materials and Solar Cells 54 (1998) 147–156.
  • [4] S. Keerthana, M.B. Arthina Titlin, C. Ravi Dhas, R. Venkatesh, S. Esther Santhoshi Monica, “Unraveling the role of solvent type in the physical and chemiresistive gas sensing properties of nebulizer-sprayed CuO films”, Materials Science and Engineering B 297 (2023) 116821.
  • [5] S.B. Wang, C.H. Hsiao, S.J. Chang, K.T. Lam, K.H. Wen, S.J. Young, S.C. Hung, B.R. Huang, “CuO nanowire-based humidity sensor”, IEEE Sensors Journal 12 (2012) 1884–1888.
  • [6] D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, V.S. Jamdade, C.D. Lokhande, “Fabrication of copper oxide multilayer nanosheets for supercapacitor application”, Journal of Alloys and Compounds 492 (2010) 26–30.
  • [7] F. Ansari, S. Sheibani, M. Fernandez-Garcia, “Surface modification of Cu2O-CuO photocatalyst on Cu wire through decorating with TiO2 nanoparticles for enhanced visible light photocatalytic activity”, Journal of Alloys and Compounds 919 (2022) 165864.
  • [8] N.J. Karazmoudeh, M. Soltanieh, M. Hasheminiasari, “Structural and photocatalytic properties of undoped and Zn-doped CuO thin films deposited by reactive magnetron sputtering”, Journal of Alloys and Compounds 947 (2023) 169564.
  • [9] E.M. Alkoy, P.J. Kelly, “The structure and properties of copper oxide and copper aluminium oxide coatings prepared by pulsed magnetron sputtering of powder targets”, Vacuum 79 (2005) 221–230.
  • [10] D. Chua, S.B. Kim, K. Li, R. Gordon, “Low Temperature Chemical Vapor Deposition of Cuprous Oxide Thin Films Using a Copper(I) Amidinate Precursor”, ACS Applied Energy Materials 2 (2019) 7750–7756.
  • [11] C.M. Muiva, A.O. Juma, L.M. Lepodise, K. Maabong, D. Letsholathebe, “Surfactant assisted chemical bath deposition based synthesis of 1-D nanostructured CuO thin films from alkaline baths”, Materials Science in Semiconductor Processing 67 (2017) 69–74.
  • [12] S. Baturay, “Structural and Optical Properties of Sb Doped CuO Films”, Academic Platform Journal of Engineering and Science 8 (2020) 84–90.
  • [13] Y. Akaltun., “Effect of thickness on the structural and optical properties of CuO thin films grown by successive ionic layer adsorption and reaction”, Thin Solid Films 594 (2015) 30–34.
  • [14] O. Gençyılmaz, T. Taşköprü, “Effect of pH on the synthesis of CuO films by SILAR method”, Journal of Alloys and Compounds 695 (2017) 1205–1212.
  • [15] Y. Liu, Y. Chu, M. Li, L. Li, L. Dong, “In situ synthesis and assembly of copper oxide nanocrystals on copper foil via a mild hydrothermal process”, Journal of Materials Chemistry 16 (2006) 192–198. 207
  • [16] J. Wu, B. Yan, “Photoluminescence intensity of YxGd1−xVO4:Eu3+ dependence on hydrothermal synthesis time and variable ratio of Y/Gd”, Journal of Alloys and Compounds 455 (2008) 485–488.
  • [17] A.M. Holi, Z. Zainal, Z.A. Talib, H.N. Lim, C.C. Yap, S.K. Chang, A.K. Ayal, “Effect of hydrothermal growth time on ZnO nanorod arrays photoelectrode performance”, Optik 127 (2016) 11111–11118.
  • [18] W.L. Bragg, “The diffraction of short electromagnetic waves by a crystal”, Proceedings - Cambridge Philosophical Society 17 (1913) 43–57.
  • [19] C. Barrett, T.B. Massalski, Structure of Metals, Pergamon, Oxford, 1980.
  • [20] R. Mariappan, V. Ponnuswamy, S.M. Mohan, P. Suresh, R. Suresh, “The effect of potential on electrodeposited CdSe thin films”, Materials Science in Semiconductor Processing 15 (2012) 174–180.
  • [21] N. Zhao, H. Fan, M. Zhang, X. Ren, C. Wang, H. Peng, H. Li, X. Jiang, X. Cao, “Facile preparation of Ni-doped MnCO3 materials with controlled morphology for high-performance supercapacitor electrodes”, Ceramic International 45 (2019) 5266–5275.
  • [22] T. Gao, H. Fjellvag, P. Norby, “Structural and morphological evolution of β-MnO2 nanorods during hydrothermal synthesis”, Nanotechnology 20 (2009) 055610.
  • [23] H. Siddiqui, M.S. Qureshi, F.Z. Haque, “Surfactant assisted wet chemical synthesis of copper oxide (CuO) nanostructures and their spectroscopic analysis”, Optik 127 (2016) 2740– 2747.
  • [24] H.F. Goldstein, D. Kim, P.Y. Yu, L.C. Bourne, “Raman study of CuO single crystals”, Physical Review B 41 (1990) 7192–7194.
  • [25] J.F. Xu, W. Ji, Z.X. Shen, W.S. Li, S.H. Tang, X.R. Ye, D.Z. Jia, X.Q. Xin, “Raman Spectra of CuO Nanocrystals”, Journal of Raman Spectroscopy 30 (1999) 413–415.
  • [26] C.Y. Kim, D.H. Riu, “Raman scattering, electrical and optical properties of fluorine-doped tin oxide thin films with (200) and (301) preferred orientation”, Materials Chemistry and Physics 148 (2014) 810–817.
  • [27] F. Bayansal, H.A. Çetinkara, S. Kahraman, H.M. Çakmak, H.S. Güder, “Nano-structured CuO films prepared by simple solution methods: Plate-like, needle-like and network-like architectures”, Ceramics International 38 (2012) 1859–1866.
  • [28] G.G. Welegergs, H.G. Gebretnisae, M.G. Tsegay, Z.Y. Nuru, S. Dube, M. Mazaa, “Thickness dependent morphological, structural and optical properties of SS/CuO nanocoatings as selective solar absorber”, Infrared Physics and Technology 113 (2021) 103619.

Effect of Hydrothermal Reaction Temperature on the Structural and Optical Properties of CuO Thin Films

Yıl 2024, Cilt: 17 Sayı: 1, 196 - 209, 28.03.2024
https://doi.org/10.18185/erzifbed.1392027

Öz

Copper oxides are one of the first semiconductors studied for device applications. In the present work, CuO thin films were deposited on fluorine-doped tin oxide (FTO) substrates via hydrothermal method without using any surfactant and the effects of reaction temperature on the properties of the films were studied. CuO thin films deposited at different reaction temperatures were characterized for their structural and optical properties using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Raman spectroscopy, and optical absorption measurements. XRD results revealed that all the films consisted of polycrystalline CuO with a monoclinic crystal structure without any impurity phase. SEM images showed that chrysanthemum-like structures were formed, the number of which increased with increasing hydrothermal reaction temperature. EDAX measurements proved the existence of Cu and O elements and showed that all the films have Cu/O ratios close to unity. The Raman spectra confirmed the formation of crystalline CuO in all the films. From the optical absorption measurements, the direct forbidden energy gap values of the CuO thin films were found to be between 1.34 eV and 1.41 eV, depending on the hydrothermal reaction temperature.

Kaynakça

  • [1] T.K.S. Wong, S. Zhuk, S. Masudy-Panah, G.K. Dalapati, “Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells”, Materials 9 (2016) 271–292.
  • [2] G.G. Welegergs, Z.M. Mehabaw, H.G. Gebretinsae, M.G. Tsegay, L. Kotsedi, Z. Khumalo, N. Matinisie, Z.T. Aytuna, S. Mathur, Z.Y. Nuru, S. Dube, M. Maaza, “Electrodeposition of nanostructured copper oxide (CuO) coatings as spectrally solar selective absorber: Structural, optical and electrical properties”, Infrared Physics and Technology 133 (2023) 104820.
  • [3] N. Ozer, C.M. Lampert, “Electrochromic characterization of sol—gel deposited coatings”, Solar Energy Materials and Solar Cells 54 (1998) 147–156.
  • [4] S. Keerthana, M.B. Arthina Titlin, C. Ravi Dhas, R. Venkatesh, S. Esther Santhoshi Monica, “Unraveling the role of solvent type in the physical and chemiresistive gas sensing properties of nebulizer-sprayed CuO films”, Materials Science and Engineering B 297 (2023) 116821.
  • [5] S.B. Wang, C.H. Hsiao, S.J. Chang, K.T. Lam, K.H. Wen, S.J. Young, S.C. Hung, B.R. Huang, “CuO nanowire-based humidity sensor”, IEEE Sensors Journal 12 (2012) 1884–1888.
  • [6] D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, V.S. Jamdade, C.D. Lokhande, “Fabrication of copper oxide multilayer nanosheets for supercapacitor application”, Journal of Alloys and Compounds 492 (2010) 26–30.
  • [7] F. Ansari, S. Sheibani, M. Fernandez-Garcia, “Surface modification of Cu2O-CuO photocatalyst on Cu wire through decorating with TiO2 nanoparticles for enhanced visible light photocatalytic activity”, Journal of Alloys and Compounds 919 (2022) 165864.
  • [8] N.J. Karazmoudeh, M. Soltanieh, M. Hasheminiasari, “Structural and photocatalytic properties of undoped and Zn-doped CuO thin films deposited by reactive magnetron sputtering”, Journal of Alloys and Compounds 947 (2023) 169564.
  • [9] E.M. Alkoy, P.J. Kelly, “The structure and properties of copper oxide and copper aluminium oxide coatings prepared by pulsed magnetron sputtering of powder targets”, Vacuum 79 (2005) 221–230.
  • [10] D. Chua, S.B. Kim, K. Li, R. Gordon, “Low Temperature Chemical Vapor Deposition of Cuprous Oxide Thin Films Using a Copper(I) Amidinate Precursor”, ACS Applied Energy Materials 2 (2019) 7750–7756.
  • [11] C.M. Muiva, A.O. Juma, L.M. Lepodise, K. Maabong, D. Letsholathebe, “Surfactant assisted chemical bath deposition based synthesis of 1-D nanostructured CuO thin films from alkaline baths”, Materials Science in Semiconductor Processing 67 (2017) 69–74.
  • [12] S. Baturay, “Structural and Optical Properties of Sb Doped CuO Films”, Academic Platform Journal of Engineering and Science 8 (2020) 84–90.
  • [13] Y. Akaltun., “Effect of thickness on the structural and optical properties of CuO thin films grown by successive ionic layer adsorption and reaction”, Thin Solid Films 594 (2015) 30–34.
  • [14] O. Gençyılmaz, T. Taşköprü, “Effect of pH on the synthesis of CuO films by SILAR method”, Journal of Alloys and Compounds 695 (2017) 1205–1212.
  • [15] Y. Liu, Y. Chu, M. Li, L. Li, L. Dong, “In situ synthesis and assembly of copper oxide nanocrystals on copper foil via a mild hydrothermal process”, Journal of Materials Chemistry 16 (2006) 192–198. 207
  • [16] J. Wu, B. Yan, “Photoluminescence intensity of YxGd1−xVO4:Eu3+ dependence on hydrothermal synthesis time and variable ratio of Y/Gd”, Journal of Alloys and Compounds 455 (2008) 485–488.
  • [17] A.M. Holi, Z. Zainal, Z.A. Talib, H.N. Lim, C.C. Yap, S.K. Chang, A.K. Ayal, “Effect of hydrothermal growth time on ZnO nanorod arrays photoelectrode performance”, Optik 127 (2016) 11111–11118.
  • [18] W.L. Bragg, “The diffraction of short electromagnetic waves by a crystal”, Proceedings - Cambridge Philosophical Society 17 (1913) 43–57.
  • [19] C. Barrett, T.B. Massalski, Structure of Metals, Pergamon, Oxford, 1980.
  • [20] R. Mariappan, V. Ponnuswamy, S.M. Mohan, P. Suresh, R. Suresh, “The effect of potential on electrodeposited CdSe thin films”, Materials Science in Semiconductor Processing 15 (2012) 174–180.
  • [21] N. Zhao, H. Fan, M. Zhang, X. Ren, C. Wang, H. Peng, H. Li, X. Jiang, X. Cao, “Facile preparation of Ni-doped MnCO3 materials with controlled morphology for high-performance supercapacitor electrodes”, Ceramic International 45 (2019) 5266–5275.
  • [22] T. Gao, H. Fjellvag, P. Norby, “Structural and morphological evolution of β-MnO2 nanorods during hydrothermal synthesis”, Nanotechnology 20 (2009) 055610.
  • [23] H. Siddiqui, M.S. Qureshi, F.Z. Haque, “Surfactant assisted wet chemical synthesis of copper oxide (CuO) nanostructures and their spectroscopic analysis”, Optik 127 (2016) 2740– 2747.
  • [24] H.F. Goldstein, D. Kim, P.Y. Yu, L.C. Bourne, “Raman study of CuO single crystals”, Physical Review B 41 (1990) 7192–7194.
  • [25] J.F. Xu, W. Ji, Z.X. Shen, W.S. Li, S.H. Tang, X.R. Ye, D.Z. Jia, X.Q. Xin, “Raman Spectra of CuO Nanocrystals”, Journal of Raman Spectroscopy 30 (1999) 413–415.
  • [26] C.Y. Kim, D.H. Riu, “Raman scattering, electrical and optical properties of fluorine-doped tin oxide thin films with (200) and (301) preferred orientation”, Materials Chemistry and Physics 148 (2014) 810–817.
  • [27] F. Bayansal, H.A. Çetinkara, S. Kahraman, H.M. Çakmak, H.S. Güder, “Nano-structured CuO films prepared by simple solution methods: Plate-like, needle-like and network-like architectures”, Ceramics International 38 (2012) 1859–1866.
  • [28] G.G. Welegergs, H.G. Gebretnisae, M.G. Tsegay, Z.Y. Nuru, S. Dube, M. Mazaa, “Thickness dependent morphological, structural and optical properties of SS/CuO nanocoatings as selective solar absorber”, Infrared Physics and Technology 113 (2021) 103619.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Karekterizasyonu
Bölüm Makaleler
Yazarlar

Aykut Astam 0000-0002-4321-3626

Ömer Kaya 0000-0002-5019-3109

Erken Görünüm Tarihi 27 Mart 2024
Yayımlanma Tarihi 28 Mart 2024
Gönderilme Tarihi 16 Kasım 2023
Kabul Tarihi 18 Aralık 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 17 Sayı: 1

Kaynak Göster

APA Astam, A., & Kaya, Ö. (2024). Effect of Hydrothermal Reaction Temperature on the Structural and Optical Properties of CuO Thin Films. Erzincan University Journal of Science and Technology, 17(1), 196-209. https://doi.org/10.18185/erzifbed.1392027