Araştırma Makalesi
BibTex RIS Kaynak Göster

ZEOLİTİK İMİDAZOLAT KAFES YAPISININ SENTEZİ VE KARAKTERİZASYONU

Yıl 2024, Cilt: 49 Sayı: 1, 52 - 67, 14.02.2024
https://doi.org/10.15237/gida.GD23072

Öz

Zeolitik imidazolat kafes yapıları (ZIF'ler), geniş yüzey alanı, yüksek gözeneklilik, olağanüstü termal ve kimyasal kararlılık gibi ayırt edici özelliklerinden dolayı büyük ilgi görmektedir. ZIF'lerin yüzey alanını etkileyen morfolojik özelliklerini kontrol edebilmek için sentezlenen yapıların oluşumunda önemli rol oynayan sentez parametrelerinin etkisinin bilinmesi gerekmektedir. Bu çalışmanın amacı, gıda alanında uygulama potansiyalinin geliştirilmesi için ZIF-67 yapılarının farklı koşullar altında sentezlenmesidir. Sentezlenen malzemelerin morfolojileri (FE-SEM, polarize ışık mikroskobu), yüzey alanları (BET), kimyasal yapıları (FTIR) ve kristallikleri (XRD) incelenmiştir. Sentez esnasında TEA kullanılması ve kobalt nitrat ile 2-mIM konsantrasyonun artırılması dodekahedron yapının bozulmasına sebep olmuştur. Metanol miktarı azaltıldığında ise ZIF-67 nanoparçacıklarının boyutlarının arttığı belirlenmiştir. Dodekahedron morfolojiye sahip ZIF-67 nispeten yüksek bir nitrojen sorpsiyonu ve BET yüzey alanı göstermekle birlikte, karakteristik C-H ve C=N germe zirvelerine de sahiptir. Elde edilen ZIF-67 yüklü nanoliflerin; gıda kirleticilerinin adsorpsiyonu, gıda paketleme sistemlerinin geliştirilmesi, gaz depolama ve biyosensörler gibi gıda uygulamaları için umut verici olduğu düşünülmektedir.

Destekleyen Kurum

Mersin Üniversitesi Bilimsel Araştırma Projeleri Birimi

Proje Numarası

2021-1-TP3-4179

Teşekkür

Bu çalışma Mersin Üniversitesi Bilimsel Araştırma Projeleri Birimince (BAP), 2021-1-TP3-4179 nolu proje ile desteklenmiştir. Elif Atay, 100/2000 ve 2211-A BIDEB Doktora Burs Programı kapsamındaki finansal desteklerinden dolayı Yüksek Öğretim Kurulu'na (YÖK) ve Türkiye Bilimsel ve Teknolojik Araştırma Kurumu'na (TÜBİTAK) içtenlikle teşekkür etmektedir.

Kaynakça

  • Akbari, A., Majumder, M., Tehrani, A. (2015). Polylactic acid (PLA) carbon nanotube nanocomposites, Handbook of Polymer Nanocomposites. Processing, Performance and Application, 283-297, doi.org/10.1007/978-3-642-45229-1_45.
  • Altan, A., Yılmaz, M. (2021). Advances in biosensors based on electrospun micro/nanomaterials for food quality control and safety. Biosensors in Agriculture: Recent Trends and Future Perspectives, 243-274, doi: 10.1007/978-3-030-66165-6_13.
  • Alvarez, K., Fama, L., Guti´errez, T. J. (2017). Physicochemical, antimicrobial and mechanical properties of thermoplastic materials based on biopolymers with application in the food industry, In M. Masuelli & D. Renard (Eds.), Advances in Physicochemical Properties of Biopolymers, Part 1: 358–400, Bentham Science Publishers, doi: 10.2174/9781681084534117010015.
  • Arif, D., Hussain, Z., Sohail, M., Liaqat, M. A., Khan, M. A., Noor, T. (2020). Non-enzymatic electrochemical sensor for glucose detection based on Ag@TiO2@ metal-organic framework (ZIF-67) nanocomposite. Frontiers in Chemistry, 8:573510, doi.org/10.3389/fchem.2020.573510.
  • Atay, E. Altan, A. (2021). Nanoencapsulation of black seed oil by coaxial electrospraying: characterisation, oxidative stability and in vitro gastrointestinal digestion. International Journal of Food Science & Technology, 56, 4526, doi.org/10.1111/ijfs.15209.
  • Bracone, M., Merino, D., Gonz´alez, J., Alvarez, V. A., Guti´errez, T. J. (2016). Nanopackaging from natural fillers and biopolymers for the development of active and intelligent films. In S. Ikram, & S. Ahmed (Eds.), Natural Polymers: Derivatives, Blends and Composites (pp. 119–155), New York: Nova Science Publishers, ISBN: 978-1-63485-853-3.
  • Campagnol, N., Souza, E. R., De Vos, D. E., Binnemans K., Fransaer, J. (2014). Luminescent terbium-containing metal–organic framework films: new approaches for the electrochemical synthesis and application as detectors for explosives. Chemical Communications, 2014, 50, 12545-12547, doi.org/10.1039/C4CC05742B.
  • Chen, B., Yang, Z., Zhu, Y., Xia, Y. (2014). Zeolitic imidazolate framework materials: recent progress in synthesis and applications. Journal of Materials Chemistry A, 2, 16811, doi.org/10.1039/C4TA02984D.
  • Chen, H., Qiu, Q., Sharif, S., Ying, S., Wang, Y., Ying, Y. (2018). Solution-phase synthesis of platinum nanoparticle-decorated metal-organic framework hybrid nanomaterials as biomimetic nanoenzymes for biosensing applications. ACS Applied Materials & Interfaces, 10 (28), 24108–24115, doi.org/10.1021/acsami.8b04737.
  • Dong, W., Liu, X. D., Shi, W., Huang, Y. (2015). Metal–organic framework MIL-53(Fe): facile microwave-assisted synthesis and use as a highly active peroxidase mimetic for glucose biosensing. RSC Advances, 5, 17451–17457, doi.org/10.1039/C4RA15840G.
  • Feng, D., Liu, T.-F., Su, J., Bosch, M., Wei, Z., Wan, W. vd. (2015). Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nature Communications, 6 (1), doi.org/10.1038/ncomms6979.
  • Flihh, S. M., Ammar, S. H. (2021). Fabrication and photocatalytic degradation activity of core/shell ZIF-67@CoWO4@CoS heterostructure photocatalysts under visible light. Environmental Nanotechnology, Monitoring & Management, 16, 100595, doi.org/10.1016/ j.enmm.2021.100595.
  • Geçgel, C. (2020). Fonksiyonelleştirilmiş metal organik kafes yapıların sentezi, karakterizasyonu ve katalitik etkileri, Mersin Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Mersin.
  • Guo, C., Xing, T., Lou, Y., Chen, J. (2016). Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution. Journal of Solid State Chemistry, 235, 107-112, doi.org/10.1016/j.jssc.2015.12.021.
  • Gutierrez, T. J. (2018a). Active and intelligent films made from starchy sources/blackberry pulp. Journal of Polymers and the Environment, 26 (6), 2374–2391, doi.org/10.1007/s10924-017-1134-y.
  • Gutierrez, T. J. (2018b). Processing nano- and microcapsules for industrial applications. In C. M. Hussain (Ed.), Handbook of Nanomaterials for Industrial Applications, 989–1011. Elsevier Publishers, doi.org/10.1016/B978-0-12-813351-4.00057-2.
  • Gutierrez, T. J. 2019. Antibiofilm enzymes as an emerging technology for food quality and safety. In M. Kuddus (Ed.), Enzymes in Food Biotechnology: Production, Applications, and Future Prospects, 321–342. doi.org/10.1016/B978-0-12-813280-7.00019-0.
  • Gutierrez, T. J., Alvarez, K. (2017). Biopolymers as microencapsulation materials in the food industry. In M. Masuelli & D. Renard (Eds.), Advances in Physicochemical Properties of Biopolymers, Part 2: 296–322. Bentham Science Publishers, doi: 10.2174/9781681085449117010009.
  • Gutierrez, T. J., Ponce, A. G., Alvarez, V. A. (2017). Nano-clays from natural and modified montmorillonite with and without added blueberry extract for active and intelligent food nanopackaging materials. Materials Chemistry and Physics, 194, 283–292, doi.org/10.1016/ j.matchemphys.2017.03.052.
  • Hatamluyi, B., Rezayi, M., Beheshti, H. R., Boroushaki, M. T. (2020). Ultra-sensitive molecularly imprinted electrochemical sensor for patulin detection based on a novel assembling strategy using Au@Cu-MOF/N-GQDs. Sensors and Actuators B: Chemical, 318, 128219, doi.org/10.1016/j.snb.2020.128219.
  • Khan, I. U., Othman, M. H. D., Jilani, A., Ismail, A. F., Hashim, H., Jaafar, J., Rahman, M. A., Rehman, G. U. (2018). Economical, environmental friendly synthesis, characterization for the production of zeolitic imidazolate framework-8 (ZIF-8) nanoparticles with enhanced CO2 adsorption. Arabian Journal of Chemistry, 11 (7), 1072-1083, doi.org/10.1016/ j.arabjc.2018.07.012.
  • Konno, H., Nakasaka, Y., Yasuda, K., Omata, M., Masuda, T. (2020). Surfactant-assisted synthesis of nanocrystalline zeolitic imidazolate framework 8 and 67 for adsorptive removal of perfluorooctane sulfonate from aqueous solution. Catalysis Today, 352, 220-226, doi.org/10.1016/ j.cattod.2019.12.036.
  • Krokidas, P., Castier, M., Moncho, S., Sredojevic, D. N., Brothers, E. N., Kwon, H., Jeong, H., Lee, J., Economou, I. G. (2016). ZIF-67 framework: A promising new candidate for propylene/propane separation. Experimental data and molecular simulations. The Journal of Physical Chemistry C, 120, 8116–8124, doi.org/10.1021/acs.jpcc.6b00305.
  • Lai, L. S., Yeong, Y. F., Che Ani, N., Lau, K. K., Azmi, M. S. (2014). Effect of the solvent molar ratios on the synthesis of zeolitic imidazolate framework 8 (ZIF-8) and its performance in CO2 adsorption. Trans Tech Publications, 625, 69–72, doi.org/10.4028/www.scientific.net/AMM.625.69.
  • Li, X., Li, J., Shi, Y., Zhang, M., Fan, S., Yin, Z., Qin, M., Lian, T., Li, X. (2018). Rational design of cobalt and nitrogen co-doped carbon hollow frameworks for efficient photocatalytic degradation of gaseous toluene. Journal of Colloid and Interface Science, 528, 45-52, doi.org/10.1016/j.jcis.2018.05.067.
  • Li, Y., Zhou, K. He, M., Yao, J. (2016). Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption. Microporous and Mesoporous Materials, 234, 287-292, doi.org/10.1016/ j.micromeso.2016.07.039. Liu, L., Zhou, Y., Liu, S., Xu, M. (2018). The applications of metal-organic frameworks in electrochemical sensors. ChemElectroChem, 5, 6-19. doi.org/10.1002/celc.201700931.
  • Liu, W., Yin, X.-B. (2016). Metal-organic frameworks for electrochemical applications. TrAC Trends in Analytical Chemistry, 75, 86–96, doi.org/10.1016/j.trac.2015.07.011.
  • Liu, X., Wang, B., Cheng, J., Meng, Q., Song, Y., Li, M. (2020). Investigation on the capture performance and influencing factors of ZIF-67 for hydrogen sulfide. Separation and Purification Technology, 250, 117300, doi.org/10.1016/ j.seppur.2020.117300.
  • Liu, Y., Huo, Y., Wang, X., Yu, S., Ai, Y., Chen, Z., Zhang, P., Chen, L., Song, G., Alharbi, N. S., Rabah, S. O., Wang, X. (2021). Impact of metal ions and organic ligands on uranium removal properties by zeolitic imidazolate framework materials. Journal of Cleaner Production, 278, 123216, doi.org/10.1016/j.jclepro.2020.123216.
  • Ma, P., Zhang, J., Liu, P., Wang, Q., Zhang, Y., Song, K., vd. (2020). Computer-assisted design for stable and porous metal-organic framework (MOF) as a carrier for curcumin delivery. LWT-Food Science and Technology, 120, 108949, doi.org/10.1016/j.lwt.2019.108949.
  • Magri, A., Petriccione, M., Guti ́errez, T.J. (2021). Metal-organic frameworks for food applications: A review. Food Chemistry, 354, 129533, doi.org/10.1016/ j.foodchem.2021.129533.
  • Meshkat, S., Kaliaguine, S., Rodrigue, D. (2020). Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation. Separation and Purification Technology, 235, 116150, doi.org/10.1016/ j.seppur.2019.116150.
  • Mostafazadeh, N., Ghoreyshi, A. A., Pirzadeh, K. (2018). Optimization of solvothermally synthesized zıf-67 metal organic framework and ıts application for CR (VI) adsorption from aqueous solution. Iranian Journal of Chemical Engineering, 15 (4), 27–47, doi.org/ 20.1001.1.17355397.2018.15.4.3.6.
  • Navarro-Sanchez, J., Almora-Barrios, N., Lerma-Berlanga, B., Ruiz-Pernía, J. J., Lorenz-Fonfria, V. A., Tunon, I., Martí-Gastaldo, C. (2019). Translocation of enzymes into a mesoporous MOF for enhanced catalytic activity under extreme conditions. Chemical Science, 10 (14), 4082–4088, doi.org/10.1039/C9SC00082H.
  • Pahang, F., Amini, S., Ebrahimzadeh, H., Kandeh, S. H. (2023). Electrospun poly(ST-Co-AC)/Co-ZIF-67@Chitosan composite nanofibers as a sorbent with superior reusability for pesticide residues analysis in food samples. Microchemical Journal, 188, 108476, doi.org/ 10.1016/j.microc.2023.108476.
  • Qin, W., Yang, C., Yi, R., Gao, G. (2011). Hydrothermal synthesis and characterization of single-crystalline α-Fe2O3 nanocubes. Journal of Nanomaterials, 159259, doi:10.1155/2011/159259.
  • Riaz, M.A., Yuan, Z., Mahmood, A., Liu, F., Sui, X., Chen, J., Huang, Q., Liao, X., Wei, L., Chen, Y. (2020). Hierarchically porous carbon nanofibers embedded with cobalt nanoparticles for efficient H2O2 detection on multiple sensor platforms. Sensors and Actuators B: Chemical, 319, 128243, doi.org/10.1016/j.snb.2020.128243.
  • Samui, A., Happy, Sahu, S. K. (2020). Integration of α-amylase into covalent organic framework for highly efficient biocatalyst. Microporous and Mesoporous Materials, 291, 109700, doi.org/ 10.1016/j.micromeso.2019.109700.
  • Schlesinger, M., Schulze, S., Hietschold, M., Mehring, M. (2010). Evaluation of synthetic methods for microporous metal–organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)]. Microporous and Mesoporous Materials, 132 (1-2), 121–127, doi.org/10.1016/ j.micromeso.2010.02.008.
  • Sharanyakanth, P. S., Radhakrishnan, M. (2020). Synthesis of metal-organic frameworks (MOFs) and its application in food packaging: A critical review. Trends Food Science and Technology, 104, 102–116, doi.org/10.1016/j.tifs.2020.08.004.
  • Son, W.J., Kim, J., Ahn, W.S. (2008). Sonochemical synthesis of MO5. Chemical Communications, 6336–6338, doi.org/10.1039/ B814740J.
  • Tezerjani, A. A., Halladj, R., Askari, S. (2021). Different view of solvent effect on the synthesis methods of zeolitic imidazolate framework-8 to tuning the crystal structure and properties. RSC Advances, 11, 19914-19923, doi.org/10.1039/ D1RA02856A.
  • Tranchemontagne, D. J., Hunt, J. R., Yaghi, O.M. (2008). Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron, 64, 8553–8557, doi.org/10.1016/j.tet.2008.06.036.
  • Yan, Y., Wang, Z., Ding, T., Zhang, H. (2022). Preparation and application of Co3O4 catalysts from ZIF-67 membranes over paper-like stainless steel fibers in isopropanol combustion. Journal of Solid State Chemistry, 308, 122880, doi.org/10.1016/j.jssc.2022.122880.
  • Yin, J., Tang, H., Liu, D., Huang, T., Zhu, L. (2021). Application of ZIF-67 as a crosslinker to prepare sulfonated polysulfone mixed-matrix membranes for enhanced water permeability and separation properties. Water Science & Technology, 84, 1, 144, doi.org/10.2166/wst.2021.202.
  • Yin, K., Zhang, H., Yan, Y. (2019). High efficiency of toluene adsorption over a novel ZIF-67 membrane coating on paper-like stainless steel fibers. Journal of Solid State Chemistry, 279, 120976, doi.org/10.1016/j.jssc.2019.120976.
  • Zhang, J., Tan, Y., Song, W-J. (2020). Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: A review. Microchimica Acta, 187: 234, doi.org/10.1007/s00604-020-4173-3.
  • Zhang, M., Zhao, X., Zhang, G., Wei, G., Su, Z. (2017). Electrospinning design of functional nanostructures for biosensor applications. Journal of Materials Chemistry, 5 (9), 1699 – 1711, doi.org/10.1039/C6TB03121H.
  • Zhang, R., Belwal, T., Li, L., Lin, X., Xu, Y., Luo, Z. (2020). Nanomaterial-based biosensors for sensing key foodborne pathogens: Advances from recent decades. Comprehensive Reviews In Food Science And Food Safety, 19, 1465–1487, doi.org/10.1111/1541-4337.12576.
  • Zhao, J., Wei, F., Xu, W., Han, X. (2020). Enhanced antibacterial performance of gelatin/chitosan film containing capsaicin loaded MOF’s for food packaging. Applied Surface Science, 510, 145418, doi.org/10.1016/ j.apsusc.2020.145418.
  • Zhong, G., Liu, D., Zhang, J. (2018). The application of ZIF-67 and its derivatives: Adsorption, separation, electrochemistry and catalysts. Journal of Materials Chemistry A, 6: 1887–1899, doi.org/10.1039/C7TA08268A.
  • Zhong, R., Liao, H., Deng, Q., Zou, X., Wu, L. (2022). Preparation of a novel composite photocatalyst BiOBr/ZIF-67 for enhanced visible-light photocatalytic degradation of RhB. Journal of Molecular Structure, 1259, 132768, doi.org/10.1016/j.molstruc.2022.132768.

SYNTHESIS AND CHARACTERIZATION OF ZEOLITIC IMIDAZOLATE FRAMEWORK

Yıl 2024, Cilt: 49 Sayı: 1, 52 - 67, 14.02.2024
https://doi.org/10.15237/gida.GD23072

Öz

The aim of this study was to synthesize ZIF-67 nanostructures under different conditions to develop its application potential in the food field. Surface morphologies (FE-SEM, polarized light microscopy), surface areas (BET), chemical structures (FTIR) and crystallinity (XRD) of the synthesized materials were investigated. The use of TEA and increasing the concentration of 2-mIM with cobalt nitrate during the synthesis caused the distortion of the dodecahedron structure of ZIF-67s. The results showed that the size of the ZIF-67 nanostructures increased when the amount of methanol was reduced. The synthesized ZIF-67 nanostructures with dodecahedron-shaped morphology showed relatively high nitrogen sorption, BET surface area and characteristic C-H and C=N stretching peak. The ZIF-67 loaded nanofibers are believed to hold promise for various food applications such as adsorption of food contaminants, development of food packaging systems, gas storage and biosensors.

Proje Numarası

2021-1-TP3-4179

Kaynakça

  • Akbari, A., Majumder, M., Tehrani, A. (2015). Polylactic acid (PLA) carbon nanotube nanocomposites, Handbook of Polymer Nanocomposites. Processing, Performance and Application, 283-297, doi.org/10.1007/978-3-642-45229-1_45.
  • Altan, A., Yılmaz, M. (2021). Advances in biosensors based on electrospun micro/nanomaterials for food quality control and safety. Biosensors in Agriculture: Recent Trends and Future Perspectives, 243-274, doi: 10.1007/978-3-030-66165-6_13.
  • Alvarez, K., Fama, L., Guti´errez, T. J. (2017). Physicochemical, antimicrobial and mechanical properties of thermoplastic materials based on biopolymers with application in the food industry, In M. Masuelli & D. Renard (Eds.), Advances in Physicochemical Properties of Biopolymers, Part 1: 358–400, Bentham Science Publishers, doi: 10.2174/9781681084534117010015.
  • Arif, D., Hussain, Z., Sohail, M., Liaqat, M. A., Khan, M. A., Noor, T. (2020). Non-enzymatic electrochemical sensor for glucose detection based on Ag@TiO2@ metal-organic framework (ZIF-67) nanocomposite. Frontiers in Chemistry, 8:573510, doi.org/10.3389/fchem.2020.573510.
  • Atay, E. Altan, A. (2021). Nanoencapsulation of black seed oil by coaxial electrospraying: characterisation, oxidative stability and in vitro gastrointestinal digestion. International Journal of Food Science & Technology, 56, 4526, doi.org/10.1111/ijfs.15209.
  • Bracone, M., Merino, D., Gonz´alez, J., Alvarez, V. A., Guti´errez, T. J. (2016). Nanopackaging from natural fillers and biopolymers for the development of active and intelligent films. In S. Ikram, & S. Ahmed (Eds.), Natural Polymers: Derivatives, Blends and Composites (pp. 119–155), New York: Nova Science Publishers, ISBN: 978-1-63485-853-3.
  • Campagnol, N., Souza, E. R., De Vos, D. E., Binnemans K., Fransaer, J. (2014). Luminescent terbium-containing metal–organic framework films: new approaches for the electrochemical synthesis and application as detectors for explosives. Chemical Communications, 2014, 50, 12545-12547, doi.org/10.1039/C4CC05742B.
  • Chen, B., Yang, Z., Zhu, Y., Xia, Y. (2014). Zeolitic imidazolate framework materials: recent progress in synthesis and applications. Journal of Materials Chemistry A, 2, 16811, doi.org/10.1039/C4TA02984D.
  • Chen, H., Qiu, Q., Sharif, S., Ying, S., Wang, Y., Ying, Y. (2018). Solution-phase synthesis of platinum nanoparticle-decorated metal-organic framework hybrid nanomaterials as biomimetic nanoenzymes for biosensing applications. ACS Applied Materials & Interfaces, 10 (28), 24108–24115, doi.org/10.1021/acsami.8b04737.
  • Dong, W., Liu, X. D., Shi, W., Huang, Y. (2015). Metal–organic framework MIL-53(Fe): facile microwave-assisted synthesis and use as a highly active peroxidase mimetic for glucose biosensing. RSC Advances, 5, 17451–17457, doi.org/10.1039/C4RA15840G.
  • Feng, D., Liu, T.-F., Su, J., Bosch, M., Wei, Z., Wan, W. vd. (2015). Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nature Communications, 6 (1), doi.org/10.1038/ncomms6979.
  • Flihh, S. M., Ammar, S. H. (2021). Fabrication and photocatalytic degradation activity of core/shell ZIF-67@CoWO4@CoS heterostructure photocatalysts under visible light. Environmental Nanotechnology, Monitoring & Management, 16, 100595, doi.org/10.1016/ j.enmm.2021.100595.
  • Geçgel, C. (2020). Fonksiyonelleştirilmiş metal organik kafes yapıların sentezi, karakterizasyonu ve katalitik etkileri, Mersin Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Mersin.
  • Guo, C., Xing, T., Lou, Y., Chen, J. (2016). Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution. Journal of Solid State Chemistry, 235, 107-112, doi.org/10.1016/j.jssc.2015.12.021.
  • Gutierrez, T. J. (2018a). Active and intelligent films made from starchy sources/blackberry pulp. Journal of Polymers and the Environment, 26 (6), 2374–2391, doi.org/10.1007/s10924-017-1134-y.
  • Gutierrez, T. J. (2018b). Processing nano- and microcapsules for industrial applications. In C. M. Hussain (Ed.), Handbook of Nanomaterials for Industrial Applications, 989–1011. Elsevier Publishers, doi.org/10.1016/B978-0-12-813351-4.00057-2.
  • Gutierrez, T. J. 2019. Antibiofilm enzymes as an emerging technology for food quality and safety. In M. Kuddus (Ed.), Enzymes in Food Biotechnology: Production, Applications, and Future Prospects, 321–342. doi.org/10.1016/B978-0-12-813280-7.00019-0.
  • Gutierrez, T. J., Alvarez, K. (2017). Biopolymers as microencapsulation materials in the food industry. In M. Masuelli & D. Renard (Eds.), Advances in Physicochemical Properties of Biopolymers, Part 2: 296–322. Bentham Science Publishers, doi: 10.2174/9781681085449117010009.
  • Gutierrez, T. J., Ponce, A. G., Alvarez, V. A. (2017). Nano-clays from natural and modified montmorillonite with and without added blueberry extract for active and intelligent food nanopackaging materials. Materials Chemistry and Physics, 194, 283–292, doi.org/10.1016/ j.matchemphys.2017.03.052.
  • Hatamluyi, B., Rezayi, M., Beheshti, H. R., Boroushaki, M. T. (2020). Ultra-sensitive molecularly imprinted electrochemical sensor for patulin detection based on a novel assembling strategy using Au@Cu-MOF/N-GQDs. Sensors and Actuators B: Chemical, 318, 128219, doi.org/10.1016/j.snb.2020.128219.
  • Khan, I. U., Othman, M. H. D., Jilani, A., Ismail, A. F., Hashim, H., Jaafar, J., Rahman, M. A., Rehman, G. U. (2018). Economical, environmental friendly synthesis, characterization for the production of zeolitic imidazolate framework-8 (ZIF-8) nanoparticles with enhanced CO2 adsorption. Arabian Journal of Chemistry, 11 (7), 1072-1083, doi.org/10.1016/ j.arabjc.2018.07.012.
  • Konno, H., Nakasaka, Y., Yasuda, K., Omata, M., Masuda, T. (2020). Surfactant-assisted synthesis of nanocrystalline zeolitic imidazolate framework 8 and 67 for adsorptive removal of perfluorooctane sulfonate from aqueous solution. Catalysis Today, 352, 220-226, doi.org/10.1016/ j.cattod.2019.12.036.
  • Krokidas, P., Castier, M., Moncho, S., Sredojevic, D. N., Brothers, E. N., Kwon, H., Jeong, H., Lee, J., Economou, I. G. (2016). ZIF-67 framework: A promising new candidate for propylene/propane separation. Experimental data and molecular simulations. The Journal of Physical Chemistry C, 120, 8116–8124, doi.org/10.1021/acs.jpcc.6b00305.
  • Lai, L. S., Yeong, Y. F., Che Ani, N., Lau, K. K., Azmi, M. S. (2014). Effect of the solvent molar ratios on the synthesis of zeolitic imidazolate framework 8 (ZIF-8) and its performance in CO2 adsorption. Trans Tech Publications, 625, 69–72, doi.org/10.4028/www.scientific.net/AMM.625.69.
  • Li, X., Li, J., Shi, Y., Zhang, M., Fan, S., Yin, Z., Qin, M., Lian, T., Li, X. (2018). Rational design of cobalt and nitrogen co-doped carbon hollow frameworks for efficient photocatalytic degradation of gaseous toluene. Journal of Colloid and Interface Science, 528, 45-52, doi.org/10.1016/j.jcis.2018.05.067.
  • Li, Y., Zhou, K. He, M., Yao, J. (2016). Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption. Microporous and Mesoporous Materials, 234, 287-292, doi.org/10.1016/ j.micromeso.2016.07.039. Liu, L., Zhou, Y., Liu, S., Xu, M. (2018). The applications of metal-organic frameworks in electrochemical sensors. ChemElectroChem, 5, 6-19. doi.org/10.1002/celc.201700931.
  • Liu, W., Yin, X.-B. (2016). Metal-organic frameworks for electrochemical applications. TrAC Trends in Analytical Chemistry, 75, 86–96, doi.org/10.1016/j.trac.2015.07.011.
  • Liu, X., Wang, B., Cheng, J., Meng, Q., Song, Y., Li, M. (2020). Investigation on the capture performance and influencing factors of ZIF-67 for hydrogen sulfide. Separation and Purification Technology, 250, 117300, doi.org/10.1016/ j.seppur.2020.117300.
  • Liu, Y., Huo, Y., Wang, X., Yu, S., Ai, Y., Chen, Z., Zhang, P., Chen, L., Song, G., Alharbi, N. S., Rabah, S. O., Wang, X. (2021). Impact of metal ions and organic ligands on uranium removal properties by zeolitic imidazolate framework materials. Journal of Cleaner Production, 278, 123216, doi.org/10.1016/j.jclepro.2020.123216.
  • Ma, P., Zhang, J., Liu, P., Wang, Q., Zhang, Y., Song, K., vd. (2020). Computer-assisted design for stable and porous metal-organic framework (MOF) as a carrier for curcumin delivery. LWT-Food Science and Technology, 120, 108949, doi.org/10.1016/j.lwt.2019.108949.
  • Magri, A., Petriccione, M., Guti ́errez, T.J. (2021). Metal-organic frameworks for food applications: A review. Food Chemistry, 354, 129533, doi.org/10.1016/ j.foodchem.2021.129533.
  • Meshkat, S., Kaliaguine, S., Rodrigue, D. (2020). Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation. Separation and Purification Technology, 235, 116150, doi.org/10.1016/ j.seppur.2019.116150.
  • Mostafazadeh, N., Ghoreyshi, A. A., Pirzadeh, K. (2018). Optimization of solvothermally synthesized zıf-67 metal organic framework and ıts application for CR (VI) adsorption from aqueous solution. Iranian Journal of Chemical Engineering, 15 (4), 27–47, doi.org/ 20.1001.1.17355397.2018.15.4.3.6.
  • Navarro-Sanchez, J., Almora-Barrios, N., Lerma-Berlanga, B., Ruiz-Pernía, J. J., Lorenz-Fonfria, V. A., Tunon, I., Martí-Gastaldo, C. (2019). Translocation of enzymes into a mesoporous MOF for enhanced catalytic activity under extreme conditions. Chemical Science, 10 (14), 4082–4088, doi.org/10.1039/C9SC00082H.
  • Pahang, F., Amini, S., Ebrahimzadeh, H., Kandeh, S. H. (2023). Electrospun poly(ST-Co-AC)/Co-ZIF-67@Chitosan composite nanofibers as a sorbent with superior reusability for pesticide residues analysis in food samples. Microchemical Journal, 188, 108476, doi.org/ 10.1016/j.microc.2023.108476.
  • Qin, W., Yang, C., Yi, R., Gao, G. (2011). Hydrothermal synthesis and characterization of single-crystalline α-Fe2O3 nanocubes. Journal of Nanomaterials, 159259, doi:10.1155/2011/159259.
  • Riaz, M.A., Yuan, Z., Mahmood, A., Liu, F., Sui, X., Chen, J., Huang, Q., Liao, X., Wei, L., Chen, Y. (2020). Hierarchically porous carbon nanofibers embedded with cobalt nanoparticles for efficient H2O2 detection on multiple sensor platforms. Sensors and Actuators B: Chemical, 319, 128243, doi.org/10.1016/j.snb.2020.128243.
  • Samui, A., Happy, Sahu, S. K. (2020). Integration of α-amylase into covalent organic framework for highly efficient biocatalyst. Microporous and Mesoporous Materials, 291, 109700, doi.org/ 10.1016/j.micromeso.2019.109700.
  • Schlesinger, M., Schulze, S., Hietschold, M., Mehring, M. (2010). Evaluation of synthetic methods for microporous metal–organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)]. Microporous and Mesoporous Materials, 132 (1-2), 121–127, doi.org/10.1016/ j.micromeso.2010.02.008.
  • Sharanyakanth, P. S., Radhakrishnan, M. (2020). Synthesis of metal-organic frameworks (MOFs) and its application in food packaging: A critical review. Trends Food Science and Technology, 104, 102–116, doi.org/10.1016/j.tifs.2020.08.004.
  • Son, W.J., Kim, J., Ahn, W.S. (2008). Sonochemical synthesis of MO5. Chemical Communications, 6336–6338, doi.org/10.1039/ B814740J.
  • Tezerjani, A. A., Halladj, R., Askari, S. (2021). Different view of solvent effect on the synthesis methods of zeolitic imidazolate framework-8 to tuning the crystal structure and properties. RSC Advances, 11, 19914-19923, doi.org/10.1039/ D1RA02856A.
  • Tranchemontagne, D. J., Hunt, J. R., Yaghi, O.M. (2008). Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron, 64, 8553–8557, doi.org/10.1016/j.tet.2008.06.036.
  • Yan, Y., Wang, Z., Ding, T., Zhang, H. (2022). Preparation and application of Co3O4 catalysts from ZIF-67 membranes over paper-like stainless steel fibers in isopropanol combustion. Journal of Solid State Chemistry, 308, 122880, doi.org/10.1016/j.jssc.2022.122880.
  • Yin, J., Tang, H., Liu, D., Huang, T., Zhu, L. (2021). Application of ZIF-67 as a crosslinker to prepare sulfonated polysulfone mixed-matrix membranes for enhanced water permeability and separation properties. Water Science & Technology, 84, 1, 144, doi.org/10.2166/wst.2021.202.
  • Yin, K., Zhang, H., Yan, Y. (2019). High efficiency of toluene adsorption over a novel ZIF-67 membrane coating on paper-like stainless steel fibers. Journal of Solid State Chemistry, 279, 120976, doi.org/10.1016/j.jssc.2019.120976.
  • Zhang, J., Tan, Y., Song, W-J. (2020). Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: A review. Microchimica Acta, 187: 234, doi.org/10.1007/s00604-020-4173-3.
  • Zhang, M., Zhao, X., Zhang, G., Wei, G., Su, Z. (2017). Electrospinning design of functional nanostructures for biosensor applications. Journal of Materials Chemistry, 5 (9), 1699 – 1711, doi.org/10.1039/C6TB03121H.
  • Zhang, R., Belwal, T., Li, L., Lin, X., Xu, Y., Luo, Z. (2020). Nanomaterial-based biosensors for sensing key foodborne pathogens: Advances from recent decades. Comprehensive Reviews In Food Science And Food Safety, 19, 1465–1487, doi.org/10.1111/1541-4337.12576.
  • Zhao, J., Wei, F., Xu, W., Han, X. (2020). Enhanced antibacterial performance of gelatin/chitosan film containing capsaicin loaded MOF’s for food packaging. Applied Surface Science, 510, 145418, doi.org/10.1016/ j.apsusc.2020.145418.
  • Zhong, G., Liu, D., Zhang, J. (2018). The application of ZIF-67 and its derivatives: Adsorption, separation, electrochemistry and catalysts. Journal of Materials Chemistry A, 6: 1887–1899, doi.org/10.1039/C7TA08268A.
  • Zhong, R., Liao, H., Deng, Q., Zou, X., Wu, L. (2022). Preparation of a novel composite photocatalyst BiOBr/ZIF-67 for enhanced visible-light photocatalytic degradation of RhB. Journal of Molecular Structure, 1259, 132768, doi.org/10.1016/j.molstruc.2022.132768.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Elif Atay 0000-0002-8362-8543

Aylin Altan Mete 0000-0002-8042-5644

Proje Numarası 2021-1-TP3-4179
Yayımlanma Tarihi 14 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 49 Sayı: 1

Kaynak Göster

APA Atay, E., & Altan Mete, A. (2024). ZEOLİTİK İMİDAZOLAT KAFES YAPISININ SENTEZİ VE KARAKTERİZASYONU. Gıda, 49(1), 52-67. https://doi.org/10.15237/gida.GD23072
AMA Atay E, Altan Mete A. ZEOLİTİK İMİDAZOLAT KAFES YAPISININ SENTEZİ VE KARAKTERİZASYONU. GIDA. Şubat 2024;49(1):52-67. doi:10.15237/gida.GD23072
Chicago Atay, Elif, ve Aylin Altan Mete. “ZEOLİTİK İMİDAZOLAT KAFES YAPISININ SENTEZİ VE KARAKTERİZASYONU”. Gıda 49, sy. 1 (Şubat 2024): 52-67. https://doi.org/10.15237/gida.GD23072.
EndNote Atay E, Altan Mete A (01 Şubat 2024) ZEOLİTİK İMİDAZOLAT KAFES YAPISININ SENTEZİ VE KARAKTERİZASYONU. Gıda 49 1 52–67.
IEEE E. Atay ve A. Altan Mete, “ZEOLİTİK İMİDAZOLAT KAFES YAPISININ SENTEZİ VE KARAKTERİZASYONU”, GIDA, c. 49, sy. 1, ss. 52–67, 2024, doi: 10.15237/gida.GD23072.
ISNAD Atay, Elif - Altan Mete, Aylin. “ZEOLİTİK İMİDAZOLAT KAFES YAPISININ SENTEZİ VE KARAKTERİZASYONU”. Gıda 49/1 (Şubat 2024), 52-67. https://doi.org/10.15237/gida.GD23072.
JAMA Atay E, Altan Mete A. ZEOLİTİK İMİDAZOLAT KAFES YAPISININ SENTEZİ VE KARAKTERİZASYONU. GIDA. 2024;49:52–67.
MLA Atay, Elif ve Aylin Altan Mete. “ZEOLİTİK İMİDAZOLAT KAFES YAPISININ SENTEZİ VE KARAKTERİZASYONU”. Gıda, c. 49, sy. 1, 2024, ss. 52-67, doi:10.15237/gida.GD23072.
Vancouver Atay E, Altan Mete A. ZEOLİTİK İMİDAZOLAT KAFES YAPISININ SENTEZİ VE KARAKTERİZASYONU. GIDA. 2024;49(1):52-67.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/