Derleme
BibTex RIS Kaynak Göster

Recent Developments in Energy Efficiency of Buildings: The Case of Türkiye

Yıl 2024, Cilt: 12 Sayı: 1, 176 - 213, 25.03.2024
https://doi.org/10.29109/gujsc.1293759

Öz

The fact that the average global temperature in 2021 will be higher than 1 °C for the seventh time in a row (2015-2021) compared to the pre-industrial revolution period emphasises the significance of the Paris Agreement, which clarifies why the increase should be limited to 1.5 °C. The knowledge that buildings are responsible for 40% of energy consumption and 36% of greenhouse gas emissions in the European Union, which is attempting to meet the agreement's targets, has accelerated energy efficiency research in this field. The fact that 70% of the carbon emissions created by buildings during their life cycle occur during the operation phase serves as the foundation for energy efficiency strategies. Local and international resources related to current energy efficiency studies in the housing sector, which is one of the major factors to world energy consumption and carbon emissions, are investigated in this review, and feasible alternatives are offered under each of the topics. According to the study outcomes, it is estimated that the insulation to be applied to the building facades will save between 12% and 47% in heating costs, while the saving rate of electricity consumption due to lighting will be between 50% and 75% as a result of the replacement of old-type bulbs with new-generation LED bulbs. It has been determined that replacing inefficient boilers that use fuel oil with contemporary biofuel boilers can save 20% to 30% on fuel expenses. In the continuation of the study, it is aimed to contribute to the academy and private sector experts who will carry out studies to increase energy efficiency in buildings by compiling Turkey's energy outlook, current efficiency policies and current housing statistics. In Turkey, where the housing sector constitutes an important consumption item, the most comprehensive legal regulation in this field is the Energy Efficiency Law No. 5627 published in 2007. Many researchers have concluded that the difficulties encountered in energy efficiency applications are not primarily due to a lack of regulations and directives but rather to difficulties came across during study implementation, particularly the fact that households are not adequately informed about the improvements to be made. It has been calculated that a large-scale restoration initiative in Turkey, where 62.8% of the building stock belongs before the relevant legislation, can avert an annual waste of more than $7 billion dollars.

Kaynakça

  • [1] WMO. (2022). 2021 one of the seven warmest years on record, WMO consolidated data shows. World Meteorological Organization. https://public.wmo.int/en/media/press-release/2021-one-of-seven-warmest-years-record-wmo-consolidated-data-shows
  • [2] Mihiretu, A., Okoyo, E. N., & Lemma, T. (2021). Causes, indicators and impacts of climate change: understanding the public discourse in Goat based agro-pastoral livelihood zone, Ethiopia. Heliyon, 7(3). https://doi.org/10.1016/j.heliyon.2021.e06529
  • [3] Jakučionytė-Skodienė, M., & Liobikienė, G. (2021). Climate change concern, personal responsibility and actions related to climate change mitigation in EU countries: Cross-cultural analysis. Journal of Cleaner Production, 281, 125189. https://doi.org/10.1016/J.JCLEPRO.2020.125189
  • [4] UNFCCC. (2021). The Glasgow Climate Pact. https://unfccc.int/process-and-meetings/the-paris-agreement/the-glasgow-climate-pact-key-outcomes-from-cop26
  • [5] Pokhrel, S. R., Hewage, K., Chhipi-Shrestha, G., Karunathilake, H., Li, E., & Sadiq, R. (2021). Carbon capturing for emissions reduction at building level: A market assessment from a building management perspective. Journal of Cleaner Production, 294, 126323. https://doi.org/10.1016/J.JCLEPRO.2021.126323
  • [6] Hannah Ritchie, Max Roser, & Pablo Rosado. (2020). CO₂ and Greenhouse Gas Emissions. OurWorldInData.org.
  • [7] Qian, D., Li, Y., Niu, F., & O’Neill, Z. (2019). Nationwide savings analysis of energy conservation measures in buildings. Energy Conversion and Management, 188, 1–18. https://doi.org/10.1016/J.ENCONMAN.2019.03.035
  • [8] Nazeriye, M., Haeri, A., Haghighat, F., & Panchabikesan, K. (2021). Understanding the influence of building characteristics on enhancing energy efficiency in residential buildings: A data mining based study. Journal of Building Engineering, 43, 103069. https://doi.org/10.1016/J.JOBE.2021.103069
  • [9] Zhong, K., Chen, X., Meng, Q., Ran, M., Zhang, Z., Liu, X., & Feng, C. (2022). Application of the air-pipe rack heat exchanger heating system in residential buildings of Guangzhou. Journal of Building Engineering, 61, 105280. https://doi.org/10.1016/J.JOBE.2022.105280
  • [10] SFOE. (2021). Buildings. https://www.bfe.admin.ch/bfe/en/home/effizienz/gebaeude.html
  • [11] SFOE. (2020). Schweizerische Gesamtenergiestatistik 2019. https://www.bfe.admin.ch/bfe/de/home/versorgung/statistik-und-geodaten/energiestatistiken/gesamtenergiestatistik.html/
  • [12] Mata, Korpal, A. K., Cheng, S. H., Jiménez Navarro, J. P., Filippidou, F., Reyna, J., & Wang, R. (2020). A map of roadmaps for zero and low energy and carbon buildings worldwide. Environmental Research Letters, 15(11), 113003. https://doi.org/10.1088/1748-9326/ABB69F
  • [13] IEA. (2022). Buildings 2021. https://www.iea.org/reports/buildings
  • [14] Fenner, A. E., Kibert, C. J., Li, J., Razkenari, M. A., Hakim, H., Lu, X., … Sam, M. (2020). Embodied, operation, and commuting emissions: A case study comparing the carbon hotspots of an educational building. Journal of Cleaner Production, 268, 122081. https://doi.org/10.1016/J.JCLEPRO.2020.122081
  • [15] Skillington, K., Crawford, R. H., Warren-Myers, G., & Davidson, K. (2022). A review of existing policy for reducing embodied energy and greenhouse gas emissions of buildings. Energy Policy, 168, 112920. https://doi.org/10.1016/J.ENPOL.2022.112920
  • [16] Lenzen, M., Geschke, A., Wiedmann, T., Lane, J., Anderson, N., Baynes, T., … West, J. (2014). Compiling and using input–output frameworks through collaborative virtual laboratories. Science of The Total Environment, 485–486(1), 241–251. https://doi.org/10.1016/J.SCITOTENV.2014.03.062
  • [17] Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An overview. Energy and Buildings, 42(10), 1592–1600. https://doi.org/10.1016/J.ENBUILD.2010.05.007
  • [18] Chastas, P., Theodosiou, T., & Bikas, D. (2016). Embodied energy in residential buildings-towards the nearly zero energy building: A literature review. Building and Environment, 105, 267–282. https://doi.org/10.1016/J.BUILDENV.2016.05.040
  • [19] European Commission. (2020). A Renovation Wave for Europe: Greening Our Buildings, Creating Jobs, Improving Lives- Copenhagen Centre on Energy Efficiency.
  • [20] European Commission. (2020). Stepping up Europe’s 2030 climate ambition Investing in a climate-neutral future for the benefit of our people | Knowledge for policy.
  • [21] European Commission. (2022). Long-term renovation strategies.
  • [22] Ali Yildirim, M., Bartyzel, F., Vallati, A., Woźniak, M. K., & Ocłoń, P. (2023). Efficient energy storage in residential buildings integrated with RESHeat system. Applied Energy, 335, 120752. https://doi.org/10.1016/J.APENERGY.2023.120752
  • [23] European Commission. (2020). Energy efficiency in buildings.
  • [24] Belaïd, F. (2018). Exposure and risk to fuel poverty in France: Examining the extent of the fuel precariousness and its salient determinants. Energy Policy, 114, 189–200. https://doi.org/10.1016/J.ENPOL.2017.12.005
  • [25] Pasichnyi, O., Wallin, J., Levihn, F., Shahrokni, H., & Kordas, O. (2019). Energy performance certificates — New opportunities for data-enabled urban energy policy instruments? Energy Policy, 127, 486–499. https://doi.org/10.1016/J.ENPOL.2018.11.051
  • [26] Muller, C., & Yan, H. (2018). Household fuel use in developing countries: Review of theory and evidence. Energy Economics, 70, 429–439. https://doi.org/10.1016/J.ENECO.2018.01.024
  • [27] Curtis, J., McCoy, D., & Aravena Novielli, C. (2017). Determinants of residential heating system choice: an analysis of Irish households. Papers.https://ideas.repec.org/p/esr/wpaper/wp576.html
  • [28] Kowsari, R., & Zerriffi, H. (2011). Three dimensional energy profile: A conceptual framework for assessing household energy use. Energy Policy, 39(12), 7505–7517. https://doi.org/10.1016/J.ENPOL.2011.06.030
  • [29] Braun, F. G. (2010). Determinants of households’ space heating type: A discrete choice analysis for German households. Energy Policy, 38(10), 5493–5503. https://doi.org/10.1016/J.ENPOL.2010.04.002
  • [30] Akgül, E., Kayabaşı, E., & Özdalyan, B. (2022). Investigation of Methods to Increase Energy Efficiency in Old Buildings: A Case Study on a School Building Constructed in 2007. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(4), 1631–1653. https://doi.org/10.29130/DUBITED.924358
  • [31] European Commission. (2020). Proposal for a regulation of the European Parliament and of the Council: establishing the framework for achieving climate neutrality and amending Regulation (EU) 2018/1999. https://www.europarl.europa.eu/doceo/document/A-9-2020-0162_EN.html
  • [32] European Commission. (2021). Energy performance of buildings directive. https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en
  • [33] Costa, G., Sicilia, Á., Oregi, X., Pedrero, J., & Mabe, L. (2020). A catalogue of energy conservation measures (ECM) and a tool for their application in energy simulation models. Journal of Building Engineering, 29, 101102. https://doi.org/10.1016/J.JOBE.2019.101102
  • [34] Węglarz, A., & Narowski, P. (2011). The optimal thermal design of residential buildings using energy simulation and fuzzy sets theory. In Proceedings of Building Simulation 2011:12th Conference of International Building Performance Simulation Association. Sydney.
  • [35] Kisilewicz, T., Fedorczak-Cisak, M., & Barkanyi, T. (2019). Active thermal insulation as an element limiting heat loss through external walls. Energy and Buildings, 205, 109541.https://doi.org/10.1016/J.ENBUILD.2019.109541
  • [36] Cholewa, T., Siuta-Olcha, A., & Anasiewicz, R. (2019). On the possibilities to increase energy efficiency of domestic hot water preparation systems in existing buildings – Long term field research. Journal of Cleaner Production, 217, 194–203. https://doi.org/10.1016/J.JCLEPRO.2019.01.138
  • [37] Chwieduk, B., & Chwieduk, D. (2021). Analysis of operation and energy performance of a heat pump driven by a PV system for space heating of a single family house in polish conditions. Renewable Energy, 165, 117–126. https://doi.org/10.1016/J.RENENE.2020.11.026
  • [38] Fokaides, P. A., Panteli, C., & Panayidou, A. (2020). How Are the Smart Readiness Indicators Expected to Affect the Energy Performance of Buildings: First Evidence and Perspectives. Sustainability 2020, Vol. 12, Page 9496, 12(22), 9496. https://doi.org/10.3390/SU12229496
  • [39] Balaras, C. A., Droutsa, K. G., Dascalaki, E. G., Kontoyiannidis, S., Moro, A., & Bazzan, E. (2019). Urban Sustainability Audits and Ratings of the Built Environment. Energies 2019, Vol. 12, Page 4243, 12(22), 4243. https://doi.org/10.3390/EN12224243
  • [40] Oti, A. H., Kurul, E., Cheung, F., & Tah, J. H. M. (2016). A framework for the utilization of Building Management System data in building information models for building design and operation. Automation in Construction, 72, 195–210. https://doi.org/10.1016/J.AUTCON.2016.08.043
  • [41] Sesana, M. M., & Salvalai, G. (2018). A review on Building Renovation Passport: Potentialities and barriers on current initiatives. Energy and Buildings, 173, 195–205. https://doi.org/10.1016/J.ENBUILD.2018.05.027
  • [42] Bernardi, E., Carlucci, S., Cornaro, C., & Bohne, R. A. (2017). An Analysis of the Most Adopted Rating Systems for Assessing the Environmental Impact of Buildings. Sustainability 2017, Vol. 9, Page 1226, 9(7), 1226. https://doi.org/10.3390/SU9071226
  • [43] European Commission. (2022). Nearly zero-energy buildings. Energy efficiency. https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/nearly-zero-energy-buildings_en
  • [44] Blasch, J., Filippini, M., & Kumar, N. (2019). Boundedly rational consumers, energy and investment literacy, and the display of information on household appliances. Resource and Energy Economics, 56, 39–58. https://doi.org/10.1016/J.RESENEECO.2017.06.001
  • [45] Boogen, N., Daminato, C., Filippini, M., & Obrist, A. (2020). Can Information about Energy Costs Affect Consumers Choices? Evidence from a Field Experiment. Economics Working Paper Series, 20/334. https://doi.org/10.3929/ETHZ-B-000413129
  • [46] Filippini, M., & Obrist, A. (2022). Are households living in green certified buildings consuming less energy? Evidence from Switzerland. Energy Policy, 161, 112724. https://doi.org/10.1016/J.ENPOL.2021.112724
  • [47] Cozza, S., Chambers, J., & Patel, M. K. (2020). Measuring the thermal energy performance gap of labelled residential buildings in Switzerland. Energy Policy, 137, 111085.https://doi.org/10.1016/J.ENPOL.2019.111085
  • [48] Seyedzadeh, S., Rahimian, F. P., Glesk, I., & Roper, M. (2018). Machine learning for estimation of building energy consumption and performance: a review. Visualization in Engineering 2018 6:1, 6(1), 1–20. https://doi.org/10.1186/S40327-018-0064-7
  • [49] Buratti, C., Barbanera, M., & Palladino, D. (2014). An original tool for checking energy performance and certification of buildings by means of Artificial Neural Networks. Applied Energy, 120, 125–132. https://doi.org/10.1016/J.APENERGY.2014.01.053
  • [50] Xue, Y., Temeljotov-Salaj, A., & Lindkvist, C. M. (2022). Renovating the retrofit process: People-centered business models and co-created partnerships for low-energy buildings in Norway. Energy Research & Social Science, 85, 102406. https://doi.org/10.1016/J.ERSS.2021.102406
  • [51] Mejjaouli, S., & Alzahrani, M. (2020). Decision-making model for optimum energy retrofitting strategies in residential buildings. Sustainable Production and Consumption, 24, 211–218. https://doi.org/10.1016/J.SPC.2020.07.008
  • [52] Alam, M., Zou, P. X. W., Stewart, R. A., Bertone, E., Sahin, O., Buntine, C., & Marshall, C. (2019). Government championed strategies to overcome the barriers to public building energy efficiency retrofit projects. Sustainable Cities and Society, 44, 56–69. https://doi.org/10.1016/J.SCS.2018.09.022
  • [53] Weiss, J., Dunkelberg, E., & Vogelpohl, T. (2012). Improving policy instruments to better tap into homeowner refurbishment potential: Lessons learned from a case study in Germany. Energy Policy, 44, 406–415. https://doi.org/10.1016/J.ENPOL.2012.02.006
  • [54] Caputo, P., & Pasetti, G. (2015). Overcoming the inertia of building energy retrofit at municipal level: The Italian challenge. Sustainable Cities and Society, 15, 120–134. https://doi.org/10.1016/J.SCS.2015.01.001
  • [55] Achtnicht, M., & Madlener, R. (2014). Factors influencing German house owners’ preferences on energy retrofits. Energy Policy, 68, 254–263. https://doi.org/10.1016/J.ENPOL.2014.01.006
  • [56] Hou, J., Liu, Y., Wu, Y., Zhou, N., & Feng, W. (2016). Comparative study of commercial building energy-efficiency retrofit policies in four pilot cities in China. Energy Policy, 88, 204–215. https://doi.org/10.1016/J.ENPOL.2015.10.016
  • [57] Castleberry, B., Gliedt, T., & Greene, J. S. (2016). Assessing drivers and barriers of energy-saving measures in Oklahoma’s public schools. Energy Policy, 88, 216–228. https://doi.org/10.1016/J.ENPOL.2015.10.010
  • [58] Simonsen, M., Aall, C., Jakob Walnum, H., & Sovacool, B. K. (2022). Effective policies for reducing household energy use: Insights from Norway. Applied Energy, 318, 119201. https://doi.org/10.1016/J.APENERGY.2022.119201
  • [59] Hille, J., Simonsen, M., & Aall, C. (2012). Trends and drivers for energy use in Norwegian households.
  • [60] Statistics Norway. (2014). Any immigrants are financially vulnerable- Type of housing and housing standard for immigrants, by country background. https://www.ssb.no/inntekt-og-forbruk/artikler-og-publikasjoner/mange-innvandrere-er-okonomisk-sarbare
  • [61] Tabatabaei, S. A., & Treur, J. (2016). Comparative Analysis of the Efficiency of Air Source Heat Pumps in Different Climatic Areas of Iran. Procedia Environmental Sciences, 34, 547–558. https://doi.org/10.1016/J.PROENV.2016.04.048
  • [62] Gaur, A. S., Fitiwi, D. Z., & Curtis, J. (2021). Heat pumps and our low-carbon future: A comprehensive review. Energy Research & Social Science, 71, 101764. https://doi.org/10.1016/J.ERSS.2020.101764
  • [63] Yılmazoğlu, M. Z. (2010). Isı Enerjisi Depolama Yöntemleri ve Binalarda Uygulanması. Politeknik Dergisi, 13(1), 33–42. https://dergipark.org.tr/tr/pub/politeknik/issue/33052/367855
  • [64] Mouzeviris, G. A., & Papakostas, K. T. (2020). Comparative analysis of air-to-water and ground source heat pumps performances. https://doi.org/10.1080/14786451.2020.1794864.
  • [65] Brenn, J., Soltic, P., & Bach, C. (2010). Comparison of natural gas driven heat pumps and electrically driven heat pumps with conventional systems for building heating purposes. Energy and Buildings, 42(6), 904–908.https://doi.org/10.1016/J.ENBUILD.2009.12.012
  • [66] Yılmazer, F., Gürel, A. Ç., & Akdemir, Ç. (2023). Bir Villanın Isı Pompası ile Isıtılmasının Performans ve Çevresel İncelenmesi. Mühendis ve Makina, 64(710), 114–136. https://dergipark.org.tr/tr/pub/muhendismakina/issue/76644/1268691
  • [67] Temel, Ö. (2016). Türkiye’de Bölgelere Göre Isı Pompası Seçim Kriterleri. Eskişehir Osmangazi Üniversitesi. http://openaccess.ogu.edu.tr:8080/xmlui/handle/11684/1240
  • [68] Gaur, A. S., Fitiwi, D. Z., & Curtis, J. (2021). Heat pumps and our low-carbon future: A comprehensive review. Energy Research & Social Science, 71, 101764. https://doi.org/10.1016/J.ERSS.2020.101764
  • [69] Saini, L., Meena, C. S., Raj, B. P., Agarwal, N., & Kumar, A. (2021). Net Zero Energy Consumption building in India: An overview and initiative toward sustainable future. https://doi.org/10.1080/15435075.2021.1948417
  • [70] Amini Toosi, H., Lavagna, M., Leonforte, F., Del Pero, C., & Aste, N. (2022). Building decarbonization: Assessing the potential of building-integrated photovoltaics and thermal energy storage systems. Energy Reports, 8, 574–581. https://doi.org/10.1016/J.EGYR.2022.10.322
  • [71] Zhao, G., Clarke, J., Searle, J., Lewis, R., & Baker, J. (2023). Economic analysis of integrating photovoltaics and battery energy storage system in an office building. Energy and Buildings, 284, 112885. https://doi.org/10.1016/J.ENBUILD.2023.112885
  • [72] Liu, C., Xu, W., Li, A., Sun, D., & Huo, H. (2019). Analysis and optimization of load matching in photovoltaic systems for zero energy buildings in different climate zones of China. Journal of Cleaner Production, 238, 117914. https://doi.org/10.1016/J.JCLEPRO.2019.117914
  • [73] Nordin, N. D., & Abdul Rahman, H. (2016). A novel optimization method for designing stand alone photovoltaic system. Renewable Energy, 89, 706–715. https://doi.org/10.1016/J.RENENE.2015.12.001
  • [74] Okoye, C. O., & Solyalı, O. (2017). Optimal sizing of stand-alone photovoltaic systems in residential buildings. Energy, 126, 573–584. https://doi.org/10.1016/J.ENERGY.2017.03.032
  • [75] Liu, J., Liu, Z., Wu, Y., Chen, X., Xiao, H., & Zhang, L. (2022). Impact of climate on photovoltaic battery energy storage system optimization. Renewable Energy, 191, 625–638.https://doi.org/10.1016/J.RENENE.2022.04.082
  • [76] Akter, M. N., Mahmud, M. A., & Oo, A. M. T. (2017). Comprehensive economic evaluations of a residential building with solar photovoltaic and battery energy storage systems: An Australian case study. Energy and Buildings, 138, 332–346. https://doi.org/10.1016/J.ENBUILD.2016.12.065
  • [77] Zou, B., Peng, J., Yin, R., Li, H., Li, S., Yan, J., & Yang, H. (2022). Capacity configuration of distributed photovoltaic and battery system for office buildings considering uncertainties. Applied Energy, 319, 119243. https://doi.org/10.1016/J.APENERGY.2022.119243
  • [78] Zhang, J., Cho, H., Luck, R., & Mago, P. J. (2018). Integrated photovoltaic and battery energy storage (PV-BES) systems: An analysis of existing financial incentive policies in the US. Applied Energy, 212, 895–908. https://doi.org/10.1016/J.APENERGY.2017.12.091
  • [79] Antunes Campos, R., Rafael do Nascimento, L., & Rüther, R. (2020). The complementary nature between wind and photovoltaic generation in Brazil and the role of energy storage in utility-scale hybrid power plants. Energy Conversion and Management, 221, 113160. https://doi.org/10.1016/J.ENCONMAN.2020.113160
  • [80] Hoppmann, J., Volland, J., Schmidt, T. S., & Hoffmann, V. H. (2014). The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model. Renewable and Sustainable Energy Reviews, 39, 1101–1118. https://doi.org/10.1016/J.RSER.2014.07.068
  • [81] Linssen, J., Stenzel, P., & Fleer, J. (2017). Techno-economic analysis of photovoltaic battery systems and the influence of different consumer load profiles. Applied Energy, 185, 2019–2025. https://doi.org/10.1016/J.APENERGY.2015.11.088
  • [82] Guarino, F., Cassarà, P., Longo, S., Cellura, M., & Ferro, E. (2015). Load match optimisation of a residential building case study: A cross-entropy based electricity storage sizing algorithm. Applied Energy, 154, 380–391. https://doi.org/10.1016/J.APENERGY.2015.04.116
  • [83] Bayod-Rújula, Á. A., Haro-Larrodé, M. E., & Martínez-Gracia, A. (2013). Sizing criteria of hybrid photovoltaic–wind systems with battery storage and self-consumption considering interaction with the grid. Solar Energy, 98(PC), 582–591. https://doi.org/10.1016/J.SOLENER.2013.10.023
  • [84] Candanedo, J., Salom, J., Widén, J., & Athienitis, A. (2015). Load matching, grid interaction, and advanced control. Modeling, Design, and Optimization of Net-Zero Energy Buildings, 207–240. https://doi.org/10.1002/9783433604625.CH06
  • [85] Niveditha, N., & Rajan Singaravel, M. M. (2022). Optimal sizing of hybrid PV–Wind–Battery storage system for Net Zero Energy Buildings to reduce grid burden. Applied Energy, 324, 119713. https://doi.org/10.1016/J.APENERGY.2022.119713
  • [86] Rajan Singaravel, M. M., & Arul Daniel, S. (2013). Studies on battery storage requirement of PV fed wind-driven induction generators. Energy Conversion and Management, 67, 34–43.https://doi.org/10.1016/J.ENCONMAN.2012.10.020
  • [87] Rehman, H. ur, Reda, F., Paiho, S., & Hasan, A. (2019). Towards positive energy communities at high latitudes. Energy Conversion and Management, 196, 175–195. https://doi.org/10.1016/J.ENCONMAN.2019.06.005
  • [88] Ma, T., & Javed, M. S. (2019). Integrated sizing of hybrid PV-wind-battery system for remote island considering the saturation of each renewable energy resource. Energy Conversion and Management, 182, 178–190. https://doi.org/10.1016/J.ENCONMAN.2018.12.059
  • [89] Celik, A. N. (2002). Optimisation and techno-economic analysis of autonomous photovoltaic–wind hybrid energy systems in comparison to single photovoltaic and wind systems. Energy Conversion and Management, 43(18), 2453–2468. https://doi.org/10.1016/S0196-8904(01)00198-4
  • [90] De Gracia, A., & Cabeza, L. F. (2015). Phase change materials and thermal energy storage for buildings. Energy and Buildings, 103, 414–419.https://doi.org/10.1016/J.ENBUILD.2015.06.007
  • [91] Navarro, L., de Gracia, A., Colclough, S., Browne, M., McCormack, S. J., Griffiths, P., & Cabeza, L. F. (2016). Thermal energy storage in building integrated thermal systems: A review. Part 1. active storage systems. Renewable Energy, 88, 526–547. https://doi.org/10.1016/J.RENENE.2015.11.040
  • [92] Simó-Solsona, M., Palumbo, M., Bosch, M., & Fernandez, A. I. (2021). Why it’s so hard? Exploring social barriers for the deployment of thermal energy storage in Spanish buildings. Energy Research & Social Science, 76, 102057. https://doi.org/10.1016/J.ERSS.2021.102057
  • [93] Vérez, D., Borri, E., Zsembinszki, G., & Cabeza, L. F. (2023). Thermal energy storage co-benefits in building applications transferred from a renewable energy perspective. Journal of Energy Storage, 58, 106344. https://doi.org/10.1016/J.EST.2022.106344
  • [94] Bedsworth, L. W., & Hanak, E. (2013). Climate policy at the local level: Insights from California. Global Environmental Change, 23(3), 664–677. https://doi.org/10.1016/J.GLOENVCHA.2013.02.004
  • [95] Lee, D., Ooka, R., Matsuda, Y., Ikeda, S., & Choi, W. (2022). Experimental analysis of artificial intelligence-based model predictive control for thermal energy storage under different cooling load conditions. Sustainable Cities and Society, 79, 103700. https://doi.org/10.1016/J.SCS.2022.103700
  • [96] Borri, E., Zsembinszki, G., & Cabeza, L. F. (2021). Recent developments of thermal energy storage applications in the built environment: A bibliometric analysis and systematic review. Applied Thermal Engineering, 189, 116666. https://doi.org/10.1016/J.APPLTHERMALENG.2021.116666
  • [97] Palanisamy, D., & Ayalur, B. K. (2019). Development and testing of condensate assisted pre-cooling unit for improved indoor air quality in a computer laboratory. Building and Environment, 163, 106321. https://doi.org/10.1016/J.BUILDENV.2019.106321
  • [98] Wang, K., Nakao, S., Thimmaiah, D., & Hopke, P. K. (2019). Emissions from in-use residential wood pellet boilers and potential emissions savings using thermal storage. Science of The Total Environment, 676, 564–576. https://doi.org/10.1016/J.SCITOTENV.2019.04.325
  • [99] Kenai, M. A., Libessart, L., Lassue, S., & Defer, D. (2021). Impact of green walls occultation on energy balance: Development of a TRNSYS model on a brick masonry house. Journal of Building Engineering, 44, 102634. https://doi.org/10.1016/J.JOBE.2021.102634
  • [100] de Gracia, A., Navarro, L., Coma, J., Serrano, S., Romaní, J., Pérez, G., & Cabeza, L. F. (2018). Experimental set-up for testing active and passive systems for energy savings in buildings – Lessons learnt. Renewable and Sustainable Energy Reviews, 82, 1014–1026. https://doi.org/10.1016/J.RSER.2017.09.109
  • [101] Randle-Boggis, R. J., White, P. C. L., Cruz, J., Parker, G., Montag, H., Scurlock, J. M. O., & Armstrong, A. (2020). Realising co-benefits for natural capital and ecosystem services from solar parks: A co-developed, evidence-based approach. Renewable and Sustainable Energy Reviews, 125, 109775. https://doi.org/10.1016/J.RSER.2020.109775
  • [102] Durga, S., Beckers, K. F., Taam, M., Horowitz, F., Cathles, L. M., & Tester, J. W. (2021). Techno-economic analysis of decarbonizing building heating in Upstate New York using seasonal borehole thermal energy storage. Energy and Buildings, 241, 110890. https://doi.org/10.1016/J.ENBUILD.2021.110890
  • [103] Amini Toosi, H., Lavagna, M., Leonforte, F., Del Pero, C., & Aste, N. (2022). A novel LCSA-Machine learning based optimization model for sustainable building design-A case study of energy storage systems. Building and Environment, 209, 108656. https://doi.org/10.1016/J.BUILDENV.2021.108656
  • [104] HEART. (2022). The holistic energy and architectural retrofit toolkit. https://heartproject.eu/
  • [105] Wu, Y., & Zhong, L. (2023). An integrated energy analysis framework for evaluating the application of hydrogen-based energy storage systems in achieving net zero energy buildings and cities in Canada. Energy Conversion and Management, 286, 117066. https://doi.org/10.1016/J.ENCONMAN.2023.117066
  • [106] Mehrjerdi, H., Iqbal, A., Rakhshani, E., & Torres, J. R. (2019). Daily-seasonal operation in net-zero energy building powered by hybrid renewable energies and hydrogen storage systems. Energy Conversion and Management, 201, 112156. https://doi.org/10.1016/J.ENCONMAN.2019.112156
  • [107] Awad, H., & Gül, M. (2018). Load-match-driven design of solar PV systems at high latitudes in the Northern hemisphere and its impact on the grid. Solar Energy, 173, 377–397. https://doi.org/10.1016/J.SOLENER.2018.07.010
  • [108] Maestre, V. M., Ortiz, A., & Ortiz, I. (2022). The role of hydrogen-based power systems in the energy transition of the residential sector. Journal of Chemical Technology & Biotechnology, 97(3), 561–574. https://doi.org/10.1002/JCTB.6938
  • [109] Mehrjerdi, H. (2020). Peer-to-peer home energy management incorporating hydrogen storage system and solar generating units. Renewable Energy, 156, 183–192. https://doi.org/10.1016/J.RENENE.2020.04.090
  • [110] Reuß, M., Grube, T., Robinius, M., Preuster, P., Wasserscheid, P., & Stolten, D. (2017). Seasonal storage and alternative carriers: A flexible hydrogen supply chain model. Applied Energy, 200, 290–302. https://doi.org/10.1016/J.APENERGY.2017.05.050
  • [111] Preuster, P., Papp, C., & Wasserscheid, P. (2017). Liquid organic hydrogen carriers (LOHCs): Toward a hydrogen-free hydrogen economy. Accounts of Chemical Research, 50(1), 74–85. https://doi.org/10.1021/ACS.ACCOUNTS.6B00474/ASSET/IMAGES/MEDIUM/AR-2016-00474U_0009.GIF
  • [112] Knosala, K., Kotzur, L., Röben, F. T. C., Stenzel, P., Blum, L., Robinius, M., & Stolten, D. (2021). Hybrid Hydrogen Home Storage for Decentralized Energy Autonomy. International Journal of Hydrogen Energy, 46(42), 21748–21763.https://doi.org/10.1016/J.IJHYDENE.2021.04.036
  • [113] Teichmann, D., Stark, K., Müller, K., Zöttl, G., Wasserscheid, P., & Arlt, W. (2012). Energy storage in residential and commercial buildings via Liquid Organic Hydrogen Carriers (LOHC). Energy & Environmental Science, 5(10), 9044–9054. https://doi.org/10.1039/C2EE22070A
  • [114] Ashraf, Q. M., Yusoff, M. I. M., Azman, A. A., Nor, N. M., Fuzi, N. A. A., Saharedan, M. S., & Omar, N. A. (2015). Energy monitoring prototype for Internet of Things: Preliminary results. IEEE World Forum on Internet of Things, WF-IoT 2015 - Proceedings, 1–5. https://doi.org/10.1109/WF-IOT.2015.7389157
  • [115] Dave, E. (2011). The Internet of Things How the Next Evolution of the Internet Is Changing Everything.https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
  • [116] García-Monge, M., Zalba, B., Casas, R., Cano, E., Guillén-Lambea, S., López-Mesa, B., & Martínez, I. (2023). Is IoT monitoring key to improve building energy efficiency? Case study of a smart campus in Spain. Energy and Buildings, 285, 112882. https://doi.org/10.1016/J.ENBUILD.2023.112882
  • [117] Li, P., Parkinson, T., Schiavon, S., Froese, T. M., de Dear, R., Rysanek, A., & Staub-French, S. (2020). Improved long-term thermal comfort indices for continuous monitoring. Energy and Buildings, 224, 110270. https://doi.org/10.1016/J.ENBUILD.2020.110270
  • [118] Sovacool, B. K., Hook, A., Sareen, S., & Geels, F. W. (2021). Global sustainability, innovation and governance dynamics of national smart electricity meter transitions. Global Environmental Change, 68, 102272. https://doi.org/10.1016/J.GLOENVCHA.2021.102272
  • [119] Ouedraogo, K. E., Ekim, P. O., & Demirok, E. (2023). Feasibility of low-cost energy management system using embedded optimization for PV and battery storage assisted residential buildings. Energy, 271, 126922. https://doi.org/10.1016/J.ENERGY.2023.126922
  • [120] Putra, R. H. P., Wahyudin, D., & Sucita, T. (2018). Designing Energy and Power Monitoring System on Solar Power Plant Using Raspberry Pi. IOP Conference Series: Materials Science and Engineering, 384(1), 012041. https://doi.org/10.1088/1757-899X/384/1/012041
  • [121] Batista, N. C., Melício, R., Matias, J. C. O., & Catalão, J. P. S. (2013). Photovoltaic and wind energy systems monitoring and building/home energy management using ZigBee devices within a smart grid. Energy, 49(1), 306–315. https://doi.org/10.1016/J.ENERGY.2012.11.002
  • [122] Jayanth, S., Poorvi, M. B., & Sunil, M. P. (2017). Raspberry Pi based energy management system. Proceedings of 2016 Online International Conference on Green Engineering and Technologies, IC-GET 2016. https://doi.org/10.1109/GET.2016.7916752
  • [123] Aydoğdu, E. (2019, May 6). Mevcut Ticari Binaların Aydınlatma Sistemlerinde Enerjiverimliliği Analizi İçin Örnek Bir Çalışma. İstanbul Teknik Üniversitesi, İstanbul. http://hdl.handle.net/11527/18230
  • [124] Kaynakli, O., Unver, U., & Kilic, M. (2003). Evaluating thermal environments for sitting and standing posture. International Communications in Heat and Mass Transfer, 30(8), 1179–1188. https://doi.org/10.1016/S0735-1933(03)00183-0
  • [125] Aykal, D., Baran, M., Erbaş, M., Hatice, &, & Gündüz, K. (2022). The Importance of Natural Lighting in the Design of Health Buildings: Sample of Şanlıurfa/Muradiye Family Health Center. Journal of Current Research on Social Sciences (JoCReSS), 7(2), 95–105. https://doi.org/10.26579/jocress-7.2.17
  • [126] Özkum, E. (2011). Doğal ve yapay aydınlatmanın insan psikolojisi üzerindeki etkileri. Marmara Üniversitesi, İstanbul. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=mqaYoP_VnjHNgPxk0w90Pg&no=hOd9HzNoIO3M-bGJmuZlbg
  • [127] Erkin, E., & Onaygil, S. (2017). Konutlar İçin Yeni Nesil Aydınlatma Kontrol Sistemleri. In EMO - IX. Ulusal Aydınlatma Sempozyumu Bildirileri. İzmir: TMMOB Elektrik Mühendisleri Odası. Retrieved from https://www.emo.org.tr/etkinlikler/aysem/etkinlik_bildirileri_detay.php?etkinlikkod=271&bilkod=6813
  • [128] CSA. (2021, May 11). The Connectivity Standards Alliance. Retrieved March 22, 2023, from https://csa-iot.org/
  • [129] Demir, H., Çıracı, G., Kaya, R., & Ünver, Ü. (2020). Aydınlatmada Enerji Verimliliği: Yalova Üniversitesi Mühendislik Fakültesi Durum Değerlendirmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(3), 1637–1652.https://doi.org/10.17482/uumfd.795971
  • [130] Erlalelitepe, İ., Aral, D., & Kazanasmaz, T. (2011). Eğitim Yapılarının Doğal Aydınlatma Performansı Açısından İncelenmesi. MEGARON / Yıldız Teknik Üniversitesi, Mimarlık Fakültesi E-Dergisi, 6(1), 39–51.
  • [131] Erel, B. (2004). Gün Işığı ile Aydınlatma Alanında Geliştirilen Yeni Teknolojiler Hakkında Bir Araştırma. İstanbul Teknik Üniversitesi, İstanbul. Retrieved from http://hdl.handle.net/11527/8638
  • [132] Hazırlar, M. A. (2004). Halk kütüphanelerinde iç mimari. Hacettepe Üniversitesi, Ankara. Retrieved from http://bby.hacettepe.edu.tr/yayinlar/119.pdf
  • [133] Carlucci, S., Causone, F., De Rosa, F., & Pagliano, L. (2015). A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design. Renewable and Sustainable Energy Reviews, 47, 1016–1033. https://doi.org/10.1016/J.RSER.2015.03.062
  • [134] Çetegen, D., Enarun, D., Yener, A., & Batman A. (2004). Günışığı yapay ışık entegrasyonu ışık rafı sisteminin incelenmesi. In 5. Ulusal Aydınlatma Kongresi (pp. 15–22). İstanbul. https://docplayer.biz.tr/11452774-Gunisigi-yapay-isik-entegrasyonunu-saglayan-isik-rafi-sisteminin-incelenmesi-duygu-cetegen-dilek-enarun-alpin-koknel-yener-alp-batman.html
  • [135] UN-Water. (2023). UN World Water Development Report 2023. https://www.unwater.org/publications/un-world-water-development-report-2023
  • [136] Qin, P., Chen, S., Tan-Soo, J. S., & Zhang, X. B. (2022). Urban household water usage in adaptation to climate change: Evidence from China. Environmental Science & Policy, 136, 486–496. https://doi.org/10.1016/J.ENVSCI.2022.07.019
  • [137] Asano, T., & Levine, A. D. (1996). Wastewater reclamation, recycling and reuse: past, present, and future. Water Science and Technology, 33(10–11), 1–14. https://doi.org/10.1016/0273-1223(96)00401-5
  • [138] Sturm, M., Zimmermann, M., Schütz, K., Urban, W., & Hartung, H. (2009). Rainwater harvesting as an alternative water resource in rural sites in central northern Namibia. Physics and Chemistry of the Earth, Parts A/B/C, 34(13–16), 776–785. https://doi.org/10.1016/J.PCE.2009.07.004
  • [139] Hammes, G., Ghisi, E., & Padilha Thives, L. (2020). Water end-uses and rainwater harvesting: a case study in Brazil. https://doi.org/10.1080/1573062X.2020.1748663
  • [140] Zhang, Y., Grant, A., Sharma, A., Chen, D., & Chen, L. (2010). Alternative water resources for rural residential development in Western Australia. Water Resources Management, 24(1), 25–36. https://doi.org/10.1007/S11269-009-9435-0/METRICS
  • [141] Yalılı Kılıç, M., & Abuş, M. N. (2018). Bahçeli Bir Konut Örneğinde Yağmur Suyu Hasadı. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 4(2), 209–215. https://doi.org/10.24180/IJAWS.426795
  • [142] Üstün, G. E., Can, T., & Küçük, G. (2020). Binalarda Yağmur Suyu Hasadı. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(3), 1593–1610. https://doi.org/10.17482/UUMFD.765561
  • [143] Beytullah Eren, A. A. S. L. A. I. D. (2016). Yağmur Suyu Hasadı: Sakarya Üniversitesi Esentepe Kampüs Örneği. 4th International Symposium on Innovative Technologies in Engineering and Science (ISITES2016) 3-5 Nov 2016 Alanya/Antalya - Turkey.
  • [144] Herrmann, T., & Schmida, U. (2000). Rainwater utilisation in Germany: efficiency, dimensioning, hydraulic and environmental aspects. Urban Water, 1(4), 307–316. https://doi.org/10.1016/S1462-0758(00)00024-8
  • [145] Strangeways, I. (2006). Precipitation: Theory, measurement and distribution. Precipitation: Theory, Measurement and Distribution, 9780521851176, 1–290. https://doi.org/10.1017/CBO9780511535772
  • [146] Pradhan, R., & Sahoo, J. (2019). Smart Rainwater Management: New Technologies and Innovation. Smart Urban Development. https://doi.org/10.5772/INTECHOPEN.86336
  • [147] Farah, E., & Shahrour, I. (2017). Smart water for leakage detection: Feedback about the use of automated meter reading technology. 2017 Sensors Networks Smart and Emerging Technologies, SENSET 2017, 2017-January, 1–4. https://doi.org/10.1109/SENSET.2017.8125061
  • [148] Depuru, S. S. S. R., Wang, L., & Devabhaktuni, V. (2011). Smart meters for power grid: Challenges, issues, advantages and status. Renewable and Sustainable Energy Reviews, 15(6), 2736–2742. https://doi.org/10.1016/J.RSER.2011.02.039
  • [149] Zorzi, M., Gluhak, A., Lange, S., & Bassi, A. (2010). From today’s INTRAnet of things to a future INTERnet of things: A wireless- and mobility-related view. IEEE Wireless Communications, 17(6), 44–51. https://doi.org/10.1109/MWC.2010.5675777
  • [150] Benavente-Peces, C. (2019). On the Energy Efficiency in the Next Generation of Smart Buildings—Supporting Technologies and Techniques. Energies 2019, Vol. 12, Page 4399, 12(22), 4399. https://doi.org/10.3390/EN12224399
  • [151] Sain, M., Kang, Y. J., & Lee, H. J. (2017). Survey on security in Internet of Things: State of the art and challenges. International Conference on Advanced Communication Technology, ICACT, 699–704. https://doi.org/10.23919/ICACT.2017.7890183
  • [152] Sanchez-Iborra, R., & Cano, M. D. (2016). State of the Art in LP-WAN Solutions for Industrial IoT Services. Sensors 2016, Vol. 16, Page 708, 16(5), 708. https://doi.org/10.3390/S16050708
  • [153] Centenaro, M., Vangelista, L., Zanella, A., & Zorzi, M. (2016). Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios. IEEE Wireless Communications, 23(5), 60–67. https://doi.org/10.1109/MWC.2016.7721743
  • [154] Andrić, I., Vrsalović, A., Perković, T., Aglić Čuvić, M., & Šolić, P. (2022). IoT approach towards smart water usage. Journal of Cleaner Production, 367, 133065. https://doi.org/10.1016/J.JCLEPRO.2022.133065 [155] LoRa Alliance. (2020). LoRaWAN Technical Committee.
  • [156] Berni, A. J., & Gregg, W. D. (1973). On the utility of chirp modulation for digital signaling. IEEE Transactions on Communications, 21(6), 748–751. https://doi.org/10.1109/TCOM.1973.1091721
  • [157] Kordana-Obuch, S., Starzec, M., & Słyś, D. (2021). Assessment of the Feasibility of Implementing Shower Heat Exchangers in Residential Buildings Based on Users’ Energy Saving Preferences. Energies 2021, Vol. 14, Page 5547, 14(17), 5547. https://doi.org/10.3390/EN14175547
  • [158] Stec, A., Kordana, S., & Słyś, D. (2017). Analysing the financial efficiency of use of water and energy saving systems in single-family homes. Journal of Cleaner Production, 151, 193–205. https://doi.org/10.1016/J.JCLEPRO.2017.03.071
  • [159] Bartkowiak, S., Fisk, R., Funk, A., Hair, J., & Skerlos, S. J. (2010). Residential Drain Water Heat Recovery Systems: Modeling, Analysis, and Implementation. Journal of Green Building, 5(3), 85–94. https://doi.org/10.3992/JGB.5.3.85
  • [160] Manouchehri, R., & Collins, M. R. (2018). An experimental analysis of the impact of unequal flow on falling film drain water heat recovery system performance. Energy and Buildings, 165, 150–159. https://doi.org/10.1016/J.ENBUILD.2018.01.018
  • [161] Manouchehri, R., & Collins, M. R. (2020). Modelling the Steady-State Performance of Coiled Falling-Film Drain Water Heat Recovery Systems Using Rated Data. Resources 2020, Vol. 9, Page 69, 9(6), 69. https://doi.org/10.3390/RESOURCES9060069
  • [162] Piotrowska, B., & Słyś, D. (2023). Variant analysis of financial and energy efficiency of the heat recovery system and domestic hot water preparation for a single-family building: The case of Poland. Journal of Building Engineering, 65, 105769. https://doi.org/10.1016/J.JOBE.2022.105769
  • [163] Zargari, S. S. (2016). Binalarda Rüzgâr Bacası ve Enerji Verimliliği. İstanbul Aydın Üniversitesi Dergisi, 8(30), 85–101. https://dergipark.org.tr/tr/pub/iaud/issue/30078/324642
  • [164] Haseh, R. H., Khakzand, M., & Ojaghlou, M. (2018). Optimal Thermal Characteristics of the Courtyard in the Hot and Arid Climate of Isfahan. Buildings 2018, Vol. 8, Page 166, 8(12), 166.https://doi.org/10.3390/BUILDINGS8120166
  • [165] Çetintaş, K. F., & Rezafar, A. (2022). Binalarda Pasif Soğutma Yöntemleri ve Geleneksel Mimarideki Uygulamalarının İncelenmesi. KAPU Trakya Mimarlık ve Tasarım Dergisi, 2(2), 37–56. https://dergipark.org.tr/tr/pub/kapu/issue/73706/1113196
  • [166] Melikoğlu, Y., & Bekleyen, A. (2021). Şanlıurfa’nın Geleneksel Rüzgâr Yakalayıcıları: Kaybolan Bir Geleneğin Günümüze Kadar Gelen Örnekleri. El-Cezeri, 8(1), 268–286. https://doi.org/10.31202/ECJSE.835131
  • [167] Mandalaki, M., Zervas, K., Tsoutsos, T., & Vazakas, A. (2012). Assessment of fixed shading devices with integrated PV for efficient energy use. Solar Energy, 86(9), 2561–2575. https://doi.org/10.1016/J.SOLENER.2012.05.026
  • [168] Alkhayyat, J. (2013). Design Strategy for Adaptive Kinetic Patterns: Creating a Generative Design for Dynamic Solar Shading Systems. University of Salford. https://www.academia.edu/6978438/Design_strategy_for_adaptive_kinetic_patterns_creating_a_generative_design_for_dynamic_solar_shading_system
  • [169] Cilento Karen. (2012). Al Bahar Towers Responsive Facade / Aedas. ArchDaily. https://www.archdaily.com/270592/al-bahar-towers-responsive-facade-aedas
  • [170] Bhamare, D. K., Rathod, M. K., & Banerjee, J. (2019). Passive cooling techniques for building and their applicability in different climatic zones—The state of art. Energy and Buildings, 198, 467–490. https://doi.org/10.1016/J.ENBUILD.2019.06.023
  • [171] EİGM. (2022). Türkiye Ulusal Enerji Planı.
  • [172] EPDK. (2022). 2021 Yılı Elektrik Piyasası Gelişim Raporu. Ankara.
  • [173] ETKB. (2023). Elektrik. T.C. Enerji ve Tabii Kaynaklar Bakanlığı. https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik
  • [174] TÜİK. (2022). Adrese Dayalı Nüfus Kayıt Sistemi Sonuçları 2021.
  • [175] ETKB. (2022). 2021 Ulusal Enerji Denge Tablosu - Orijinal Birimler / Bin TEP. https://enerji.gov.tr/eigm-raporlari
  • [176] IICEC. (2020). Turkey Energy Outlook 2020. https://iicec.sabanciuniv.edu/tr/teo
  • [177] TÜİK. (2023). Sera Gazı Emisyon İstatistikleri, 1990-2021.
  • [178] Huang, B. N., Hwang, M. J., & Yang, C. W. (2008). Causal relationship between energy consumption and GDP growth revisited: A dynamic panel data approach. Ecological Economics, 67(1), 41–54. https://doi.org/10.1016/J.ECOLECON.2007.11.006
  • [179] Erdal, G., Erdal, H., & Esengün, K. (2008). The causality between energy consumption and economic growth in Turkey. Energy Policy, 36(10), 3838–3842. https://doi.org/10.1016/J.ENPOL.2008.07.012
  • [180] Yurdakul, F. (2018). The Relationship between Energy Consumption per Capita and Growth Rate: The Case of Turkey. Ekonomik Yaklasim, 29(107), 49. https://doi.org/10.5455/EY.39112
  • [181] Aydın, K., Taşçı, H., Ağıralioğlu, S., & Sönmüş, A. (2021). Performance of Energy Efficiency in Turkey. Euroasia Journal of Social Sciences & Humanities, 8(19), 156–166. https://doi.org/10.38064/EURSSH.203
  • [182] Bertoldi, Paolo., Rezessy, Silvia., & European Commission. Joint Research Centre. Institute for Environment and Sustainability. (2006). Tradable Certificates for Energy Savings (White Certificates) - Theory and Practice. Publications Office. https://publications.jrc.ec.europa.eu/repository/handle/JRC32865
  • [183] Naimoğlu, M., & Akal, M. (2021). Enerji Verimliliği Üzerine Arz ve Talep Yönlü Genel Bir Bakış. Verimlilik Dergisi, (3), 3–20. https://doi.org/10.51551/VERIMLILIK.698615
  • [184] Alanli, A. (2022). Türkiye’de Enerji Verimliliğine Yönelik Politikaların Değerlendirilmesi. Şırnak Üniversitesi Fen Bilimleri Dergisi, 3(1), 1–18. https://dergipark.org.tr/tr/pub/sufbd/issue/73123/1062139
  • [185] Türkoğlu, S. P., & Kardoğan, P. S. Ö. (2018). The role and importance of energy efficiency for sustainable development of the countries. Lecture Notes in Civil Engineering, 7, 53–60. https://doi.org/10.1007/978-3-319-64349-6_5
  • [186] IEA. (2022). Global energy intensity, 1990 vs. 2019.
  • [187] Subramanian, S., Bastian, H., Hoffmeister, A., Jennings, B., Tolentino, C., Vaidyanathan, S., & Nadel, S. (2022). 2022 International Energy Efficiency Scorecard. Washington. https://www.aceee.org/research-report/i2201
  • [188] Koçaslan, G. (2014). Türkiye’nin Enerji Verimliliği Mevzuatı, Avrupa Birliği’ndeki Düzenlemeler ve Uluslararası-Ulusal Öneriler. Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, 15(2), 117–133. http://search/yayin/detay/175615
  • [189] Yağcı, B. E., & Sözen, A. (2023). Türkiye’nin Enerji Verimliliği Etkinlik Analizi. Politeknik Dergisi, 1–1. https://doi.org/10.2339/POLITEKNIK.859790
  • [190] CSB. (2018). Binalar İçin Isı Yalıtımı Bir Zorunluluk Mudur? https://yalova.csb.gov.tr/binalar-icin-isi-yalitimi-bir-zorunluluk-mudur-haber-226222
  • [191] ETKB. Enerji Kaynaklarının ve Enerjinin Kullanımında Verimliliğin Artırılmasına Dair Yönetmelikte Değişiklik Yapılmasına Dair Yönetmelik., Enerji ve Tabii Kaynaklar Bakanlığı (2020).
  • [192] TMMOB. (2022). Türkiye’nin Enerji Görünümü 2022.
  • [193] SBB. (2019). On Birinci Kalkınma Planı (2019-2023). Ankara.
  • [194] TÜİK. (2022). Nüfus ve Konut Sayımı, 2021.
  • [195] TÜİK. (2022). Bina ve Konut Nitelikleri Araştırması, 2021.
  • [196] Aydın, Ö. (2019). Binalarda Enerji Verimliliği Kapsamında Yapılan Projelerin Değerlendirilmesi: Türkiye Örneği. Mimarlık ve Yaşam, 4(1), 55–68. https://doi.org/10.26835/MY.511825
  • [197] Özcan, K. M., Gülay, E., & Üçdoǧruk, Ş. (2013). Economic and demographic determinants of household energy use in Turkey. Energy Policy, 60, 550–557. https://doi.org/10.1016/J.ENPOL.2013.05.046
  • [198] Emeç, H., Altay, A., Aslanpay, E., & Özdemir, M. O. (2015). Türkiye’de Enerji Yoksulluğu ve Enerji Tercihi Profili. Finans Politik ve Ekonomik Yorumlar, (608), 9–21. https://dergipark.org.tr/tr/pub/fpeyd/issue/48039/607516
  • [199] Çelik, A. K., & Oktay, E. (2019). Modelling households’ fuel stacking behaviour for space heating in Turkey using ordered and unordered discrete choice approaches. Energy and Buildings, 204, 109466. https://doi.org/10.1016/J.ENBUILD.2019.109466
  • [200] Selçuk, İ. Ş., Gölçek, A. G., & Köktaş, A. M. (2019). Energy Poverty in Turkey. Sosyoekonomi, 27(42), 283–299. https://doi.org/10.17233/SOSYOEKONOMI.2019.04.15
  • [201] İpek, Ö., & İpek, E. (2022). Determinants of energy demand for residential space heating in Turkey. Renewable Energy, 194, 1026–1033. https://doi.org/10.1016/J.RENENE.2022.05.158
  • [202] Ritchie, H., & Roser, M. (2022). Indoor Air Pollution. Our World in Data. https://ourworldindata.org/indoor-air-pollution
  • [203] Etem Gürel, A. (2011). Farklı dış duvar yapıları için optimum ısı yalıtım kalınlığı tespitinin ekonomik analizi. Sakarya University Journal of Science, 15(1), 75–81. https://doi.org/10.16984/SAUFBED.80287
  • [204] İşbilir, & Derya. (2009). Binalarda ısı yalıtımı uygulamaları ve sorunlarının araştırılması. http://acikerisim.selcuk.edu.tr:8080/xmlui//handle/123456789/8213
  • [205] Kaynaklı, Ö., Ünver, Ü., Kılıç, M., & Yamankaradeniz, R. (2003). Sürekli Rejim Enerji Dengesi Modeline Göre Isıl Konfor Bölgeleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 9(1), 23–30. https://dergipark.org.tr/tr/pub/pajes/issue/20529/218665
  • [206] Seppanen, O., Fisk, W. J., Lei, Q. H., Org, E., & Seppänen, O. (2006). Room Temperature and Productivity in Office Work. http://www.hut.fi
  • [207] Ünver, Ü., Adigüzel, E., Adigüzel, E., Çi̇vi̇, S., & Roshanaei̇, K. (2020). Türkiye’deki İklim Bölgelerine Göre Binalarda Isı Yalıtım Uygulamaları. İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 1(2), 171–187. https://dergipark.org.tr/tr/pub/imctd/issue/59372/805008
  • [208] Şenkal Sezer, F. (2005). Türkiye’de Isı Yalıtımının Gelişimi ve Konutlarda Uygulanan Dış Duvar Isı Yalıtım Sistemleri. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 10(2). https://doi.org/10.17482/UUJFE.63488
  • [209] Cengel, Y. A. (2002). Heat Transfer: A Practical Approach. Mcgraw-Hill. https://www.abebooks.com/9780072458930/Heat-Transfer-Practical-Approach-Cengel-0072458933/plp
  • [210] Gürlek, G., Özbalta, N., Yıldız, A., & Erkek, M. (2008). Economical and environmental analysis of thermal insulation thickness in buildings. Isı Bilimi ve Tekniği Dergisi, 28(2), 25–34. http://search/yayin/detay/81511
  • [211] Kurekci, N. A. (2016). Determination of optimum insulation thickness for building walls by using heating and cooling degree-day values of all Turkey’s provincial centers. Energy and Buildings, 118, 197–213. https://doi.org/10.1016/J.ENBUILD.2016.03.004
  • [212] OeEB. (2013). Energy Efficiency Potential Country Report: TURKEY. Allplan GmbH.
  • [213] Causone, F., Pietrobon, M., Pagliano, L., & Erba, S. (2017). A high performance home in the Mediterranean climate: From the design principle to actual measurements. Energy Procedia, 140, 67–79. https://doi.org/10.1016/J.EGYPRO.2017.11.124
  • [214] Hopfe, C., & McLeod, R. (2015). The Passivhaus Designer’s Manual: A technical guide to low and zero energy buildings. The Passivhaus Designer’s Manual. https://doi.org/10.4324/9781315726434
  • [215] Schnieders, J., Eian, T. D., Filippi, M., Florez, J., Kaufmann, B., Pallantzas, S., … Yeh, S. C. (2020). Design and realisation of the Passive House concept in different climate zones. Energy Efficiency, 13(8), 1561–1604. https://doi.org/10.1007/S12053-019-09819-6
  • [216] Passivhaus Institut. (2023). The Passive House Institute - Who we are and what we do. https://passivehouse.com/01_passivehouseinstitute/01_passivehouseinstitute.htm
  • [217] Aşıkoğlu, A., Altin, M., & Seval BAYRAM, N. (2021). Pasif Ev Sertifika Sisteminin Mevcut Binalarda Uygulanması: EnerPHit Sertifika Sistemi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 21(5), 1146–1156.https://doi.org/10.35414/AKUFEMUBID.978242
  • [218] Köse Mutlu, B. (2021). Çok Katlı Binalarda Gri Suyun Yerinde Arıtılması ile Yeniden Kullanılmasının Fizibilitesi: İstanbul’da Bir Kentsel Dönüşüm Projesi Örneği. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 23(67), 81–91. https://doi.org/10.21205/DEUFMD.2021236707
  • [219] Jefferson, B., Palmer, A., Jeffrey, P., Stuetz, R., & Judd, S. (2004). Grey water characterisation and its impact on the selection and operation of technologies for urban reuse. Water Science and Technology, 50(2), 157–164. https://doi.org/10.2166/WST.2004.0113
  • [220] Ottoson, J., & Stenström, T. A. (2003). Faecal contamination of greywater and associated microbial risks. Water research, 37(3), 645–655. https://doi.org/10.1016/S0043-1354(02)00352-4
  • [221] Winward, G. P., Avery, L. M., Frazer-Williams, R., Pidou, M., Jeffrey, P., Stephenson, T., & Jefferson, B. (2008). A study of the microbial quality of grey water and an evaluation of treatment technologies for reuse. Ecological Engineering, 32(2), 187–197. https://doi.org/10.1016/J.ECOLENG.2007.11.001
  • [222] Jamrah, A., Al-Omari, A., Al-Qasem, L., & Ghani, N. A. (2011). Assessment of availability and characteristics of Greywater in Amman. 31(2), 210–220. https://doi.org/10.1080/02508060.2006.9709671
  • [223] Onaygil, S. (2013). Aydınlatmada Enerji Verimliliği: LED Teknolojisi. Elektrik Mühendisliği Dergisi, 29–31. https://www.emo.org.tr/ekler/e314dc0affda638_ek.pdf?dergi=910
  • [224] Kocaman, B. (2020). Kapalı Otopark Aydınlatmasında Floresan ve LED Lambanın Enerji Verimliliği Açısından Karşılaştırılması. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(3), 1640–1648. https://doi.org/10.21597/JIST.670665
  • [225] Coşkun, C., & Oktay, Z. (2010). Enerji Tasarrufu Perspektifinde Bir Kampüs Binasının Enerji Taraması Çalışması. TMMOB Makina Mühendisleri Odası Tesisat Mühendisliği Dergisi. https://www.mmo.org.tr/ocak-subat2010/makale/enerji-tasarrufu-perspektifinde-bir-kampus-binasinin-enerji-taramasi-calismasi
  • [226] Altinöz, M., & Mıhlayanlar, E. (2019). Aktif Güneş Sistemlerinin Bina Enerji Verimliliği Üzerindeki Katkısının İncelemesi. Mimarlık ve Yaşam, 4(2), 323–335. https://doi.org/10.26835/MY.635052
  • [227] Ülker, S. (2009, February 20). Isı Yalıtım Malzemelerinin Özelliklerinin Uygulamaya Etkileri. http://hdl.handle.net/11527/8195
  • [228] Gençoğlu Korkmaz, G., & Samancı, A. (2022). Konya Teknik Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesine Ait Binalar İçin Enerji Verimliliğini Artırmaya Yönelik Örnek Bir Çalışma. Konya Journal of Engineering Sciences, 10(2), 442–456. https://doi.org/10.36306/KONJES.1089881
  • [229] Ucar, A., & Balo, F. (2009). Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey. Applied Energy, 86(5), 730–736. https://doi.org/10.1016/J.APENERGY.2008.09.015
  • [230] Güğül, G. N., & Köksal, M. A. (2019). Müstakil bir konutun enerji tüketiminin azaltılmasında kullanılan yöntemlerinin ekonomik değerlendirmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(1), 215–234. https://doi.org/10.17341/GAZIMMFD.416483
  • [231] Çomakli, K., & Yüksel, B. (2003). Optimum insulation thickness of external walls for energy saving. Applied Thermal Engineering, 23(4), 473–479. https://doi.org/10.1016/S1359-4311(02)00209-0
  • [232] Kılıçlı, A. (2018). Ege Üniversitesi bünyesindeki mevcut bir binanın enerji-ekserji analizi ve iyileştirme önerileri. Ege Üniversitesi Fen Bilimleri Enstitüsü. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=G01z7w-Gl6td9lw9ABjqng&no=_uJ54PQaowEb38CHYsdKNQ
  • [233] Yürük, M., İbrahim Variyenli, H., Marti̇n, K., Khanlari̇, A., & Aytaç, İ. (2022). Bireysel Isıtma Sistemlerinde Tesisat Temizliğinin Enerji Verimliliği Açısından Deneysel Olarak Değerlendirilmesi. Politeknik Dergisi, 25(3), 1375–1384. https://doi.org/10.2339/POLITEKNIK.1025494
  • [234] Karaçam, T., İbrahim Variyenli, H., Marti̇n, K., Khanlari, A., & Aytaç, İ. (2022). Termostatik Radyatör Vanası Kullanımının Binalarda Enerji Verimliliği Üzerindeki Etkisinin Deneysel Olarak Araştırılması. Politeknik Dergisi, 25(4), 1713–1721. https://doi.org/10.2339/POLITEKNIK.1031156
  • [235] Koç, Ü. (2020). Sektörel Enerji Tüketimi ve Ekonomik Büyüme. Üçüncü Sektör Sosyal Ekonomi, 55(1), 508–521. https://doi.org/10.15659/3.SEKTOR-SOSYAL-EKONOMI.20.03.1289
  • [236] Demi̇rsoy, G., & Sözen, A. (2023). Binalarda Enerji Verimliliğinin Toplam Faktör Etkinliği. Politeknik Dergisi, 1–1. https://doi.org/10.2339/POLITEKNIK.886923
  • [237] Omar, A. I., Khattab, N. M., & Abdel Aleem, S. H. E. (2022). Optimal strategy for transition into net-zero energy in educational buildings: A case study in El-Shorouk City, Egypt. Sustainable Energy Technologies and Assessments, 49, 101701. https://doi.org/10.1016/J.SETA.2021.101701
  • [238] Fiaschi, D., Bandinelli, R., & Conti, S. (2012). A case study for energy issues of public buildings and utilities in a small municipality: Investigation of possible improvements and integration with renewables. Applied Energy, 97, 101–114. https://doi.org/10.1016/J.APENERGY.2012.03.008
  • [239] Erhorn, H., Mroz, T., Mørck, O., Schmidt, F., Schoff, L., & Thomsen, K. E. (2008). The Energy Concept Adviser—A tool to improve energy efficiency in educational buildings. Energy and Buildings, 40(4), 419–428. https://doi.org/10.1016/J.ENBUILD.2007.03.008
  • [240] Kaklauskas, A., Zavadskas, E. K., Raslanas, S., Ginevicius, R., Komka, A., & Malinauskas, P. (2006). Selection of low-e windows in retrofit of public buildings by applying multiple criteria method COPRAS: A Lithuanian case. Energy and Buildings, 38(5), 454–462. https://doi.org/10.1016/J.ENBUILD.2005.08.005
  • [241] Balaras, C. A., Gaglia, A. G., Georgopoulou, E., Mirasgedis, S., Sarafidis, Y., & Lalas, D. P. (2007). European residential buildings and empirical assessment of the Hellenic building stock, energy consumption, emissions and potential energy savings. Building and Environment, 42(3), 1298–1314. https://doi.org/10.1016/J.BUILDENV.2005.11.001
  • [242] Herrando, M., Chordá, R., Gómez, A., & Fueyo, N. (2023). The cost overrun of depopulation to improve energy efficiency in buildings: A case study in the Mediterranean Region. Sustainable Energy Technologies and Assessments, 55, 102985. https://doi.org/10.1016/J.SETA.2022.102985

Binalarda Enerji Verimliliğinde Son Gelişmeler: Türkiye Örneği

Yıl 2024, Cilt: 12 Sayı: 1, 176 - 213, 25.03.2024
https://doi.org/10.29109/gujsc.1293759

Öz

2021 yılındaki ortalama küresel sıcaklık değerinin, sanayi devrimi öncesi döneme göre üst üste yedinci kez (2015–2021) 1 ℃’nin üzerinde seyretmesi, artış miktarının 1.5 ℃’de tutulması gerektiğini nedenleriyle ortaya koyan Paris Anlaşması’nın önemini artırmaktadır. Anlaşma ile belirlenen hedeflere ulaşmaya çalışan Avrupa Birliği’nde, binaların enerji tüketiminin %40'ından, sera gazı emisyonlarının ise %36'sından sorumlu olması, bu alandaki enerji verimliliği çalışmalarının hız kazandırmaktadır. Binaların yaşam döngüsü boyunca neden oldukları karbon emisyonlarını en büyük kısmının %70 ile işletme aşamasında oluşması, enerji verimliliği politikalarına temel teşkil etmektedir. Bu derlemede, küresel enerji tüketimi ve karbon salınımının başlıca sorumlularından olan konut sektöründeki güncel enerji verimliliği çalışmalarıyla ilgili yerli ve yabancı kaynaklar taranarak, ulaşılan olası çözüm önerileri başlıklar altında aktarılmıştır. Araştırmalar sonucunda, bina cephelerinde yapılacak yalıtım çalışması ile ısıtma giderlerinde %12-47, eski tip ampulleri yeni nesil LED ampuller ile yenileyerek aydınlatma kaynaklı elektrik tüketiminde %50-75, fuel oil kullanan verimsiz kazanların modern biyoyakıt kazanlarıyla değiştirilmesiyle de yakıt giderlerinde %20 ile %30 arasında tasarruf sağlanabileceği tespit edilmiştir. Çalışmanın devamında, Türkiye’nin enerji görünümü, yürürlükte olan verimlilik politikaları ile güncel konut istatistikleri derlenerek, binalardaki enerji verimliliğini artırmaya yönelik çalışmalar yürütecek akademi ve özel sektör çalışanlarına katkıda bulunulması amaçlanmıştır. Konut sektörünün önemli bir tüketim kalemini oluşturduğu Türkiye’de, bu alanındaki en kapsamlı yasal düzenleme 2007 yılında yayınlanan 5627 sayılı Enerji Verimliliği Kanunu'dur. Bir çok araştırmacı, enerji verimliliği uygulamalarında karşılaşılan zorlukların çoğunlukla yönetmelik ve yönergelerin eksikliğinden değil, başta hane halkının yapılacak iyileştirmeler hakkında yeterince bilgilendirilmemesi olmak üzere, çalışmaların uygulanması sırasında yaşanan sıkıntılardan kaynaklandığı sonucuna varmıştır. Yapı stoğunun %62,8’i ilgili yönetmeliklerden öncesine ait olan Türkiye’de, geniş ölçekli bir yenileme hareketi ile yıllık 7 milyar doların üzerinde bir tutarın boşa harcanmasının önüne geçilebileceği tespit edilmiştir.

Kaynakça

  • [1] WMO. (2022). 2021 one of the seven warmest years on record, WMO consolidated data shows. World Meteorological Organization. https://public.wmo.int/en/media/press-release/2021-one-of-seven-warmest-years-record-wmo-consolidated-data-shows
  • [2] Mihiretu, A., Okoyo, E. N., & Lemma, T. (2021). Causes, indicators and impacts of climate change: understanding the public discourse in Goat based agro-pastoral livelihood zone, Ethiopia. Heliyon, 7(3). https://doi.org/10.1016/j.heliyon.2021.e06529
  • [3] Jakučionytė-Skodienė, M., & Liobikienė, G. (2021). Climate change concern, personal responsibility and actions related to climate change mitigation in EU countries: Cross-cultural analysis. Journal of Cleaner Production, 281, 125189. https://doi.org/10.1016/J.JCLEPRO.2020.125189
  • [4] UNFCCC. (2021). The Glasgow Climate Pact. https://unfccc.int/process-and-meetings/the-paris-agreement/the-glasgow-climate-pact-key-outcomes-from-cop26
  • [5] Pokhrel, S. R., Hewage, K., Chhipi-Shrestha, G., Karunathilake, H., Li, E., & Sadiq, R. (2021). Carbon capturing for emissions reduction at building level: A market assessment from a building management perspective. Journal of Cleaner Production, 294, 126323. https://doi.org/10.1016/J.JCLEPRO.2021.126323
  • [6] Hannah Ritchie, Max Roser, & Pablo Rosado. (2020). CO₂ and Greenhouse Gas Emissions. OurWorldInData.org.
  • [7] Qian, D., Li, Y., Niu, F., & O’Neill, Z. (2019). Nationwide savings analysis of energy conservation measures in buildings. Energy Conversion and Management, 188, 1–18. https://doi.org/10.1016/J.ENCONMAN.2019.03.035
  • [8] Nazeriye, M., Haeri, A., Haghighat, F., & Panchabikesan, K. (2021). Understanding the influence of building characteristics on enhancing energy efficiency in residential buildings: A data mining based study. Journal of Building Engineering, 43, 103069. https://doi.org/10.1016/J.JOBE.2021.103069
  • [9] Zhong, K., Chen, X., Meng, Q., Ran, M., Zhang, Z., Liu, X., & Feng, C. (2022). Application of the air-pipe rack heat exchanger heating system in residential buildings of Guangzhou. Journal of Building Engineering, 61, 105280. https://doi.org/10.1016/J.JOBE.2022.105280
  • [10] SFOE. (2021). Buildings. https://www.bfe.admin.ch/bfe/en/home/effizienz/gebaeude.html
  • [11] SFOE. (2020). Schweizerische Gesamtenergiestatistik 2019. https://www.bfe.admin.ch/bfe/de/home/versorgung/statistik-und-geodaten/energiestatistiken/gesamtenergiestatistik.html/
  • [12] Mata, Korpal, A. K., Cheng, S. H., Jiménez Navarro, J. P., Filippidou, F., Reyna, J., & Wang, R. (2020). A map of roadmaps for zero and low energy and carbon buildings worldwide. Environmental Research Letters, 15(11), 113003. https://doi.org/10.1088/1748-9326/ABB69F
  • [13] IEA. (2022). Buildings 2021. https://www.iea.org/reports/buildings
  • [14] Fenner, A. E., Kibert, C. J., Li, J., Razkenari, M. A., Hakim, H., Lu, X., … Sam, M. (2020). Embodied, operation, and commuting emissions: A case study comparing the carbon hotspots of an educational building. Journal of Cleaner Production, 268, 122081. https://doi.org/10.1016/J.JCLEPRO.2020.122081
  • [15] Skillington, K., Crawford, R. H., Warren-Myers, G., & Davidson, K. (2022). A review of existing policy for reducing embodied energy and greenhouse gas emissions of buildings. Energy Policy, 168, 112920. https://doi.org/10.1016/J.ENPOL.2022.112920
  • [16] Lenzen, M., Geschke, A., Wiedmann, T., Lane, J., Anderson, N., Baynes, T., … West, J. (2014). Compiling and using input–output frameworks through collaborative virtual laboratories. Science of The Total Environment, 485–486(1), 241–251. https://doi.org/10.1016/J.SCITOTENV.2014.03.062
  • [17] Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An overview. Energy and Buildings, 42(10), 1592–1600. https://doi.org/10.1016/J.ENBUILD.2010.05.007
  • [18] Chastas, P., Theodosiou, T., & Bikas, D. (2016). Embodied energy in residential buildings-towards the nearly zero energy building: A literature review. Building and Environment, 105, 267–282. https://doi.org/10.1016/J.BUILDENV.2016.05.040
  • [19] European Commission. (2020). A Renovation Wave for Europe: Greening Our Buildings, Creating Jobs, Improving Lives- Copenhagen Centre on Energy Efficiency.
  • [20] European Commission. (2020). Stepping up Europe’s 2030 climate ambition Investing in a climate-neutral future for the benefit of our people | Knowledge for policy.
  • [21] European Commission. (2022). Long-term renovation strategies.
  • [22] Ali Yildirim, M., Bartyzel, F., Vallati, A., Woźniak, M. K., & Ocłoń, P. (2023). Efficient energy storage in residential buildings integrated with RESHeat system. Applied Energy, 335, 120752. https://doi.org/10.1016/J.APENERGY.2023.120752
  • [23] European Commission. (2020). Energy efficiency in buildings.
  • [24] Belaïd, F. (2018). Exposure and risk to fuel poverty in France: Examining the extent of the fuel precariousness and its salient determinants. Energy Policy, 114, 189–200. https://doi.org/10.1016/J.ENPOL.2017.12.005
  • [25] Pasichnyi, O., Wallin, J., Levihn, F., Shahrokni, H., & Kordas, O. (2019). Energy performance certificates — New opportunities for data-enabled urban energy policy instruments? Energy Policy, 127, 486–499. https://doi.org/10.1016/J.ENPOL.2018.11.051
  • [26] Muller, C., & Yan, H. (2018). Household fuel use in developing countries: Review of theory and evidence. Energy Economics, 70, 429–439. https://doi.org/10.1016/J.ENECO.2018.01.024
  • [27] Curtis, J., McCoy, D., & Aravena Novielli, C. (2017). Determinants of residential heating system choice: an analysis of Irish households. Papers.https://ideas.repec.org/p/esr/wpaper/wp576.html
  • [28] Kowsari, R., & Zerriffi, H. (2011). Three dimensional energy profile: A conceptual framework for assessing household energy use. Energy Policy, 39(12), 7505–7517. https://doi.org/10.1016/J.ENPOL.2011.06.030
  • [29] Braun, F. G. (2010). Determinants of households’ space heating type: A discrete choice analysis for German households. Energy Policy, 38(10), 5493–5503. https://doi.org/10.1016/J.ENPOL.2010.04.002
  • [30] Akgül, E., Kayabaşı, E., & Özdalyan, B. (2022). Investigation of Methods to Increase Energy Efficiency in Old Buildings: A Case Study on a School Building Constructed in 2007. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(4), 1631–1653. https://doi.org/10.29130/DUBITED.924358
  • [31] European Commission. (2020). Proposal for a regulation of the European Parliament and of the Council: establishing the framework for achieving climate neutrality and amending Regulation (EU) 2018/1999. https://www.europarl.europa.eu/doceo/document/A-9-2020-0162_EN.html
  • [32] European Commission. (2021). Energy performance of buildings directive. https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en
  • [33] Costa, G., Sicilia, Á., Oregi, X., Pedrero, J., & Mabe, L. (2020). A catalogue of energy conservation measures (ECM) and a tool for their application in energy simulation models. Journal of Building Engineering, 29, 101102. https://doi.org/10.1016/J.JOBE.2019.101102
  • [34] Węglarz, A., & Narowski, P. (2011). The optimal thermal design of residential buildings using energy simulation and fuzzy sets theory. In Proceedings of Building Simulation 2011:12th Conference of International Building Performance Simulation Association. Sydney.
  • [35] Kisilewicz, T., Fedorczak-Cisak, M., & Barkanyi, T. (2019). Active thermal insulation as an element limiting heat loss through external walls. Energy and Buildings, 205, 109541.https://doi.org/10.1016/J.ENBUILD.2019.109541
  • [36] Cholewa, T., Siuta-Olcha, A., & Anasiewicz, R. (2019). On the possibilities to increase energy efficiency of domestic hot water preparation systems in existing buildings – Long term field research. Journal of Cleaner Production, 217, 194–203. https://doi.org/10.1016/J.JCLEPRO.2019.01.138
  • [37] Chwieduk, B., & Chwieduk, D. (2021). Analysis of operation and energy performance of a heat pump driven by a PV system for space heating of a single family house in polish conditions. Renewable Energy, 165, 117–126. https://doi.org/10.1016/J.RENENE.2020.11.026
  • [38] Fokaides, P. A., Panteli, C., & Panayidou, A. (2020). How Are the Smart Readiness Indicators Expected to Affect the Energy Performance of Buildings: First Evidence and Perspectives. Sustainability 2020, Vol. 12, Page 9496, 12(22), 9496. https://doi.org/10.3390/SU12229496
  • [39] Balaras, C. A., Droutsa, K. G., Dascalaki, E. G., Kontoyiannidis, S., Moro, A., & Bazzan, E. (2019). Urban Sustainability Audits and Ratings of the Built Environment. Energies 2019, Vol. 12, Page 4243, 12(22), 4243. https://doi.org/10.3390/EN12224243
  • [40] Oti, A. H., Kurul, E., Cheung, F., & Tah, J. H. M. (2016). A framework for the utilization of Building Management System data in building information models for building design and operation. Automation in Construction, 72, 195–210. https://doi.org/10.1016/J.AUTCON.2016.08.043
  • [41] Sesana, M. M., & Salvalai, G. (2018). A review on Building Renovation Passport: Potentialities and barriers on current initiatives. Energy and Buildings, 173, 195–205. https://doi.org/10.1016/J.ENBUILD.2018.05.027
  • [42] Bernardi, E., Carlucci, S., Cornaro, C., & Bohne, R. A. (2017). An Analysis of the Most Adopted Rating Systems for Assessing the Environmental Impact of Buildings. Sustainability 2017, Vol. 9, Page 1226, 9(7), 1226. https://doi.org/10.3390/SU9071226
  • [43] European Commission. (2022). Nearly zero-energy buildings. Energy efficiency. https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/nearly-zero-energy-buildings_en
  • [44] Blasch, J., Filippini, M., & Kumar, N. (2019). Boundedly rational consumers, energy and investment literacy, and the display of information on household appliances. Resource and Energy Economics, 56, 39–58. https://doi.org/10.1016/J.RESENEECO.2017.06.001
  • [45] Boogen, N., Daminato, C., Filippini, M., & Obrist, A. (2020). Can Information about Energy Costs Affect Consumers Choices? Evidence from a Field Experiment. Economics Working Paper Series, 20/334. https://doi.org/10.3929/ETHZ-B-000413129
  • [46] Filippini, M., & Obrist, A. (2022). Are households living in green certified buildings consuming less energy? Evidence from Switzerland. Energy Policy, 161, 112724. https://doi.org/10.1016/J.ENPOL.2021.112724
  • [47] Cozza, S., Chambers, J., & Patel, M. K. (2020). Measuring the thermal energy performance gap of labelled residential buildings in Switzerland. Energy Policy, 137, 111085.https://doi.org/10.1016/J.ENPOL.2019.111085
  • [48] Seyedzadeh, S., Rahimian, F. P., Glesk, I., & Roper, M. (2018). Machine learning for estimation of building energy consumption and performance: a review. Visualization in Engineering 2018 6:1, 6(1), 1–20. https://doi.org/10.1186/S40327-018-0064-7
  • [49] Buratti, C., Barbanera, M., & Palladino, D. (2014). An original tool for checking energy performance and certification of buildings by means of Artificial Neural Networks. Applied Energy, 120, 125–132. https://doi.org/10.1016/J.APENERGY.2014.01.053
  • [50] Xue, Y., Temeljotov-Salaj, A., & Lindkvist, C. M. (2022). Renovating the retrofit process: People-centered business models and co-created partnerships for low-energy buildings in Norway. Energy Research & Social Science, 85, 102406. https://doi.org/10.1016/J.ERSS.2021.102406
  • [51] Mejjaouli, S., & Alzahrani, M. (2020). Decision-making model for optimum energy retrofitting strategies in residential buildings. Sustainable Production and Consumption, 24, 211–218. https://doi.org/10.1016/J.SPC.2020.07.008
  • [52] Alam, M., Zou, P. X. W., Stewart, R. A., Bertone, E., Sahin, O., Buntine, C., & Marshall, C. (2019). Government championed strategies to overcome the barriers to public building energy efficiency retrofit projects. Sustainable Cities and Society, 44, 56–69. https://doi.org/10.1016/J.SCS.2018.09.022
  • [53] Weiss, J., Dunkelberg, E., & Vogelpohl, T. (2012). Improving policy instruments to better tap into homeowner refurbishment potential: Lessons learned from a case study in Germany. Energy Policy, 44, 406–415. https://doi.org/10.1016/J.ENPOL.2012.02.006
  • [54] Caputo, P., & Pasetti, G. (2015). Overcoming the inertia of building energy retrofit at municipal level: The Italian challenge. Sustainable Cities and Society, 15, 120–134. https://doi.org/10.1016/J.SCS.2015.01.001
  • [55] Achtnicht, M., & Madlener, R. (2014). Factors influencing German house owners’ preferences on energy retrofits. Energy Policy, 68, 254–263. https://doi.org/10.1016/J.ENPOL.2014.01.006
  • [56] Hou, J., Liu, Y., Wu, Y., Zhou, N., & Feng, W. (2016). Comparative study of commercial building energy-efficiency retrofit policies in four pilot cities in China. Energy Policy, 88, 204–215. https://doi.org/10.1016/J.ENPOL.2015.10.016
  • [57] Castleberry, B., Gliedt, T., & Greene, J. S. (2016). Assessing drivers and barriers of energy-saving measures in Oklahoma’s public schools. Energy Policy, 88, 216–228. https://doi.org/10.1016/J.ENPOL.2015.10.010
  • [58] Simonsen, M., Aall, C., Jakob Walnum, H., & Sovacool, B. K. (2022). Effective policies for reducing household energy use: Insights from Norway. Applied Energy, 318, 119201. https://doi.org/10.1016/J.APENERGY.2022.119201
  • [59] Hille, J., Simonsen, M., & Aall, C. (2012). Trends and drivers for energy use in Norwegian households.
  • [60] Statistics Norway. (2014). Any immigrants are financially vulnerable- Type of housing and housing standard for immigrants, by country background. https://www.ssb.no/inntekt-og-forbruk/artikler-og-publikasjoner/mange-innvandrere-er-okonomisk-sarbare
  • [61] Tabatabaei, S. A., & Treur, J. (2016). Comparative Analysis of the Efficiency of Air Source Heat Pumps in Different Climatic Areas of Iran. Procedia Environmental Sciences, 34, 547–558. https://doi.org/10.1016/J.PROENV.2016.04.048
  • [62] Gaur, A. S., Fitiwi, D. Z., & Curtis, J. (2021). Heat pumps and our low-carbon future: A comprehensive review. Energy Research & Social Science, 71, 101764. https://doi.org/10.1016/J.ERSS.2020.101764
  • [63] Yılmazoğlu, M. Z. (2010). Isı Enerjisi Depolama Yöntemleri ve Binalarda Uygulanması. Politeknik Dergisi, 13(1), 33–42. https://dergipark.org.tr/tr/pub/politeknik/issue/33052/367855
  • [64] Mouzeviris, G. A., & Papakostas, K. T. (2020). Comparative analysis of air-to-water and ground source heat pumps performances. https://doi.org/10.1080/14786451.2020.1794864.
  • [65] Brenn, J., Soltic, P., & Bach, C. (2010). Comparison of natural gas driven heat pumps and electrically driven heat pumps with conventional systems for building heating purposes. Energy and Buildings, 42(6), 904–908.https://doi.org/10.1016/J.ENBUILD.2009.12.012
  • [66] Yılmazer, F., Gürel, A. Ç., & Akdemir, Ç. (2023). Bir Villanın Isı Pompası ile Isıtılmasının Performans ve Çevresel İncelenmesi. Mühendis ve Makina, 64(710), 114–136. https://dergipark.org.tr/tr/pub/muhendismakina/issue/76644/1268691
  • [67] Temel, Ö. (2016). Türkiye’de Bölgelere Göre Isı Pompası Seçim Kriterleri. Eskişehir Osmangazi Üniversitesi. http://openaccess.ogu.edu.tr:8080/xmlui/handle/11684/1240
  • [68] Gaur, A. S., Fitiwi, D. Z., & Curtis, J. (2021). Heat pumps and our low-carbon future: A comprehensive review. Energy Research & Social Science, 71, 101764. https://doi.org/10.1016/J.ERSS.2020.101764
  • [69] Saini, L., Meena, C. S., Raj, B. P., Agarwal, N., & Kumar, A. (2021). Net Zero Energy Consumption building in India: An overview and initiative toward sustainable future. https://doi.org/10.1080/15435075.2021.1948417
  • [70] Amini Toosi, H., Lavagna, M., Leonforte, F., Del Pero, C., & Aste, N. (2022). Building decarbonization: Assessing the potential of building-integrated photovoltaics and thermal energy storage systems. Energy Reports, 8, 574–581. https://doi.org/10.1016/J.EGYR.2022.10.322
  • [71] Zhao, G., Clarke, J., Searle, J., Lewis, R., & Baker, J. (2023). Economic analysis of integrating photovoltaics and battery energy storage system in an office building. Energy and Buildings, 284, 112885. https://doi.org/10.1016/J.ENBUILD.2023.112885
  • [72] Liu, C., Xu, W., Li, A., Sun, D., & Huo, H. (2019). Analysis and optimization of load matching in photovoltaic systems for zero energy buildings in different climate zones of China. Journal of Cleaner Production, 238, 117914. https://doi.org/10.1016/J.JCLEPRO.2019.117914
  • [73] Nordin, N. D., & Abdul Rahman, H. (2016). A novel optimization method for designing stand alone photovoltaic system. Renewable Energy, 89, 706–715. https://doi.org/10.1016/J.RENENE.2015.12.001
  • [74] Okoye, C. O., & Solyalı, O. (2017). Optimal sizing of stand-alone photovoltaic systems in residential buildings. Energy, 126, 573–584. https://doi.org/10.1016/J.ENERGY.2017.03.032
  • [75] Liu, J., Liu, Z., Wu, Y., Chen, X., Xiao, H., & Zhang, L. (2022). Impact of climate on photovoltaic battery energy storage system optimization. Renewable Energy, 191, 625–638.https://doi.org/10.1016/J.RENENE.2022.04.082
  • [76] Akter, M. N., Mahmud, M. A., & Oo, A. M. T. (2017). Comprehensive economic evaluations of a residential building with solar photovoltaic and battery energy storage systems: An Australian case study. Energy and Buildings, 138, 332–346. https://doi.org/10.1016/J.ENBUILD.2016.12.065
  • [77] Zou, B., Peng, J., Yin, R., Li, H., Li, S., Yan, J., & Yang, H. (2022). Capacity configuration of distributed photovoltaic and battery system for office buildings considering uncertainties. Applied Energy, 319, 119243. https://doi.org/10.1016/J.APENERGY.2022.119243
  • [78] Zhang, J., Cho, H., Luck, R., & Mago, P. J. (2018). Integrated photovoltaic and battery energy storage (PV-BES) systems: An analysis of existing financial incentive policies in the US. Applied Energy, 212, 895–908. https://doi.org/10.1016/J.APENERGY.2017.12.091
  • [79] Antunes Campos, R., Rafael do Nascimento, L., & Rüther, R. (2020). The complementary nature between wind and photovoltaic generation in Brazil and the role of energy storage in utility-scale hybrid power plants. Energy Conversion and Management, 221, 113160. https://doi.org/10.1016/J.ENCONMAN.2020.113160
  • [80] Hoppmann, J., Volland, J., Schmidt, T. S., & Hoffmann, V. H. (2014). The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model. Renewable and Sustainable Energy Reviews, 39, 1101–1118. https://doi.org/10.1016/J.RSER.2014.07.068
  • [81] Linssen, J., Stenzel, P., & Fleer, J. (2017). Techno-economic analysis of photovoltaic battery systems and the influence of different consumer load profiles. Applied Energy, 185, 2019–2025. https://doi.org/10.1016/J.APENERGY.2015.11.088
  • [82] Guarino, F., Cassarà, P., Longo, S., Cellura, M., & Ferro, E. (2015). Load match optimisation of a residential building case study: A cross-entropy based electricity storage sizing algorithm. Applied Energy, 154, 380–391. https://doi.org/10.1016/J.APENERGY.2015.04.116
  • [83] Bayod-Rújula, Á. A., Haro-Larrodé, M. E., & Martínez-Gracia, A. (2013). Sizing criteria of hybrid photovoltaic–wind systems with battery storage and self-consumption considering interaction with the grid. Solar Energy, 98(PC), 582–591. https://doi.org/10.1016/J.SOLENER.2013.10.023
  • [84] Candanedo, J., Salom, J., Widén, J., & Athienitis, A. (2015). Load matching, grid interaction, and advanced control. Modeling, Design, and Optimization of Net-Zero Energy Buildings, 207–240. https://doi.org/10.1002/9783433604625.CH06
  • [85] Niveditha, N., & Rajan Singaravel, M. M. (2022). Optimal sizing of hybrid PV–Wind–Battery storage system for Net Zero Energy Buildings to reduce grid burden. Applied Energy, 324, 119713. https://doi.org/10.1016/J.APENERGY.2022.119713
  • [86] Rajan Singaravel, M. M., & Arul Daniel, S. (2013). Studies on battery storage requirement of PV fed wind-driven induction generators. Energy Conversion and Management, 67, 34–43.https://doi.org/10.1016/J.ENCONMAN.2012.10.020
  • [87] Rehman, H. ur, Reda, F., Paiho, S., & Hasan, A. (2019). Towards positive energy communities at high latitudes. Energy Conversion and Management, 196, 175–195. https://doi.org/10.1016/J.ENCONMAN.2019.06.005
  • [88] Ma, T., & Javed, M. S. (2019). Integrated sizing of hybrid PV-wind-battery system for remote island considering the saturation of each renewable energy resource. Energy Conversion and Management, 182, 178–190. https://doi.org/10.1016/J.ENCONMAN.2018.12.059
  • [89] Celik, A. N. (2002). Optimisation and techno-economic analysis of autonomous photovoltaic–wind hybrid energy systems in comparison to single photovoltaic and wind systems. Energy Conversion and Management, 43(18), 2453–2468. https://doi.org/10.1016/S0196-8904(01)00198-4
  • [90] De Gracia, A., & Cabeza, L. F. (2015). Phase change materials and thermal energy storage for buildings. Energy and Buildings, 103, 414–419.https://doi.org/10.1016/J.ENBUILD.2015.06.007
  • [91] Navarro, L., de Gracia, A., Colclough, S., Browne, M., McCormack, S. J., Griffiths, P., & Cabeza, L. F. (2016). Thermal energy storage in building integrated thermal systems: A review. Part 1. active storage systems. Renewable Energy, 88, 526–547. https://doi.org/10.1016/J.RENENE.2015.11.040
  • [92] Simó-Solsona, M., Palumbo, M., Bosch, M., & Fernandez, A. I. (2021). Why it’s so hard? Exploring social barriers for the deployment of thermal energy storage in Spanish buildings. Energy Research & Social Science, 76, 102057. https://doi.org/10.1016/J.ERSS.2021.102057
  • [93] Vérez, D., Borri, E., Zsembinszki, G., & Cabeza, L. F. (2023). Thermal energy storage co-benefits in building applications transferred from a renewable energy perspective. Journal of Energy Storage, 58, 106344. https://doi.org/10.1016/J.EST.2022.106344
  • [94] Bedsworth, L. W., & Hanak, E. (2013). Climate policy at the local level: Insights from California. Global Environmental Change, 23(3), 664–677. https://doi.org/10.1016/J.GLOENVCHA.2013.02.004
  • [95] Lee, D., Ooka, R., Matsuda, Y., Ikeda, S., & Choi, W. (2022). Experimental analysis of artificial intelligence-based model predictive control for thermal energy storage under different cooling load conditions. Sustainable Cities and Society, 79, 103700. https://doi.org/10.1016/J.SCS.2022.103700
  • [96] Borri, E., Zsembinszki, G., & Cabeza, L. F. (2021). Recent developments of thermal energy storage applications in the built environment: A bibliometric analysis and systematic review. Applied Thermal Engineering, 189, 116666. https://doi.org/10.1016/J.APPLTHERMALENG.2021.116666
  • [97] Palanisamy, D., & Ayalur, B. K. (2019). Development and testing of condensate assisted pre-cooling unit for improved indoor air quality in a computer laboratory. Building and Environment, 163, 106321. https://doi.org/10.1016/J.BUILDENV.2019.106321
  • [98] Wang, K., Nakao, S., Thimmaiah, D., & Hopke, P. K. (2019). Emissions from in-use residential wood pellet boilers and potential emissions savings using thermal storage. Science of The Total Environment, 676, 564–576. https://doi.org/10.1016/J.SCITOTENV.2019.04.325
  • [99] Kenai, M. A., Libessart, L., Lassue, S., & Defer, D. (2021). Impact of green walls occultation on energy balance: Development of a TRNSYS model on a brick masonry house. Journal of Building Engineering, 44, 102634. https://doi.org/10.1016/J.JOBE.2021.102634
  • [100] de Gracia, A., Navarro, L., Coma, J., Serrano, S., Romaní, J., Pérez, G., & Cabeza, L. F. (2018). Experimental set-up for testing active and passive systems for energy savings in buildings – Lessons learnt. Renewable and Sustainable Energy Reviews, 82, 1014–1026. https://doi.org/10.1016/J.RSER.2017.09.109
  • [101] Randle-Boggis, R. J., White, P. C. L., Cruz, J., Parker, G., Montag, H., Scurlock, J. M. O., & Armstrong, A. (2020). Realising co-benefits for natural capital and ecosystem services from solar parks: A co-developed, evidence-based approach. Renewable and Sustainable Energy Reviews, 125, 109775. https://doi.org/10.1016/J.RSER.2020.109775
  • [102] Durga, S., Beckers, K. F., Taam, M., Horowitz, F., Cathles, L. M., & Tester, J. W. (2021). Techno-economic analysis of decarbonizing building heating in Upstate New York using seasonal borehole thermal energy storage. Energy and Buildings, 241, 110890. https://doi.org/10.1016/J.ENBUILD.2021.110890
  • [103] Amini Toosi, H., Lavagna, M., Leonforte, F., Del Pero, C., & Aste, N. (2022). A novel LCSA-Machine learning based optimization model for sustainable building design-A case study of energy storage systems. Building and Environment, 209, 108656. https://doi.org/10.1016/J.BUILDENV.2021.108656
  • [104] HEART. (2022). The holistic energy and architectural retrofit toolkit. https://heartproject.eu/
  • [105] Wu, Y., & Zhong, L. (2023). An integrated energy analysis framework for evaluating the application of hydrogen-based energy storage systems in achieving net zero energy buildings and cities in Canada. Energy Conversion and Management, 286, 117066. https://doi.org/10.1016/J.ENCONMAN.2023.117066
  • [106] Mehrjerdi, H., Iqbal, A., Rakhshani, E., & Torres, J. R. (2019). Daily-seasonal operation in net-zero energy building powered by hybrid renewable energies and hydrogen storage systems. Energy Conversion and Management, 201, 112156. https://doi.org/10.1016/J.ENCONMAN.2019.112156
  • [107] Awad, H., & Gül, M. (2018). Load-match-driven design of solar PV systems at high latitudes in the Northern hemisphere and its impact on the grid. Solar Energy, 173, 377–397. https://doi.org/10.1016/J.SOLENER.2018.07.010
  • [108] Maestre, V. M., Ortiz, A., & Ortiz, I. (2022). The role of hydrogen-based power systems in the energy transition of the residential sector. Journal of Chemical Technology & Biotechnology, 97(3), 561–574. https://doi.org/10.1002/JCTB.6938
  • [109] Mehrjerdi, H. (2020). Peer-to-peer home energy management incorporating hydrogen storage system and solar generating units. Renewable Energy, 156, 183–192. https://doi.org/10.1016/J.RENENE.2020.04.090
  • [110] Reuß, M., Grube, T., Robinius, M., Preuster, P., Wasserscheid, P., & Stolten, D. (2017). Seasonal storage and alternative carriers: A flexible hydrogen supply chain model. Applied Energy, 200, 290–302. https://doi.org/10.1016/J.APENERGY.2017.05.050
  • [111] Preuster, P., Papp, C., & Wasserscheid, P. (2017). Liquid organic hydrogen carriers (LOHCs): Toward a hydrogen-free hydrogen economy. Accounts of Chemical Research, 50(1), 74–85. https://doi.org/10.1021/ACS.ACCOUNTS.6B00474/ASSET/IMAGES/MEDIUM/AR-2016-00474U_0009.GIF
  • [112] Knosala, K., Kotzur, L., Röben, F. T. C., Stenzel, P., Blum, L., Robinius, M., & Stolten, D. (2021). Hybrid Hydrogen Home Storage for Decentralized Energy Autonomy. International Journal of Hydrogen Energy, 46(42), 21748–21763.https://doi.org/10.1016/J.IJHYDENE.2021.04.036
  • [113] Teichmann, D., Stark, K., Müller, K., Zöttl, G., Wasserscheid, P., & Arlt, W. (2012). Energy storage in residential and commercial buildings via Liquid Organic Hydrogen Carriers (LOHC). Energy & Environmental Science, 5(10), 9044–9054. https://doi.org/10.1039/C2EE22070A
  • [114] Ashraf, Q. M., Yusoff, M. I. M., Azman, A. A., Nor, N. M., Fuzi, N. A. A., Saharedan, M. S., & Omar, N. A. (2015). Energy monitoring prototype for Internet of Things: Preliminary results. IEEE World Forum on Internet of Things, WF-IoT 2015 - Proceedings, 1–5. https://doi.org/10.1109/WF-IOT.2015.7389157
  • [115] Dave, E. (2011). The Internet of Things How the Next Evolution of the Internet Is Changing Everything.https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
  • [116] García-Monge, M., Zalba, B., Casas, R., Cano, E., Guillén-Lambea, S., López-Mesa, B., & Martínez, I. (2023). Is IoT monitoring key to improve building energy efficiency? Case study of a smart campus in Spain. Energy and Buildings, 285, 112882. https://doi.org/10.1016/J.ENBUILD.2023.112882
  • [117] Li, P., Parkinson, T., Schiavon, S., Froese, T. M., de Dear, R., Rysanek, A., & Staub-French, S. (2020). Improved long-term thermal comfort indices for continuous monitoring. Energy and Buildings, 224, 110270. https://doi.org/10.1016/J.ENBUILD.2020.110270
  • [118] Sovacool, B. K., Hook, A., Sareen, S., & Geels, F. W. (2021). Global sustainability, innovation and governance dynamics of national smart electricity meter transitions. Global Environmental Change, 68, 102272. https://doi.org/10.1016/J.GLOENVCHA.2021.102272
  • [119] Ouedraogo, K. E., Ekim, P. O., & Demirok, E. (2023). Feasibility of low-cost energy management system using embedded optimization for PV and battery storage assisted residential buildings. Energy, 271, 126922. https://doi.org/10.1016/J.ENERGY.2023.126922
  • [120] Putra, R. H. P., Wahyudin, D., & Sucita, T. (2018). Designing Energy and Power Monitoring System on Solar Power Plant Using Raspberry Pi. IOP Conference Series: Materials Science and Engineering, 384(1), 012041. https://doi.org/10.1088/1757-899X/384/1/012041
  • [121] Batista, N. C., Melício, R., Matias, J. C. O., & Catalão, J. P. S. (2013). Photovoltaic and wind energy systems monitoring and building/home energy management using ZigBee devices within a smart grid. Energy, 49(1), 306–315. https://doi.org/10.1016/J.ENERGY.2012.11.002
  • [122] Jayanth, S., Poorvi, M. B., & Sunil, M. P. (2017). Raspberry Pi based energy management system. Proceedings of 2016 Online International Conference on Green Engineering and Technologies, IC-GET 2016. https://doi.org/10.1109/GET.2016.7916752
  • [123] Aydoğdu, E. (2019, May 6). Mevcut Ticari Binaların Aydınlatma Sistemlerinde Enerjiverimliliği Analizi İçin Örnek Bir Çalışma. İstanbul Teknik Üniversitesi, İstanbul. http://hdl.handle.net/11527/18230
  • [124] Kaynakli, O., Unver, U., & Kilic, M. (2003). Evaluating thermal environments for sitting and standing posture. International Communications in Heat and Mass Transfer, 30(8), 1179–1188. https://doi.org/10.1016/S0735-1933(03)00183-0
  • [125] Aykal, D., Baran, M., Erbaş, M., Hatice, &, & Gündüz, K. (2022). The Importance of Natural Lighting in the Design of Health Buildings: Sample of Şanlıurfa/Muradiye Family Health Center. Journal of Current Research on Social Sciences (JoCReSS), 7(2), 95–105. https://doi.org/10.26579/jocress-7.2.17
  • [126] Özkum, E. (2011). Doğal ve yapay aydınlatmanın insan psikolojisi üzerindeki etkileri. Marmara Üniversitesi, İstanbul. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=mqaYoP_VnjHNgPxk0w90Pg&no=hOd9HzNoIO3M-bGJmuZlbg
  • [127] Erkin, E., & Onaygil, S. (2017). Konutlar İçin Yeni Nesil Aydınlatma Kontrol Sistemleri. In EMO - IX. Ulusal Aydınlatma Sempozyumu Bildirileri. İzmir: TMMOB Elektrik Mühendisleri Odası. Retrieved from https://www.emo.org.tr/etkinlikler/aysem/etkinlik_bildirileri_detay.php?etkinlikkod=271&bilkod=6813
  • [128] CSA. (2021, May 11). The Connectivity Standards Alliance. Retrieved March 22, 2023, from https://csa-iot.org/
  • [129] Demir, H., Çıracı, G., Kaya, R., & Ünver, Ü. (2020). Aydınlatmada Enerji Verimliliği: Yalova Üniversitesi Mühendislik Fakültesi Durum Değerlendirmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(3), 1637–1652.https://doi.org/10.17482/uumfd.795971
  • [130] Erlalelitepe, İ., Aral, D., & Kazanasmaz, T. (2011). Eğitim Yapılarının Doğal Aydınlatma Performansı Açısından İncelenmesi. MEGARON / Yıldız Teknik Üniversitesi, Mimarlık Fakültesi E-Dergisi, 6(1), 39–51.
  • [131] Erel, B. (2004). Gün Işığı ile Aydınlatma Alanında Geliştirilen Yeni Teknolojiler Hakkında Bir Araştırma. İstanbul Teknik Üniversitesi, İstanbul. Retrieved from http://hdl.handle.net/11527/8638
  • [132] Hazırlar, M. A. (2004). Halk kütüphanelerinde iç mimari. Hacettepe Üniversitesi, Ankara. Retrieved from http://bby.hacettepe.edu.tr/yayinlar/119.pdf
  • [133] Carlucci, S., Causone, F., De Rosa, F., & Pagliano, L. (2015). A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design. Renewable and Sustainable Energy Reviews, 47, 1016–1033. https://doi.org/10.1016/J.RSER.2015.03.062
  • [134] Çetegen, D., Enarun, D., Yener, A., & Batman A. (2004). Günışığı yapay ışık entegrasyonu ışık rafı sisteminin incelenmesi. In 5. Ulusal Aydınlatma Kongresi (pp. 15–22). İstanbul. https://docplayer.biz.tr/11452774-Gunisigi-yapay-isik-entegrasyonunu-saglayan-isik-rafi-sisteminin-incelenmesi-duygu-cetegen-dilek-enarun-alpin-koknel-yener-alp-batman.html
  • [135] UN-Water. (2023). UN World Water Development Report 2023. https://www.unwater.org/publications/un-world-water-development-report-2023
  • [136] Qin, P., Chen, S., Tan-Soo, J. S., & Zhang, X. B. (2022). Urban household water usage in adaptation to climate change: Evidence from China. Environmental Science & Policy, 136, 486–496. https://doi.org/10.1016/J.ENVSCI.2022.07.019
  • [137] Asano, T., & Levine, A. D. (1996). Wastewater reclamation, recycling and reuse: past, present, and future. Water Science and Technology, 33(10–11), 1–14. https://doi.org/10.1016/0273-1223(96)00401-5
  • [138] Sturm, M., Zimmermann, M., Schütz, K., Urban, W., & Hartung, H. (2009). Rainwater harvesting as an alternative water resource in rural sites in central northern Namibia. Physics and Chemistry of the Earth, Parts A/B/C, 34(13–16), 776–785. https://doi.org/10.1016/J.PCE.2009.07.004
  • [139] Hammes, G., Ghisi, E., & Padilha Thives, L. (2020). Water end-uses and rainwater harvesting: a case study in Brazil. https://doi.org/10.1080/1573062X.2020.1748663
  • [140] Zhang, Y., Grant, A., Sharma, A., Chen, D., & Chen, L. (2010). Alternative water resources for rural residential development in Western Australia. Water Resources Management, 24(1), 25–36. https://doi.org/10.1007/S11269-009-9435-0/METRICS
  • [141] Yalılı Kılıç, M., & Abuş, M. N. (2018). Bahçeli Bir Konut Örneğinde Yağmur Suyu Hasadı. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 4(2), 209–215. https://doi.org/10.24180/IJAWS.426795
  • [142] Üstün, G. E., Can, T., & Küçük, G. (2020). Binalarda Yağmur Suyu Hasadı. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(3), 1593–1610. https://doi.org/10.17482/UUMFD.765561
  • [143] Beytullah Eren, A. A. S. L. A. I. D. (2016). Yağmur Suyu Hasadı: Sakarya Üniversitesi Esentepe Kampüs Örneği. 4th International Symposium on Innovative Technologies in Engineering and Science (ISITES2016) 3-5 Nov 2016 Alanya/Antalya - Turkey.
  • [144] Herrmann, T., & Schmida, U. (2000). Rainwater utilisation in Germany: efficiency, dimensioning, hydraulic and environmental aspects. Urban Water, 1(4), 307–316. https://doi.org/10.1016/S1462-0758(00)00024-8
  • [145] Strangeways, I. (2006). Precipitation: Theory, measurement and distribution. Precipitation: Theory, Measurement and Distribution, 9780521851176, 1–290. https://doi.org/10.1017/CBO9780511535772
  • [146] Pradhan, R., & Sahoo, J. (2019). Smart Rainwater Management: New Technologies and Innovation. Smart Urban Development. https://doi.org/10.5772/INTECHOPEN.86336
  • [147] Farah, E., & Shahrour, I. (2017). Smart water for leakage detection: Feedback about the use of automated meter reading technology. 2017 Sensors Networks Smart and Emerging Technologies, SENSET 2017, 2017-January, 1–4. https://doi.org/10.1109/SENSET.2017.8125061
  • [148] Depuru, S. S. S. R., Wang, L., & Devabhaktuni, V. (2011). Smart meters for power grid: Challenges, issues, advantages and status. Renewable and Sustainable Energy Reviews, 15(6), 2736–2742. https://doi.org/10.1016/J.RSER.2011.02.039
  • [149] Zorzi, M., Gluhak, A., Lange, S., & Bassi, A. (2010). From today’s INTRAnet of things to a future INTERnet of things: A wireless- and mobility-related view. IEEE Wireless Communications, 17(6), 44–51. https://doi.org/10.1109/MWC.2010.5675777
  • [150] Benavente-Peces, C. (2019). On the Energy Efficiency in the Next Generation of Smart Buildings—Supporting Technologies and Techniques. Energies 2019, Vol. 12, Page 4399, 12(22), 4399. https://doi.org/10.3390/EN12224399
  • [151] Sain, M., Kang, Y. J., & Lee, H. J. (2017). Survey on security in Internet of Things: State of the art and challenges. International Conference on Advanced Communication Technology, ICACT, 699–704. https://doi.org/10.23919/ICACT.2017.7890183
  • [152] Sanchez-Iborra, R., & Cano, M. D. (2016). State of the Art in LP-WAN Solutions for Industrial IoT Services. Sensors 2016, Vol. 16, Page 708, 16(5), 708. https://doi.org/10.3390/S16050708
  • [153] Centenaro, M., Vangelista, L., Zanella, A., & Zorzi, M. (2016). Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios. IEEE Wireless Communications, 23(5), 60–67. https://doi.org/10.1109/MWC.2016.7721743
  • [154] Andrić, I., Vrsalović, A., Perković, T., Aglić Čuvić, M., & Šolić, P. (2022). IoT approach towards smart water usage. Journal of Cleaner Production, 367, 133065. https://doi.org/10.1016/J.JCLEPRO.2022.133065 [155] LoRa Alliance. (2020). LoRaWAN Technical Committee.
  • [156] Berni, A. J., & Gregg, W. D. (1973). On the utility of chirp modulation for digital signaling. IEEE Transactions on Communications, 21(6), 748–751. https://doi.org/10.1109/TCOM.1973.1091721
  • [157] Kordana-Obuch, S., Starzec, M., & Słyś, D. (2021). Assessment of the Feasibility of Implementing Shower Heat Exchangers in Residential Buildings Based on Users’ Energy Saving Preferences. Energies 2021, Vol. 14, Page 5547, 14(17), 5547. https://doi.org/10.3390/EN14175547
  • [158] Stec, A., Kordana, S., & Słyś, D. (2017). Analysing the financial efficiency of use of water and energy saving systems in single-family homes. Journal of Cleaner Production, 151, 193–205. https://doi.org/10.1016/J.JCLEPRO.2017.03.071
  • [159] Bartkowiak, S., Fisk, R., Funk, A., Hair, J., & Skerlos, S. J. (2010). Residential Drain Water Heat Recovery Systems: Modeling, Analysis, and Implementation. Journal of Green Building, 5(3), 85–94. https://doi.org/10.3992/JGB.5.3.85
  • [160] Manouchehri, R., & Collins, M. R. (2018). An experimental analysis of the impact of unequal flow on falling film drain water heat recovery system performance. Energy and Buildings, 165, 150–159. https://doi.org/10.1016/J.ENBUILD.2018.01.018
  • [161] Manouchehri, R., & Collins, M. R. (2020). Modelling the Steady-State Performance of Coiled Falling-Film Drain Water Heat Recovery Systems Using Rated Data. Resources 2020, Vol. 9, Page 69, 9(6), 69. https://doi.org/10.3390/RESOURCES9060069
  • [162] Piotrowska, B., & Słyś, D. (2023). Variant analysis of financial and energy efficiency of the heat recovery system and domestic hot water preparation for a single-family building: The case of Poland. Journal of Building Engineering, 65, 105769. https://doi.org/10.1016/J.JOBE.2022.105769
  • [163] Zargari, S. S. (2016). Binalarda Rüzgâr Bacası ve Enerji Verimliliği. İstanbul Aydın Üniversitesi Dergisi, 8(30), 85–101. https://dergipark.org.tr/tr/pub/iaud/issue/30078/324642
  • [164] Haseh, R. H., Khakzand, M., & Ojaghlou, M. (2018). Optimal Thermal Characteristics of the Courtyard in the Hot and Arid Climate of Isfahan. Buildings 2018, Vol. 8, Page 166, 8(12), 166.https://doi.org/10.3390/BUILDINGS8120166
  • [165] Çetintaş, K. F., & Rezafar, A. (2022). Binalarda Pasif Soğutma Yöntemleri ve Geleneksel Mimarideki Uygulamalarının İncelenmesi. KAPU Trakya Mimarlık ve Tasarım Dergisi, 2(2), 37–56. https://dergipark.org.tr/tr/pub/kapu/issue/73706/1113196
  • [166] Melikoğlu, Y., & Bekleyen, A. (2021). Şanlıurfa’nın Geleneksel Rüzgâr Yakalayıcıları: Kaybolan Bir Geleneğin Günümüze Kadar Gelen Örnekleri. El-Cezeri, 8(1), 268–286. https://doi.org/10.31202/ECJSE.835131
  • [167] Mandalaki, M., Zervas, K., Tsoutsos, T., & Vazakas, A. (2012). Assessment of fixed shading devices with integrated PV for efficient energy use. Solar Energy, 86(9), 2561–2575. https://doi.org/10.1016/J.SOLENER.2012.05.026
  • [168] Alkhayyat, J. (2013). Design Strategy for Adaptive Kinetic Patterns: Creating a Generative Design for Dynamic Solar Shading Systems. University of Salford. https://www.academia.edu/6978438/Design_strategy_for_adaptive_kinetic_patterns_creating_a_generative_design_for_dynamic_solar_shading_system
  • [169] Cilento Karen. (2012). Al Bahar Towers Responsive Facade / Aedas. ArchDaily. https://www.archdaily.com/270592/al-bahar-towers-responsive-facade-aedas
  • [170] Bhamare, D. K., Rathod, M. K., & Banerjee, J. (2019). Passive cooling techniques for building and their applicability in different climatic zones—The state of art. Energy and Buildings, 198, 467–490. https://doi.org/10.1016/J.ENBUILD.2019.06.023
  • [171] EİGM. (2022). Türkiye Ulusal Enerji Planı.
  • [172] EPDK. (2022). 2021 Yılı Elektrik Piyasası Gelişim Raporu. Ankara.
  • [173] ETKB. (2023). Elektrik. T.C. Enerji ve Tabii Kaynaklar Bakanlığı. https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik
  • [174] TÜİK. (2022). Adrese Dayalı Nüfus Kayıt Sistemi Sonuçları 2021.
  • [175] ETKB. (2022). 2021 Ulusal Enerji Denge Tablosu - Orijinal Birimler / Bin TEP. https://enerji.gov.tr/eigm-raporlari
  • [176] IICEC. (2020). Turkey Energy Outlook 2020. https://iicec.sabanciuniv.edu/tr/teo
  • [177] TÜİK. (2023). Sera Gazı Emisyon İstatistikleri, 1990-2021.
  • [178] Huang, B. N., Hwang, M. J., & Yang, C. W. (2008). Causal relationship between energy consumption and GDP growth revisited: A dynamic panel data approach. Ecological Economics, 67(1), 41–54. https://doi.org/10.1016/J.ECOLECON.2007.11.006
  • [179] Erdal, G., Erdal, H., & Esengün, K. (2008). The causality between energy consumption and economic growth in Turkey. Energy Policy, 36(10), 3838–3842. https://doi.org/10.1016/J.ENPOL.2008.07.012
  • [180] Yurdakul, F. (2018). The Relationship between Energy Consumption per Capita and Growth Rate: The Case of Turkey. Ekonomik Yaklasim, 29(107), 49. https://doi.org/10.5455/EY.39112
  • [181] Aydın, K., Taşçı, H., Ağıralioğlu, S., & Sönmüş, A. (2021). Performance of Energy Efficiency in Turkey. Euroasia Journal of Social Sciences & Humanities, 8(19), 156–166. https://doi.org/10.38064/EURSSH.203
  • [182] Bertoldi, Paolo., Rezessy, Silvia., & European Commission. Joint Research Centre. Institute for Environment and Sustainability. (2006). Tradable Certificates for Energy Savings (White Certificates) - Theory and Practice. Publications Office. https://publications.jrc.ec.europa.eu/repository/handle/JRC32865
  • [183] Naimoğlu, M., & Akal, M. (2021). Enerji Verimliliği Üzerine Arz ve Talep Yönlü Genel Bir Bakış. Verimlilik Dergisi, (3), 3–20. https://doi.org/10.51551/VERIMLILIK.698615
  • [184] Alanli, A. (2022). Türkiye’de Enerji Verimliliğine Yönelik Politikaların Değerlendirilmesi. Şırnak Üniversitesi Fen Bilimleri Dergisi, 3(1), 1–18. https://dergipark.org.tr/tr/pub/sufbd/issue/73123/1062139
  • [185] Türkoğlu, S. P., & Kardoğan, P. S. Ö. (2018). The role and importance of energy efficiency for sustainable development of the countries. Lecture Notes in Civil Engineering, 7, 53–60. https://doi.org/10.1007/978-3-319-64349-6_5
  • [186] IEA. (2022). Global energy intensity, 1990 vs. 2019.
  • [187] Subramanian, S., Bastian, H., Hoffmeister, A., Jennings, B., Tolentino, C., Vaidyanathan, S., & Nadel, S. (2022). 2022 International Energy Efficiency Scorecard. Washington. https://www.aceee.org/research-report/i2201
  • [188] Koçaslan, G. (2014). Türkiye’nin Enerji Verimliliği Mevzuatı, Avrupa Birliği’ndeki Düzenlemeler ve Uluslararası-Ulusal Öneriler. Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, 15(2), 117–133. http://search/yayin/detay/175615
  • [189] Yağcı, B. E., & Sözen, A. (2023). Türkiye’nin Enerji Verimliliği Etkinlik Analizi. Politeknik Dergisi, 1–1. https://doi.org/10.2339/POLITEKNIK.859790
  • [190] CSB. (2018). Binalar İçin Isı Yalıtımı Bir Zorunluluk Mudur? https://yalova.csb.gov.tr/binalar-icin-isi-yalitimi-bir-zorunluluk-mudur-haber-226222
  • [191] ETKB. Enerji Kaynaklarının ve Enerjinin Kullanımında Verimliliğin Artırılmasına Dair Yönetmelikte Değişiklik Yapılmasına Dair Yönetmelik., Enerji ve Tabii Kaynaklar Bakanlığı (2020).
  • [192] TMMOB. (2022). Türkiye’nin Enerji Görünümü 2022.
  • [193] SBB. (2019). On Birinci Kalkınma Planı (2019-2023). Ankara.
  • [194] TÜİK. (2022). Nüfus ve Konut Sayımı, 2021.
  • [195] TÜİK. (2022). Bina ve Konut Nitelikleri Araştırması, 2021.
  • [196] Aydın, Ö. (2019). Binalarda Enerji Verimliliği Kapsamında Yapılan Projelerin Değerlendirilmesi: Türkiye Örneği. Mimarlık ve Yaşam, 4(1), 55–68. https://doi.org/10.26835/MY.511825
  • [197] Özcan, K. M., Gülay, E., & Üçdoǧruk, Ş. (2013). Economic and demographic determinants of household energy use in Turkey. Energy Policy, 60, 550–557. https://doi.org/10.1016/J.ENPOL.2013.05.046
  • [198] Emeç, H., Altay, A., Aslanpay, E., & Özdemir, M. O. (2015). Türkiye’de Enerji Yoksulluğu ve Enerji Tercihi Profili. Finans Politik ve Ekonomik Yorumlar, (608), 9–21. https://dergipark.org.tr/tr/pub/fpeyd/issue/48039/607516
  • [199] Çelik, A. K., & Oktay, E. (2019). Modelling households’ fuel stacking behaviour for space heating in Turkey using ordered and unordered discrete choice approaches. Energy and Buildings, 204, 109466. https://doi.org/10.1016/J.ENBUILD.2019.109466
  • [200] Selçuk, İ. Ş., Gölçek, A. G., & Köktaş, A. M. (2019). Energy Poverty in Turkey. Sosyoekonomi, 27(42), 283–299. https://doi.org/10.17233/SOSYOEKONOMI.2019.04.15
  • [201] İpek, Ö., & İpek, E. (2022). Determinants of energy demand for residential space heating in Turkey. Renewable Energy, 194, 1026–1033. https://doi.org/10.1016/J.RENENE.2022.05.158
  • [202] Ritchie, H., & Roser, M. (2022). Indoor Air Pollution. Our World in Data. https://ourworldindata.org/indoor-air-pollution
  • [203] Etem Gürel, A. (2011). Farklı dış duvar yapıları için optimum ısı yalıtım kalınlığı tespitinin ekonomik analizi. Sakarya University Journal of Science, 15(1), 75–81. https://doi.org/10.16984/SAUFBED.80287
  • [204] İşbilir, & Derya. (2009). Binalarda ısı yalıtımı uygulamaları ve sorunlarının araştırılması. http://acikerisim.selcuk.edu.tr:8080/xmlui//handle/123456789/8213
  • [205] Kaynaklı, Ö., Ünver, Ü., Kılıç, M., & Yamankaradeniz, R. (2003). Sürekli Rejim Enerji Dengesi Modeline Göre Isıl Konfor Bölgeleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 9(1), 23–30. https://dergipark.org.tr/tr/pub/pajes/issue/20529/218665
  • [206] Seppanen, O., Fisk, W. J., Lei, Q. H., Org, E., & Seppänen, O. (2006). Room Temperature and Productivity in Office Work. http://www.hut.fi
  • [207] Ünver, Ü., Adigüzel, E., Adigüzel, E., Çi̇vi̇, S., & Roshanaei̇, K. (2020). Türkiye’deki İklim Bölgelerine Göre Binalarda Isı Yalıtım Uygulamaları. İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 1(2), 171–187. https://dergipark.org.tr/tr/pub/imctd/issue/59372/805008
  • [208] Şenkal Sezer, F. (2005). Türkiye’de Isı Yalıtımının Gelişimi ve Konutlarda Uygulanan Dış Duvar Isı Yalıtım Sistemleri. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 10(2). https://doi.org/10.17482/UUJFE.63488
  • [209] Cengel, Y. A. (2002). Heat Transfer: A Practical Approach. Mcgraw-Hill. https://www.abebooks.com/9780072458930/Heat-Transfer-Practical-Approach-Cengel-0072458933/plp
  • [210] Gürlek, G., Özbalta, N., Yıldız, A., & Erkek, M. (2008). Economical and environmental analysis of thermal insulation thickness in buildings. Isı Bilimi ve Tekniği Dergisi, 28(2), 25–34. http://search/yayin/detay/81511
  • [211] Kurekci, N. A. (2016). Determination of optimum insulation thickness for building walls by using heating and cooling degree-day values of all Turkey’s provincial centers. Energy and Buildings, 118, 197–213. https://doi.org/10.1016/J.ENBUILD.2016.03.004
  • [212] OeEB. (2013). Energy Efficiency Potential Country Report: TURKEY. Allplan GmbH.
  • [213] Causone, F., Pietrobon, M., Pagliano, L., & Erba, S. (2017). A high performance home in the Mediterranean climate: From the design principle to actual measurements. Energy Procedia, 140, 67–79. https://doi.org/10.1016/J.EGYPRO.2017.11.124
  • [214] Hopfe, C., & McLeod, R. (2015). The Passivhaus Designer’s Manual: A technical guide to low and zero energy buildings. The Passivhaus Designer’s Manual. https://doi.org/10.4324/9781315726434
  • [215] Schnieders, J., Eian, T. D., Filippi, M., Florez, J., Kaufmann, B., Pallantzas, S., … Yeh, S. C. (2020). Design and realisation of the Passive House concept in different climate zones. Energy Efficiency, 13(8), 1561–1604. https://doi.org/10.1007/S12053-019-09819-6
  • [216] Passivhaus Institut. (2023). The Passive House Institute - Who we are and what we do. https://passivehouse.com/01_passivehouseinstitute/01_passivehouseinstitute.htm
  • [217] Aşıkoğlu, A., Altin, M., & Seval BAYRAM, N. (2021). Pasif Ev Sertifika Sisteminin Mevcut Binalarda Uygulanması: EnerPHit Sertifika Sistemi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 21(5), 1146–1156.https://doi.org/10.35414/AKUFEMUBID.978242
  • [218] Köse Mutlu, B. (2021). Çok Katlı Binalarda Gri Suyun Yerinde Arıtılması ile Yeniden Kullanılmasının Fizibilitesi: İstanbul’da Bir Kentsel Dönüşüm Projesi Örneği. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 23(67), 81–91. https://doi.org/10.21205/DEUFMD.2021236707
  • [219] Jefferson, B., Palmer, A., Jeffrey, P., Stuetz, R., & Judd, S. (2004). Grey water characterisation and its impact on the selection and operation of technologies for urban reuse. Water Science and Technology, 50(2), 157–164. https://doi.org/10.2166/WST.2004.0113
  • [220] Ottoson, J., & Stenström, T. A. (2003). Faecal contamination of greywater and associated microbial risks. Water research, 37(3), 645–655. https://doi.org/10.1016/S0043-1354(02)00352-4
  • [221] Winward, G. P., Avery, L. M., Frazer-Williams, R., Pidou, M., Jeffrey, P., Stephenson, T., & Jefferson, B. (2008). A study of the microbial quality of grey water and an evaluation of treatment technologies for reuse. Ecological Engineering, 32(2), 187–197. https://doi.org/10.1016/J.ECOLENG.2007.11.001
  • [222] Jamrah, A., Al-Omari, A., Al-Qasem, L., & Ghani, N. A. (2011). Assessment of availability and characteristics of Greywater in Amman. 31(2), 210–220. https://doi.org/10.1080/02508060.2006.9709671
  • [223] Onaygil, S. (2013). Aydınlatmada Enerji Verimliliği: LED Teknolojisi. Elektrik Mühendisliği Dergisi, 29–31. https://www.emo.org.tr/ekler/e314dc0affda638_ek.pdf?dergi=910
  • [224] Kocaman, B. (2020). Kapalı Otopark Aydınlatmasında Floresan ve LED Lambanın Enerji Verimliliği Açısından Karşılaştırılması. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(3), 1640–1648. https://doi.org/10.21597/JIST.670665
  • [225] Coşkun, C., & Oktay, Z. (2010). Enerji Tasarrufu Perspektifinde Bir Kampüs Binasının Enerji Taraması Çalışması. TMMOB Makina Mühendisleri Odası Tesisat Mühendisliği Dergisi. https://www.mmo.org.tr/ocak-subat2010/makale/enerji-tasarrufu-perspektifinde-bir-kampus-binasinin-enerji-taramasi-calismasi
  • [226] Altinöz, M., & Mıhlayanlar, E. (2019). Aktif Güneş Sistemlerinin Bina Enerji Verimliliği Üzerindeki Katkısının İncelemesi. Mimarlık ve Yaşam, 4(2), 323–335. https://doi.org/10.26835/MY.635052
  • [227] Ülker, S. (2009, February 20). Isı Yalıtım Malzemelerinin Özelliklerinin Uygulamaya Etkileri. http://hdl.handle.net/11527/8195
  • [228] Gençoğlu Korkmaz, G., & Samancı, A. (2022). Konya Teknik Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesine Ait Binalar İçin Enerji Verimliliğini Artırmaya Yönelik Örnek Bir Çalışma. Konya Journal of Engineering Sciences, 10(2), 442–456. https://doi.org/10.36306/KONJES.1089881
  • [229] Ucar, A., & Balo, F. (2009). Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey. Applied Energy, 86(5), 730–736. https://doi.org/10.1016/J.APENERGY.2008.09.015
  • [230] Güğül, G. N., & Köksal, M. A. (2019). Müstakil bir konutun enerji tüketiminin azaltılmasında kullanılan yöntemlerinin ekonomik değerlendirmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(1), 215–234. https://doi.org/10.17341/GAZIMMFD.416483
  • [231] Çomakli, K., & Yüksel, B. (2003). Optimum insulation thickness of external walls for energy saving. Applied Thermal Engineering, 23(4), 473–479. https://doi.org/10.1016/S1359-4311(02)00209-0
  • [232] Kılıçlı, A. (2018). Ege Üniversitesi bünyesindeki mevcut bir binanın enerji-ekserji analizi ve iyileştirme önerileri. Ege Üniversitesi Fen Bilimleri Enstitüsü. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=G01z7w-Gl6td9lw9ABjqng&no=_uJ54PQaowEb38CHYsdKNQ
  • [233] Yürük, M., İbrahim Variyenli, H., Marti̇n, K., Khanlari̇, A., & Aytaç, İ. (2022). Bireysel Isıtma Sistemlerinde Tesisat Temizliğinin Enerji Verimliliği Açısından Deneysel Olarak Değerlendirilmesi. Politeknik Dergisi, 25(3), 1375–1384. https://doi.org/10.2339/POLITEKNIK.1025494
  • [234] Karaçam, T., İbrahim Variyenli, H., Marti̇n, K., Khanlari, A., & Aytaç, İ. (2022). Termostatik Radyatör Vanası Kullanımının Binalarda Enerji Verimliliği Üzerindeki Etkisinin Deneysel Olarak Araştırılması. Politeknik Dergisi, 25(4), 1713–1721. https://doi.org/10.2339/POLITEKNIK.1031156
  • [235] Koç, Ü. (2020). Sektörel Enerji Tüketimi ve Ekonomik Büyüme. Üçüncü Sektör Sosyal Ekonomi, 55(1), 508–521. https://doi.org/10.15659/3.SEKTOR-SOSYAL-EKONOMI.20.03.1289
  • [236] Demi̇rsoy, G., & Sözen, A. (2023). Binalarda Enerji Verimliliğinin Toplam Faktör Etkinliği. Politeknik Dergisi, 1–1. https://doi.org/10.2339/POLITEKNIK.886923
  • [237] Omar, A. I., Khattab, N. M., & Abdel Aleem, S. H. E. (2022). Optimal strategy for transition into net-zero energy in educational buildings: A case study in El-Shorouk City, Egypt. Sustainable Energy Technologies and Assessments, 49, 101701. https://doi.org/10.1016/J.SETA.2021.101701
  • [238] Fiaschi, D., Bandinelli, R., & Conti, S. (2012). A case study for energy issues of public buildings and utilities in a small municipality: Investigation of possible improvements and integration with renewables. Applied Energy, 97, 101–114. https://doi.org/10.1016/J.APENERGY.2012.03.008
  • [239] Erhorn, H., Mroz, T., Mørck, O., Schmidt, F., Schoff, L., & Thomsen, K. E. (2008). The Energy Concept Adviser—A tool to improve energy efficiency in educational buildings. Energy and Buildings, 40(4), 419–428. https://doi.org/10.1016/J.ENBUILD.2007.03.008
  • [240] Kaklauskas, A., Zavadskas, E. K., Raslanas, S., Ginevicius, R., Komka, A., & Malinauskas, P. (2006). Selection of low-e windows in retrofit of public buildings by applying multiple criteria method COPRAS: A Lithuanian case. Energy and Buildings, 38(5), 454–462. https://doi.org/10.1016/J.ENBUILD.2005.08.005
  • [241] Balaras, C. A., Gaglia, A. G., Georgopoulou, E., Mirasgedis, S., Sarafidis, Y., & Lalas, D. P. (2007). European residential buildings and empirical assessment of the Hellenic building stock, energy consumption, emissions and potential energy savings. Building and Environment, 42(3), 1298–1314. https://doi.org/10.1016/J.BUILDENV.2005.11.001
  • [242] Herrando, M., Chordá, R., Gómez, A., & Fueyo, N. (2023). The cost overrun of depopulation to improve energy efficiency in buildings: A case study in the Mediterranean Region. Sustainable Energy Technologies and Assessments, 55, 102985. https://doi.org/10.1016/J.SETA.2022.102985
Toplam 241 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Tasarım ve Teknoloji
Yazarlar

Cemre Yıldız 0000-0003-2794-5154

Erken Görünüm Tarihi 5 Mart 2024
Yayımlanma Tarihi 25 Mart 2024
Gönderilme Tarihi 7 Mayıs 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 1

Kaynak Göster

APA Yıldız, C. (2024). Binalarda Enerji Verimliliğinde Son Gelişmeler: Türkiye Örneği. Gazi University Journal of Science Part C: Design and Technology, 12(1), 176-213. https://doi.org/10.29109/gujsc.1293759

                                     16168      16167     16166     21432        logo.png


    e-ISSN:2147-9526