Araştırma Makalesi
BibTex RIS Kaynak Göster

Phytochemical study and biological activities of Teucrium mideltense (Batt.) Humbert.

Yıl 2024, Cilt: 11 Sayı: 1, 37 - 47, 05.02.2024
https://doi.org/10.21448/ijsm.1364491

Öz

Teucrium mideltense (Batt.) Humbert (T. mideltense) is an endemic Moroccan species that grows exclusively in the Oriental High Atlas Mountains of Morocco. In this work, we aim at determining the chemical profile and biological properties of the traditionally used aqueous extract of this plant. HPLC analysis, estimation of the amounts of total phenolic compounds including flavonoids, and in vitro antioxidant activity was evaluated according to the literature procedures (DPPH, ABTS, and FRAP). Additionally, safety assessment was carried out according to the organization for economic cooperation and development guidelines and the anti-hyperlipidemic activity was evaluated in triton-induced hyperlipidemic rat model. Our findings revealed that the aqueous extract of this plant contains significant amounts of phenolic compounds (91.94 mg GAE/gE) including flavonoids (27.41 mg RE/gE). HPLC analysis revealed the presence of vanillic acid, hesperidin, and rutin. Moreover, a considerable in vitro antioxidant effect was evaluated (DPPH IC50 = 36.10± 0.02 μg/mL; ABTS IC50 = 34.98± 1.31 μg/mL; FRAP EC50 = 129.74±2.18 μg/mL). Furthermore, T. mideltense (Batt.) Maire extract exerted significant lipid-lowering effects by reducing the levels of total cholesterol (-88.78%), triglycerides (-62.12%), and non-HDL cholesterol (-68.37%). We conclude that the supplementation with the aqueous extract of T. mideltense would be effective in lowering lipids under hyperlipidemic conditions.

Destekleyen Kurum

This work was funded by the National Center for Scientific and Technical Research (CNRST) and Mohammed VI Polytechnic University (SVNTHOA).

Teşekkür

The authors would like to acknowledge their institutions for the technical support.

Kaynakça

  • Albayrak, S., & Aksoy, A. (2023). Comparative analysis of phenolic compositions and biological activities of three endemic Teucrium L. (Lamiaceae) species from Turkey. Anais Da Academia Brasileira de Ciências, 95, e20220184. https://doi.org/10.1590/0001-3765202320220184
  • Ali, A.H., Younis, N., Abdallah, R., Shaer, F., Dakroub, A., Ayoub, M.A., Iratni, R., Yassine, H.M., Zibara, K., Orekhov, A., El-Yazbi, A.F., & Eid, A.H. (2021). Lipid-Lowering Therapies for Atherosclerosis: Statins, Fibrates, Ezetimibe and PCSK9 Monoclonal Antibodies. Current Medicinal Chemistry, 28(36), 7427‑7445. https://doi.org/10.2174/0929867328666210222092628
  • Asghari, A.A., Mokhtari-Zaer, A., Niazmand, S., Entee, K.M., & Mahmoudabady, M. (2020). Anti-diabetic properties and bioactive compounds of Teucrium polium L. Asian Pacific Journal of Tropical Biomedicine, 10(10), 433. https://doi.org/10.4103/2221-1691.290868
  • Bassalat, N., Taş, S., & Jaradat, N. (2020). Teucrium leucocladum: An Effective Tool for the Treatment of Hyperglycemia, Hyperlipidemia, and Oxidative Stress in Streptozotocin-Induced Diabetic Rats. Evidence-Based Complementary and Alternative Medicine, 2020, e3272103. https://doi.org/10.1155/2020/3272103
  • Blanca, G., Cueto, M., & Fuentes, J. (2017). Teucrium teresianum sp. Nov. (Lamiaceae) from southern Spain. Nordic Journal of Botany, 35(1), 14‑19.
  • Chang, W.C., Wu, J.S.B., Chen, C.W., Kuo, P.L., Chien, H.M., Wang, Y.T., & Shen, S.C. (2015). Protective Effect of Vanillic Acid against Hyperinsulinemia, Hyperglycemia and Hyperlipidemia via Alleviating Hepatic Insulin Resistance and Inflammation in High-Fat Diet (HFD)-Fed Rats. Nutrients, 7(12), 9946-9959. https://doi.org/10.3390/nu7125514
  • Chen, H., Nie, T., Zhang, P., Ma, J., & Shan, A. (2022). Hesperidin attenuates hepatic lipid accumulation in mice fed high-fat diet and oleic acid induced HepG2 via AMPK activation. Life Sciences, 296, 120428. https://doi.org/10.1016/j.lfs.2022.120428
  • Djordjevic, O., Jakovljevic, M., Marcovic, A., Stankovic, M., Ciric, A., Marinkovic, D., & Grujicic, D. (2018). Polyphenolic contents of Teucrium polium L. and Teucrium scordium L. associated with their protective effects against MMC-induced chromosomal damage in cultured human peripheral blood lymphocytes. Turkish Journal of Biology, 42(2), 152‑162. https://doi.org/10.3906/biy-1707-36
  • El Atki, Y., Aouam, I., El Kamari, F., Taroq, A., Lyoussi, B., Oumokhtar, B., & Abdellaoui, A. (2020). Phytochemistry, antioxidant and antibacterial activities of two Moroccan Teucrium polium L. subspecies : Preventive approach against nosocomial infections. Arabian Journal of Chemistry, 13(2), 3866‑3874. https://doi.org/10.1016/j.arabjc.2019.04.001
  • El Atki, Y., Aouam, I., Taroq, A., Lyoussi, B., Taleb, M., & Abdellaoui, A. (2019). Total phenolic and flavonoid contents and antioxidant activities of extracts from Teucrium polium growing wild in Morocco. Materials Today: Proceedings, 13, 777‑783.
  • El Oualldi, J., Rascol, J.P., Martin, A., & Puech, S. (1996). Poliumoside, a chemical marker isolated from the genus Teucrium (labiatae): The exception of Teucrium mideltense, endemic species in Morocco. Biochemical Systematics and Ecology, 24, 261‑272.
  • Elbouny, H., Ouahzizi, B., Sellam, K., & Alem, C. (2022a). Hypolipidemic Effect of Thymus munbyanus subsp. ciliatus Greuter & Burdet: Guinea Pig as a Model for Tyloxapol-induced Hyperlipidemia. Journal of Biologically Active Products from Nature, 12(6), 507‑513.
  • Elbouny, H., Ouahzizi, B., El-guourrami, O., Drioua, S., Mbarek, A.N., Sellam, K., & Alem, C. (2022b). Chemical profile and biological properties of the essential oil of Thymus atlanticus (Ball) Roussine. South African Journal of Botany, 151, 475‑480. https://doi.org/10.1016/j.sajb.2022.10.028
  • Elbouny, H., El-Guourrami, O., Ouahzizi, B., Hachlafi, N.E., Bammou, M., Sellam, K., & Alem, C. (2023a). Chemical Profile and Bioactivity of the Essential Oil of Teucrium Takoumitense : An Endemic Lamiaceae from Southeast Morocco. Acta Botanica Hungarica, 65(1‑2), 73‑85. https://doi.org/10.1556/034.65.2023.1-2.4
  • Elbouny, H., Ouahzizi, B., Sellam, K., & Alem, C. (2023b). Antioxidant Potential of Thymus willdenowii Boiss & Reut. Aqueous Extract and Effect of its Supplementation on Hyperlipidemia and Paraoxonase-1 Arylesterase Activity in High-Fat Diet-Fed Rats. Current Drug Therapy, 18, 1‑1.
  • Elbouny, H., Ouahzizi, B., Bammou, M., Sellam, K., & Alem, C. (2023c). Anti-hyperlipidemic and Antioxidant Potential of Phenolic Monoterpenes Rich Thymus satureioides Coss. Volatile Oil. Journal of Biologically Active Products from Nature, 13(5), 1-12.
  • El-Gharbaoui, A., Benítez, G., González-Tejero, M.R., Molero-Mesa, J., & Merzouki, A. (2017). Comparison of Lamiaceae medicinal uses in eastern Morocco and eastern Andalusia and in Ibn al-Baytar’s Compendium of Simple Medicaments (13th century CE). Journal of Ethnopharmacology, 202, 208‑224. https://doi.org/10.1016/j.jep.2017.03.014
  • El-Guourrami, O., Elbouny, H., Ait Benlabchir, A., Drioua, S., Ouahzizi, B., Alem, C., Doukkali, A., & Benzeid, H. (2023). Phytochemical analysis, antioxidant, and antihyperlipidemic activities of Teucrium takoumitense. Journal of Taibah University Medical Sciences, 18(6), 1557. https://doi.org/10.1016/j.jtumed.2023.07.011
  • El-Tantawy, W.H., & Temraz, A. (2019). Natural products for controlling hyperlipidemia. Archives of physiology and biochemistry, 125(2), 128‑135.
  • Fennane, M., Ibn Tattou, M., Ouyahya, A., & El Oualidi, J. (2007). Flore pratique du Maroc : Manuel de détermination des plantes vasculaires. Volume 2. Angiospermae (Leguminosae - Lentibulariaceae). Institut Scientifique.
  • Ferreira, T.S., Moreira, C.Z., Cária, N.Z., Victoriano, G., SILVA Jr, W.F., & Magalhães, J.C. (2014). Phytotherapy: An introduction to its history, use and application. Revista Brasileira de Plantas Medicinais, 16, 290‑298. https://doi.org/10.1590/S1516-05722014000200019
  • Gao, M., Ma, Y., & Liu, D. (2013). Rutin Suppresses Palmitic Acids-Triggered Inflammation in Macrophages and Blocks High Fat Diet-Induced Obesity and Fatty Liver in Mice. Pharmaceutical Research, 30(11), 2940‑2950. https://doi.org/10.1007/s11095-013-1125-1
  • Golfakhrabadi, F., Yousefbeyk, F., Mirnezami, T., Laghaei, P., Hajimahmoodi, M., & Khanavi, M. (2015). Antioxidant and antiacetylcholinesterase activity of Teucrium hyrcanicum. Pharmacognosy Research, 7(5), 15‑19. https://doi.org/10.4103/0974-8490.157993
  • Gong, X., Li, X., Xia, Y., Xu, J., Li, Q., Zhang, C., & Li, M. (2020). Effects of phytochemicals from plant-based functional foods on hyperlipidemia and their underpinning mechanisms. Trends in Food Science & Technology, 103, 304‑320. https://doi.org/10.1016/j.tifs.2020.07.026
  • Hayes, J.D., Dinkova-Kostova, A.T., & Tew, K.D. (2020). Oxidative Stress in Cancer. Cancer Cell, 38(2), 167‑197. https://doi.org/10.1016/j.ccell.2020.06.001
  • Hill, M.F., & Bordoni, B. (2021). Hyperlipidemia. StatPearls. StatPearls Publishing LLC.: Treasure Island, Japan.
  • Li, X., Yao, Y., Wang, Y., Hua, L., Wu, M., Chen, F., Deng, Z.-Y., & Luo, T. (2022). Effect of Hesperidin Supplementation on Liver Metabolomics and Gut Microbiota in a High-Fat Diet-Induced NAFLD Mice Model. Journal of Agricultural and Food Chemistry, 70(36), 11224‑11235. https://doi.org/10.1021/acs.jafc.2c02334
  • Michel, J., Abd Rani, N.Z., & Husain, K. (2020). A review on the potential use of medicinal plants from asteraceae and lamiaceae plant family in cardiovascular diseases. Frontiers in Pharmacology, 11, 852. https://doi.org/10.3389/fphar.2020.00852
  • Navarro, T. (2020). Systematics and Biogeography of the Genus Teucrium (Lamiaceae). In: Stanković, M. (eds) Teucrium Species: Biology and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-52159-2_1
  • OECD. (2002). Test No. 423: Acute Oral toxicity - Acute Toxic Class Method. Organisation for Economic Co-operation and Development. section, 4, 14.
  • Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307‑315.
  • Panchal, S.K., Poudyal, H., Arumugam, T.V., & Brown, L. (2011). Rutin Attenuates Metabolic Changes, Nonalcoholic Steatohepatitis, and Cardiovascular Remodeling in High-Carbohydrate, High-Fat Diet-Fed Rats. The Journal of Nutrition, 141(6), 1062‑1069. https://doi.org/10.3945/jn.111.137877
  • Peng, L., Zhang, Q., Zhang, Y., Yao, Z., Song, P., Wei, L., Zhao, G., & Yan, Z. (2020). Effect of tartary buckwheat, rutin, and quercetin on lipid metabolism in rats during high dietary fat intake. Food Science & Nutrition, 8(1), 199‑213. https://doi.org/10.1002/fsn3.1291
  • Pukalskas, A., van Beek, T.A., Venskutonis, R.P., Linssen, J.P., van Veldhuizen, A., & de Groot, Æ. (2002). Identification of radical scavengers in sweet grass (Hierochloe odorata). Journal of Agricultural and Food Chemistry, 50(10), 2914‑2919.
  • Ramchoun, M., Khouya, T., Alibrahim, E., Abdelbassat, H., Sellam, K., Amrani, S., Harnafi, H., Benlyas, M., Kasbi-Chadli, F., Ouguerram, K., & Alem, C. (2020). Thymus atlanticus polyphenol-rich extract regulates cholesterol metabolism by inhibiting its biosynthesis without affecting its excretion in hamsters fed a high-fat diet. Archives of Physiology and Biochemistry, 1‑8. https://doi.org/10.1080/13813455.2020.1854308
  • Sadeghi, Z., Yang, J.-L., Venditti, A., & Moridi Farimani, M. (2022). A review of the phytochemistry, ethnopharmacology and biological activities of Teucrium genus (Germander). Natural Product Research, 36(21), 5647‑5664. https://doi.org/10.1080/14786419.2021.2022669
  • Safaeian, L., Ghanadian, M., & Shafiee-Moghadam, Z. (2018). Antihyperlipidemic Effect of Different Fractions Obtained from Teucrium polium Hydroalcoholic Extract in Rats. International Journal of Preventive Medicine, 9, 30. https://doi.org/10.4103/ijpvm.IJPVM_100_17
  • Seo, S., Lee, M.-S., Chang, E., Shin, Y., Oh, S., Kim, I.-H., & Kim, Y. (2015). Rutin Increases Muscle Mitochondrial Biogenesis with AMPK Activation in High-Fat Diet-Induced Obese Rats. Nutrients, 7(9), 8152-8169. https://doi.org/10.3390/nu7095385
  • Shayganni, E., Bahmani, M., Asgary, S., & Rafieian-Kopaei, M. (2016). Inflammaging and cardiovascular disease: Management by medicinal plants. Phytomedicine, 23(11), 1119‑1126. https://doi.org/10.1016/j.phymed.2015.11.004
  • Sies, H. (2020). Oxidative Stress : Concept and Some Practical Aspects. Antioxidants, 9(9), 852. https://doi.org/10.3390/antiox9090852
  • Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144-158.
  • Tatijana, K., Kulevanova, S., & Stefova, M. (2005). In vitro antioxidant activity of some Teucrium species (Lamiaceae). Acta Pharmaceutica, 55(2), 207‑214.
  • Yan, X., Zhai, Y., Zhou, W., Qiao, Y., Guan, L., Liu, H., Jiang, J., & Peng, L. (2022). Intestinal Flora Mediates Antiobesity Effect of Rutin in High-Fat-Diet Mice. Molecular Nutrition & Food Research, 66(14), 2100948. https://doi.org/10.1002/mnfr.202100948
  • Zlatić, N. M., Stanković, M. S., & Simić, Z. S. (2017). Secondary metabolites and metal content dynamics in Teucrium montanum L. and Teucrium chamaedrys L. from habitats with serpentine and calcareous substrate. Environmental Monitoring and Assessment, 189(3), 110. https://doi.org/10.1007/s10661-017-5831-8

Phytochemical study and biological activities of Teucrium mideltense (Batt.) Humbert.

Yıl 2024, Cilt: 11 Sayı: 1, 37 - 47, 05.02.2024
https://doi.org/10.21448/ijsm.1364491

Öz

Teucrium mideltense (Batt.) Humbert (T. mideltense) is an endemic Moroccan species that grows exclusively in the Oriental High Atlas Mountains of Morocco. In this work, we aim at determining the chemical profile and biological properties of the traditionally used aqueous extract of this plant. HPLC analysis, estimation of the amounts of total phenolic compounds including flavonoids, and in vitro antioxidant activity was evaluated according to the literature procedures (DPPH, ABTS, and FRAP). Additionally, safety assessment was carried out according to the organization for economic cooperation and development guidelines and the anti-hyperlipidemic activity was evaluated in triton-induced hyperlipidemic rat model. Our findings revealed that the aqueous extract of this plant contains significant amounts of phenolic compounds (91.94 mg GAE/gE) including flavonoids (27.41 mg RE/gE). HPLC analysis revealed the presence of vanillic acid, hesperidin, and rutin. Moreover, a considerable in vitro antioxidant effect was evaluated (DPPH IC50 = 36.10± 0.02 μg/mL; ABTS IC50 = 34.98± 1.31 μg/mL; FRAP EC50 = 129.74±2.18 μg/mL). Furthermore, T. mideltense (Batt.) Maire extract exerted significant lipid-lowering effects by reducing the levels of total cholesterol (-88.78%), triglycerides (-62.12%), and non-HDL cholesterol (-68.37%). We conclude that the supplementation with the aqueous extract of T. mideltense would be effective in lowering lipids under hyperlipidemic conditions.

Kaynakça

  • Albayrak, S., & Aksoy, A. (2023). Comparative analysis of phenolic compositions and biological activities of three endemic Teucrium L. (Lamiaceae) species from Turkey. Anais Da Academia Brasileira de Ciências, 95, e20220184. https://doi.org/10.1590/0001-3765202320220184
  • Ali, A.H., Younis, N., Abdallah, R., Shaer, F., Dakroub, A., Ayoub, M.A., Iratni, R., Yassine, H.M., Zibara, K., Orekhov, A., El-Yazbi, A.F., & Eid, A.H. (2021). Lipid-Lowering Therapies for Atherosclerosis: Statins, Fibrates, Ezetimibe and PCSK9 Monoclonal Antibodies. Current Medicinal Chemistry, 28(36), 7427‑7445. https://doi.org/10.2174/0929867328666210222092628
  • Asghari, A.A., Mokhtari-Zaer, A., Niazmand, S., Entee, K.M., & Mahmoudabady, M. (2020). Anti-diabetic properties and bioactive compounds of Teucrium polium L. Asian Pacific Journal of Tropical Biomedicine, 10(10), 433. https://doi.org/10.4103/2221-1691.290868
  • Bassalat, N., Taş, S., & Jaradat, N. (2020). Teucrium leucocladum: An Effective Tool for the Treatment of Hyperglycemia, Hyperlipidemia, and Oxidative Stress in Streptozotocin-Induced Diabetic Rats. Evidence-Based Complementary and Alternative Medicine, 2020, e3272103. https://doi.org/10.1155/2020/3272103
  • Blanca, G., Cueto, M., & Fuentes, J. (2017). Teucrium teresianum sp. Nov. (Lamiaceae) from southern Spain. Nordic Journal of Botany, 35(1), 14‑19.
  • Chang, W.C., Wu, J.S.B., Chen, C.W., Kuo, P.L., Chien, H.M., Wang, Y.T., & Shen, S.C. (2015). Protective Effect of Vanillic Acid against Hyperinsulinemia, Hyperglycemia and Hyperlipidemia via Alleviating Hepatic Insulin Resistance and Inflammation in High-Fat Diet (HFD)-Fed Rats. Nutrients, 7(12), 9946-9959. https://doi.org/10.3390/nu7125514
  • Chen, H., Nie, T., Zhang, P., Ma, J., & Shan, A. (2022). Hesperidin attenuates hepatic lipid accumulation in mice fed high-fat diet and oleic acid induced HepG2 via AMPK activation. Life Sciences, 296, 120428. https://doi.org/10.1016/j.lfs.2022.120428
  • Djordjevic, O., Jakovljevic, M., Marcovic, A., Stankovic, M., Ciric, A., Marinkovic, D., & Grujicic, D. (2018). Polyphenolic contents of Teucrium polium L. and Teucrium scordium L. associated with their protective effects against MMC-induced chromosomal damage in cultured human peripheral blood lymphocytes. Turkish Journal of Biology, 42(2), 152‑162. https://doi.org/10.3906/biy-1707-36
  • El Atki, Y., Aouam, I., El Kamari, F., Taroq, A., Lyoussi, B., Oumokhtar, B., & Abdellaoui, A. (2020). Phytochemistry, antioxidant and antibacterial activities of two Moroccan Teucrium polium L. subspecies : Preventive approach against nosocomial infections. Arabian Journal of Chemistry, 13(2), 3866‑3874. https://doi.org/10.1016/j.arabjc.2019.04.001
  • El Atki, Y., Aouam, I., Taroq, A., Lyoussi, B., Taleb, M., & Abdellaoui, A. (2019). Total phenolic and flavonoid contents and antioxidant activities of extracts from Teucrium polium growing wild in Morocco. Materials Today: Proceedings, 13, 777‑783.
  • El Oualldi, J., Rascol, J.P., Martin, A., & Puech, S. (1996). Poliumoside, a chemical marker isolated from the genus Teucrium (labiatae): The exception of Teucrium mideltense, endemic species in Morocco. Biochemical Systematics and Ecology, 24, 261‑272.
  • Elbouny, H., Ouahzizi, B., Sellam, K., & Alem, C. (2022a). Hypolipidemic Effect of Thymus munbyanus subsp. ciliatus Greuter & Burdet: Guinea Pig as a Model for Tyloxapol-induced Hyperlipidemia. Journal of Biologically Active Products from Nature, 12(6), 507‑513.
  • Elbouny, H., Ouahzizi, B., El-guourrami, O., Drioua, S., Mbarek, A.N., Sellam, K., & Alem, C. (2022b). Chemical profile and biological properties of the essential oil of Thymus atlanticus (Ball) Roussine. South African Journal of Botany, 151, 475‑480. https://doi.org/10.1016/j.sajb.2022.10.028
  • Elbouny, H., El-Guourrami, O., Ouahzizi, B., Hachlafi, N.E., Bammou, M., Sellam, K., & Alem, C. (2023a). Chemical Profile and Bioactivity of the Essential Oil of Teucrium Takoumitense : An Endemic Lamiaceae from Southeast Morocco. Acta Botanica Hungarica, 65(1‑2), 73‑85. https://doi.org/10.1556/034.65.2023.1-2.4
  • Elbouny, H., Ouahzizi, B., Sellam, K., & Alem, C. (2023b). Antioxidant Potential of Thymus willdenowii Boiss & Reut. Aqueous Extract and Effect of its Supplementation on Hyperlipidemia and Paraoxonase-1 Arylesterase Activity in High-Fat Diet-Fed Rats. Current Drug Therapy, 18, 1‑1.
  • Elbouny, H., Ouahzizi, B., Bammou, M., Sellam, K., & Alem, C. (2023c). Anti-hyperlipidemic and Antioxidant Potential of Phenolic Monoterpenes Rich Thymus satureioides Coss. Volatile Oil. Journal of Biologically Active Products from Nature, 13(5), 1-12.
  • El-Gharbaoui, A., Benítez, G., González-Tejero, M.R., Molero-Mesa, J., & Merzouki, A. (2017). Comparison of Lamiaceae medicinal uses in eastern Morocco and eastern Andalusia and in Ibn al-Baytar’s Compendium of Simple Medicaments (13th century CE). Journal of Ethnopharmacology, 202, 208‑224. https://doi.org/10.1016/j.jep.2017.03.014
  • El-Guourrami, O., Elbouny, H., Ait Benlabchir, A., Drioua, S., Ouahzizi, B., Alem, C., Doukkali, A., & Benzeid, H. (2023). Phytochemical analysis, antioxidant, and antihyperlipidemic activities of Teucrium takoumitense. Journal of Taibah University Medical Sciences, 18(6), 1557. https://doi.org/10.1016/j.jtumed.2023.07.011
  • El-Tantawy, W.H., & Temraz, A. (2019). Natural products for controlling hyperlipidemia. Archives of physiology and biochemistry, 125(2), 128‑135.
  • Fennane, M., Ibn Tattou, M., Ouyahya, A., & El Oualidi, J. (2007). Flore pratique du Maroc : Manuel de détermination des plantes vasculaires. Volume 2. Angiospermae (Leguminosae - Lentibulariaceae). Institut Scientifique.
  • Ferreira, T.S., Moreira, C.Z., Cária, N.Z., Victoriano, G., SILVA Jr, W.F., & Magalhães, J.C. (2014). Phytotherapy: An introduction to its history, use and application. Revista Brasileira de Plantas Medicinais, 16, 290‑298. https://doi.org/10.1590/S1516-05722014000200019
  • Gao, M., Ma, Y., & Liu, D. (2013). Rutin Suppresses Palmitic Acids-Triggered Inflammation in Macrophages and Blocks High Fat Diet-Induced Obesity and Fatty Liver in Mice. Pharmaceutical Research, 30(11), 2940‑2950. https://doi.org/10.1007/s11095-013-1125-1
  • Golfakhrabadi, F., Yousefbeyk, F., Mirnezami, T., Laghaei, P., Hajimahmoodi, M., & Khanavi, M. (2015). Antioxidant and antiacetylcholinesterase activity of Teucrium hyrcanicum. Pharmacognosy Research, 7(5), 15‑19. https://doi.org/10.4103/0974-8490.157993
  • Gong, X., Li, X., Xia, Y., Xu, J., Li, Q., Zhang, C., & Li, M. (2020). Effects of phytochemicals from plant-based functional foods on hyperlipidemia and their underpinning mechanisms. Trends in Food Science & Technology, 103, 304‑320. https://doi.org/10.1016/j.tifs.2020.07.026
  • Hayes, J.D., Dinkova-Kostova, A.T., & Tew, K.D. (2020). Oxidative Stress in Cancer. Cancer Cell, 38(2), 167‑197. https://doi.org/10.1016/j.ccell.2020.06.001
  • Hill, M.F., & Bordoni, B. (2021). Hyperlipidemia. StatPearls. StatPearls Publishing LLC.: Treasure Island, Japan.
  • Li, X., Yao, Y., Wang, Y., Hua, L., Wu, M., Chen, F., Deng, Z.-Y., & Luo, T. (2022). Effect of Hesperidin Supplementation on Liver Metabolomics and Gut Microbiota in a High-Fat Diet-Induced NAFLD Mice Model. Journal of Agricultural and Food Chemistry, 70(36), 11224‑11235. https://doi.org/10.1021/acs.jafc.2c02334
  • Michel, J., Abd Rani, N.Z., & Husain, K. (2020). A review on the potential use of medicinal plants from asteraceae and lamiaceae plant family in cardiovascular diseases. Frontiers in Pharmacology, 11, 852. https://doi.org/10.3389/fphar.2020.00852
  • Navarro, T. (2020). Systematics and Biogeography of the Genus Teucrium (Lamiaceae). In: Stanković, M. (eds) Teucrium Species: Biology and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-52159-2_1
  • OECD. (2002). Test No. 423: Acute Oral toxicity - Acute Toxic Class Method. Organisation for Economic Co-operation and Development. section, 4, 14.
  • Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307‑315.
  • Panchal, S.K., Poudyal, H., Arumugam, T.V., & Brown, L. (2011). Rutin Attenuates Metabolic Changes, Nonalcoholic Steatohepatitis, and Cardiovascular Remodeling in High-Carbohydrate, High-Fat Diet-Fed Rats. The Journal of Nutrition, 141(6), 1062‑1069. https://doi.org/10.3945/jn.111.137877
  • Peng, L., Zhang, Q., Zhang, Y., Yao, Z., Song, P., Wei, L., Zhao, G., & Yan, Z. (2020). Effect of tartary buckwheat, rutin, and quercetin on lipid metabolism in rats during high dietary fat intake. Food Science & Nutrition, 8(1), 199‑213. https://doi.org/10.1002/fsn3.1291
  • Pukalskas, A., van Beek, T.A., Venskutonis, R.P., Linssen, J.P., van Veldhuizen, A., & de Groot, Æ. (2002). Identification of radical scavengers in sweet grass (Hierochloe odorata). Journal of Agricultural and Food Chemistry, 50(10), 2914‑2919.
  • Ramchoun, M., Khouya, T., Alibrahim, E., Abdelbassat, H., Sellam, K., Amrani, S., Harnafi, H., Benlyas, M., Kasbi-Chadli, F., Ouguerram, K., & Alem, C. (2020). Thymus atlanticus polyphenol-rich extract regulates cholesterol metabolism by inhibiting its biosynthesis without affecting its excretion in hamsters fed a high-fat diet. Archives of Physiology and Biochemistry, 1‑8. https://doi.org/10.1080/13813455.2020.1854308
  • Sadeghi, Z., Yang, J.-L., Venditti, A., & Moridi Farimani, M. (2022). A review of the phytochemistry, ethnopharmacology and biological activities of Teucrium genus (Germander). Natural Product Research, 36(21), 5647‑5664. https://doi.org/10.1080/14786419.2021.2022669
  • Safaeian, L., Ghanadian, M., & Shafiee-Moghadam, Z. (2018). Antihyperlipidemic Effect of Different Fractions Obtained from Teucrium polium Hydroalcoholic Extract in Rats. International Journal of Preventive Medicine, 9, 30. https://doi.org/10.4103/ijpvm.IJPVM_100_17
  • Seo, S., Lee, M.-S., Chang, E., Shin, Y., Oh, S., Kim, I.-H., & Kim, Y. (2015). Rutin Increases Muscle Mitochondrial Biogenesis with AMPK Activation in High-Fat Diet-Induced Obese Rats. Nutrients, 7(9), 8152-8169. https://doi.org/10.3390/nu7095385
  • Shayganni, E., Bahmani, M., Asgary, S., & Rafieian-Kopaei, M. (2016). Inflammaging and cardiovascular disease: Management by medicinal plants. Phytomedicine, 23(11), 1119‑1126. https://doi.org/10.1016/j.phymed.2015.11.004
  • Sies, H. (2020). Oxidative Stress : Concept and Some Practical Aspects. Antioxidants, 9(9), 852. https://doi.org/10.3390/antiox9090852
  • Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144-158.
  • Tatijana, K., Kulevanova, S., & Stefova, M. (2005). In vitro antioxidant activity of some Teucrium species (Lamiaceae). Acta Pharmaceutica, 55(2), 207‑214.
  • Yan, X., Zhai, Y., Zhou, W., Qiao, Y., Guan, L., Liu, H., Jiang, J., & Peng, L. (2022). Intestinal Flora Mediates Antiobesity Effect of Rutin in High-Fat-Diet Mice. Molecular Nutrition & Food Research, 66(14), 2100948. https://doi.org/10.1002/mnfr.202100948
  • Zlatić, N. M., Stanković, M. S., & Simić, Z. S. (2017). Secondary metabolites and metal content dynamics in Teucrium montanum L. and Teucrium chamaedrys L. from habitats with serpentine and calcareous substrate. Environmental Monitoring and Assessment, 189(3), 110. https://doi.org/10.1007/s10661-017-5831-8
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyokimya ve Hücre Biyolojisi (Diğer), Farmakognozi
Bölüm Makaleler
Yazarlar

Hamza Elbouny 0000-0003-3275-3093

Brahim Ouahzizi Bu kişi benim 0000-0002-6400-5949

Kaoutar Benrahou Bu kişi benim 0000-0002-1391-6232

Abdelmonaim Homrani Bakali Bu kişi benim 0000-0003-0719-7267

Mohamed Bammou Bu kişi benim 0000-0002-9377-9337

Khalid Sellam Bu kişi benim 0000-0001-7486-2664

Chakib Alem Bu kişi benim 0000-0001-6004-7319

Yayımlanma Tarihi 5 Şubat 2024
Gönderilme Tarihi 21 Eylül 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 11 Sayı: 1

Kaynak Göster

APA Elbouny, H., Ouahzizi, B., Benrahou, K., Homrani Bakali, A., vd. (2024). Phytochemical study and biological activities of Teucrium mideltense (Batt.) Humbert. International Journal of Secondary Metabolite, 11(1), 37-47. https://doi.org/10.21448/ijsm.1364491
International Journal of Secondary Metabolite
e-ISSN: 2148-6905