Araştırma Makalesi
BibTex RIS Kaynak Göster

Middle School Students' Understanding of Average

Yıl 2009, Cilt: 8 Sayı: 2, 391 - 400, 26.06.2009

Öz

The purpose of this study was to investigate 6, 7 and 8th grade students’ understanding of average
and how these understandings change with respect to the grade level. Participants of the study were 18 students,
6 from each grade level. Semi-structured interviews were conducted to collect the data. Five problems related to
the concept of average were asked to the students during the interviews. Problems were developed with respect
to the literature review. Data collected were analyzed using content analysis technique. Analysis showed that
most of the students understood average as an arithmetic mean, students mostly preferred the arithmetic mean
algorithm as a strategy and they didn’t recognize average as a representative value. Results of the study were
discussed in terms of the statistics education at middle school level.

Kaynakça

  • Cai, J. (2000). Understanding and Representing the Arithmetic Averaging Algorithm: An Analysis and Comparison of US and Chinese Students’ Responses, International Journal of Mathematical Education in
  • Science and Techonolgy, 31, 839-855. Jones, G., Thornton, A., Langrall, W., Mooney, S., Perry, B., & Putt, J. (2000). A Framework for Characterizing
  • Children’s Statistical Thinking. Mathematical Thinking and Learning, 2 (4), 269-307. Leavy, A.M. & Middleton, J.A. (2001, April). Middle Grade Students Understanding of the Statistical Concept of Distribution. American Educational Research Association Annual Conference in Seattle, Washington, USA.
  • Leavy, A.M. & O’Loughlin, N. (2006). Preservice Teachers Understanding of the Mean: Moving Beyond the Arithmetic Average, Journal of Mathematics Teacher Education, 9, 53-90.
  • Mevarech, Z. (1983). A deep structure model of students’ statistical misconceptions, Educational Studies in Mathematics, 14, 415-429.
  • Milli E itim BakanlL L, (1998). lkö retim Okulu Matematik Dersi Ö retim ProgramL, “6. 7., 8. sLnLflar”. Ankara.
  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston: VA.
  • Pollatsek, A., Lima, S. & Well, A.D. (1981). Concept or computation: Students’ understanding of the mean,
  • Educational Studies in Mathematics, 12, 191-204. Randall, G. (2006). An Exploration of Students’ Statistical Thinking. Teaching Statistics, 28(1), 17-21.
  • Mokros, J. & Russell, S. (1995). Children’s Concepts of Average and Representativeness, Journal for Research in Mathematics Education, 26, 20-39. imKek, H. ve YLldLrLm, A. (2006). Nitel Ara t rma Yöntemleri. Ankara: Seçkin YayLncLlLk.
  • Watson, M. & Moritz, J. (2000). The Longitudinal Development of Understanding of Average, Mathematical
  • Thinking and Learning, 2(1&2), 11-50. YLldLrLm, H. H. (2006). The Differential Item Functioning (DIF) Analysis of Mathematics Items in the International assessment Programs. YayLmlanmamLK Doktora Tezi, Orta Do u Teknik Üniversitesi, Ankara.

6 -8. Sınıf Öğrencilerinin Ortalama Kavramına Yüklediği Anlamlar

Yıl 2009, Cilt: 8 Sayı: 2, 391 - 400, 26.06.2009

Öz

Bu araştırmanın amacı ilköğretim 6, 7 ve 8. sınıf öğrencilerinin ortalama kavramına yükledikleri incelemektir. Araştırmaya Bolu ilinde bir ilköğretim okulundaki 6, 7 ve 8. sınıflardan 6 öğrenci olmak için toplam 18 öğrenci katlanmıştır. Öğrencilere, değerlendirmenin 5 tane problem sorulmuş, sorunlu 3 problem alan yazını taramaktadır sonra Türkçeye çevrilmiş, 2 tanesi mevcut yazarlar tarafından yazılmıştır. Öğrencilerin onu biriyle yarı- yapılandırılmış görüşmeler yapılmıştır. Veriler içerik analizi yöntemiyle analiz edilmiştir. Bulgular büyük çoğunluğunun ortalanması, aritmetik ortalamada algıladıklarını, ortalama ile ilgili problemlerde ilk seçtikleri stratejinin aritmetik ortalaması veriyi temsil etme uygundur. Araştırmanın bulguları, ilk jestimde istatistik eğitimi tartışılmıştır.

Kaynakça

  • Cai, J. (2000). Understanding and Representing the Arithmetic Averaging Algorithm: An Analysis and Comparison of US and Chinese Students’ Responses, International Journal of Mathematical Education in
  • Science and Techonolgy, 31, 839-855. Jones, G., Thornton, A., Langrall, W., Mooney, S., Perry, B., & Putt, J. (2000). A Framework for Characterizing
  • Children’s Statistical Thinking. Mathematical Thinking and Learning, 2 (4), 269-307. Leavy, A.M. & Middleton, J.A. (2001, April). Middle Grade Students Understanding of the Statistical Concept of Distribution. American Educational Research Association Annual Conference in Seattle, Washington, USA.
  • Leavy, A.M. & O’Loughlin, N. (2006). Preservice Teachers Understanding of the Mean: Moving Beyond the Arithmetic Average, Journal of Mathematics Teacher Education, 9, 53-90.
  • Mevarech, Z. (1983). A deep structure model of students’ statistical misconceptions, Educational Studies in Mathematics, 14, 415-429.
  • Milli E itim BakanlL L, (1998). lkö retim Okulu Matematik Dersi Ö retim ProgramL, “6. 7., 8. sLnLflar”. Ankara.
  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston: VA.
  • Pollatsek, A., Lima, S. & Well, A.D. (1981). Concept or computation: Students’ understanding of the mean,
  • Educational Studies in Mathematics, 12, 191-204. Randall, G. (2006). An Exploration of Students’ Statistical Thinking. Teaching Statistics, 28(1), 17-21.
  • Mokros, J. & Russell, S. (1995). Children’s Concepts of Average and Representativeness, Journal for Research in Mathematics Education, 26, 20-39. imKek, H. ve YLldLrLm, A. (2006). Nitel Ara t rma Yöntemleri. Ankara: Seçkin YayLncLlLk.
  • Watson, M. & Moritz, J. (2000). The Longitudinal Development of Understanding of Average, Mathematical
  • Thinking and Learning, 2(1&2), 11-50. YLldLrLm, H. H. (2006). The Differential Item Functioning (DIF) Analysis of Mathematics Items in the International assessment Programs. YayLmlanmamLK Doktora Tezi, Orta Do u Teknik Üniversitesi, Ankara.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Zülbiye Toluk Uçar

Elif Nur Akdoğan Bu kişi benim

Yayımlanma Tarihi 26 Haziran 2009
Yayımlandığı Sayı Yıl 2009 Cilt: 8 Sayı: 2

Kaynak Göster

APA Uçar, Z. T., & Akdoğan, E. N. (2009). 6 -8. Sınıf Öğrencilerinin Ortalama Kavramına Yüklediği Anlamlar. İlköğretim Online, 8(2), 391-400.
AMA Uçar ZT, Akdoğan EN. 6 -8. Sınıf Öğrencilerinin Ortalama Kavramına Yüklediği Anlamlar. İOO. Haziran 2009;8(2):391-400.
Chicago Uçar, Zülbiye Toluk, ve Elif Nur Akdoğan. “6 -8. Sınıf Öğrencilerinin Ortalama Kavramına Yüklediği Anlamlar”. İlköğretim Online 8, sy. 2 (Haziran 2009): 391-400.
EndNote Uçar ZT, Akdoğan EN (01 Haziran 2009) 6 -8. Sınıf Öğrencilerinin Ortalama Kavramına Yüklediği Anlamlar. İlköğretim Online 8 2 391–400.
IEEE Z. T. Uçar ve E. N. Akdoğan, “6 -8. Sınıf Öğrencilerinin Ortalama Kavramına Yüklediği Anlamlar”, İOO, c. 8, sy. 2, ss. 391–400, 2009.
ISNAD Uçar, Zülbiye Toluk - Akdoğan, Elif Nur. “6 -8. Sınıf Öğrencilerinin Ortalama Kavramına Yüklediği Anlamlar”. İlköğretim Online 8/2 (Haziran 2009), 391-400.
JAMA Uçar ZT, Akdoğan EN. 6 -8. Sınıf Öğrencilerinin Ortalama Kavramına Yüklediği Anlamlar. İOO. 2009;8:391–400.
MLA Uçar, Zülbiye Toluk ve Elif Nur Akdoğan. “6 -8. Sınıf Öğrencilerinin Ortalama Kavramına Yüklediği Anlamlar”. İlköğretim Online, c. 8, sy. 2, 2009, ss. 391-00.
Vancouver Uçar ZT, Akdoğan EN. 6 -8. Sınıf Öğrencilerinin Ortalama Kavramına Yüklediği Anlamlar. İOO. 2009;8(2):391-400.