Araştırma Makalesi
BibTex RIS Kaynak Göster

Aperiyodik Dizilişli Dielektrik Tabakalarda Işığın Yayılması

Yıl 2021, Cilt: 11 Sayı: 3, 1928 - 1938, 01.09.2021
https://doi.org/10.21597/jist.759393

Öz

Bu çalışmada, düzlemsel GaAs ve AlAs yarıiletken tabakaların farklı aperiyodik dizilişlerde dalga boyuna bağlı yansıtma spektrumları ve monokromatik ışığın gelme açısına bağlı olarak değişen yansıtma spektrumları TE ve TM polarize uyarımlar için incelenmiştir. Fibonacci, Thue-Morse ve Rudin-Shapiro diziliş kurallarına uygun olarak oluşturulan aperiyodik yapılar için elde edilen sonuçlar ile periyodik yapının sonucu karşılaştırılmıştır. Farklı tipte aperiyodik yapıların, periyodik yapılara kıyasla çeşitli uygulamalarda sağlayabileceği avantajlar tartışılmıştır. Aperiyodik dizilişli yapıların, dar bantlı yansıtma filtresi ve birden fazla dalga boyunda seçici filtre tasarımında kullanılabileceği gösterilmiştir. İncelenen aperiyodik diziliş tiplerinden biri olan yüksek mertebeli Rudin-Shapiro dizilişlerinin çok yönlü, polarizasyondan bağımsız ayna üretimi için uygun olduğu gösterilmiştir.

Kaynakça

  • Maciá E, 2012. Exploiting aperiodic designs in nanophotonic devices. Reports on Progress in Physics, 75(3): 036502.
  • Nguyen DT, Norwood RA, Peyghambarian N, 2010. Multiple spectral window mirrors based on Fibonacci chains of dielectric layers. Optics Communications, 283(21): 4199-4202.
  • Hiltunen M, Negro LD, Feng NN, Kimerling LC, Michel J, 2007: Modeling of aperiodic fractal waveguide structures for multifrequency light transport. Journal of Lightwave Technology, 25(7): 1841–1847.
  • Golmohammadi S, Rostami A, 2010. Optical filters using optical multi-layer structures for optical communication systems. Fiber and Integrated Optics, 29(3): 209–224.
  • Boriskina, SV, Dal Negro L, 2008. Sensitive label-free biosensing using critical modes in aperiodic photonic structures. Optics Express, 16(17): 12511-12522.
  • Sibilia C, Masciulli P, Bertolotti M, 1998. Optical properties of quasiperiodic (self-similar) structures. Pure and Applied Optics: Journal of the European Optical Society Part A, 7(2): 383–391.
  • Fink Y, 1998. A dielectric omnidirectional reflector. Science, 282(5394): 1679–1682.
  • Gellermann W, Kohmoto M, Sutherland B, Taylor PC, 1994. Localization of light waves in Fibonacci dielectric multilayers, Phys. Rev. Lett. 72: 633-636.
  • Dal Negro L, Stolfi M, Yi Y, Michel J, Duan X, Kimerling LC, LeBlanc J, Haavisto J, 2004. Photon band gap properties and omnidirectional reflectance in Si-SiO2 Thue-Morse quasicrystals. Applied Physics Letters, 84(25): 5186-5188.
  • Kroon L, Lennholm E, Riklund R, 2002. Localization-delocalization in aperiodic systems. Phys. Rev. B, 66: 094204.
  • Chuang SL, 2009. Physics of photonic devices. John Wiley & Sons, 2. Baskı, S. 206-209. Hoboken N.J.
  • Bienstman P, 2001. Rigorous and efficient modelling of wavelength scale photonic components. Ph.D. Thesis, Ghent University, Ghent, Belgium.
  • Bienstman P. CAMFR (CAvity Modelling FRamework). http://camfr.sourceforge.net (10.04. 2019).
  • Gökşin S, 2019. Aperiyodik Yapılarda Işığın Yayılmasının İncelenmesi. MSc Thesis, Institute of Graduate Studies in Sciences, Istanbul University.
  • Strutt JW (Lord Rayleigh), 1887. On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure. Phil. Mag. S. 24(1887): 145-159.

Propagation of Light in Aperiodic Array Dielectric Layers

Yıl 2021, Cilt: 11 Sayı: 3, 1928 - 1938, 01.09.2021
https://doi.org/10.21597/jist.759393

Öz

In this study, the wavelength-dependent reflection spectra of the planar GaAs and AlAs semiconductor layers in different aperiodic arrays and the reflection spectra varying depending on the angle of incidence of monochromatic light were investigated for TE and TM polarized excitations. The results obtained for the periodic structures were compared with the results obtained for the periodic structures created in accordance with the Fibonacci, Thue-Morse and Rudin-Shapiro sequence rules. The advantages that different types of aperiodic structures can provide in various applications compared to periodic structures are discussed. It has been shown that aperiodic array structures can be used in narrow band reflection filter and multiple wavelength selective filter design. High-order Rudin-Shapiro sequences, which are one of the examined types of aperiodic arrangement, have been shown to be suitable for an omnidirectional, polarization independent mirror production.

Kaynakça

  • Maciá E, 2012. Exploiting aperiodic designs in nanophotonic devices. Reports on Progress in Physics, 75(3): 036502.
  • Nguyen DT, Norwood RA, Peyghambarian N, 2010. Multiple spectral window mirrors based on Fibonacci chains of dielectric layers. Optics Communications, 283(21): 4199-4202.
  • Hiltunen M, Negro LD, Feng NN, Kimerling LC, Michel J, 2007: Modeling of aperiodic fractal waveguide structures for multifrequency light transport. Journal of Lightwave Technology, 25(7): 1841–1847.
  • Golmohammadi S, Rostami A, 2010. Optical filters using optical multi-layer structures for optical communication systems. Fiber and Integrated Optics, 29(3): 209–224.
  • Boriskina, SV, Dal Negro L, 2008. Sensitive label-free biosensing using critical modes in aperiodic photonic structures. Optics Express, 16(17): 12511-12522.
  • Sibilia C, Masciulli P, Bertolotti M, 1998. Optical properties of quasiperiodic (self-similar) structures. Pure and Applied Optics: Journal of the European Optical Society Part A, 7(2): 383–391.
  • Fink Y, 1998. A dielectric omnidirectional reflector. Science, 282(5394): 1679–1682.
  • Gellermann W, Kohmoto M, Sutherland B, Taylor PC, 1994. Localization of light waves in Fibonacci dielectric multilayers, Phys. Rev. Lett. 72: 633-636.
  • Dal Negro L, Stolfi M, Yi Y, Michel J, Duan X, Kimerling LC, LeBlanc J, Haavisto J, 2004. Photon band gap properties and omnidirectional reflectance in Si-SiO2 Thue-Morse quasicrystals. Applied Physics Letters, 84(25): 5186-5188.
  • Kroon L, Lennholm E, Riklund R, 2002. Localization-delocalization in aperiodic systems. Phys. Rev. B, 66: 094204.
  • Chuang SL, 2009. Physics of photonic devices. John Wiley & Sons, 2. Baskı, S. 206-209. Hoboken N.J.
  • Bienstman P, 2001. Rigorous and efficient modelling of wavelength scale photonic components. Ph.D. Thesis, Ghent University, Ghent, Belgium.
  • Bienstman P. CAMFR (CAvity Modelling FRamework). http://camfr.sourceforge.net (10.04. 2019).
  • Gökşin S, 2019. Aperiyodik Yapılarda Işığın Yayılmasının İncelenmesi. MSc Thesis, Institute of Graduate Studies in Sciences, Istanbul University.
  • Strutt JW (Lord Rayleigh), 1887. On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure. Phil. Mag. S. 24(1887): 145-159.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Fizik / Physics
Yazarlar

Ferhat Nutku 0000-0002-2052-4894

Sakine Gökşin 0000-0003-3321-3523

Yayımlanma Tarihi 1 Eylül 2021
Gönderilme Tarihi 30 Haziran 2020
Kabul Tarihi 8 Mart 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 11 Sayı: 3

Kaynak Göster

APA Nutku, F., & Gökşin, S. (2021). Aperiyodik Dizilişli Dielektrik Tabakalarda Işığın Yayılması. Journal of the Institute of Science and Technology, 11(3), 1928-1938. https://doi.org/10.21597/jist.759393
AMA Nutku F, Gökşin S. Aperiyodik Dizilişli Dielektrik Tabakalarda Işığın Yayılması. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2021;11(3):1928-1938. doi:10.21597/jist.759393
Chicago Nutku, Ferhat, ve Sakine Gökşin. “Aperiyodik Dizilişli Dielektrik Tabakalarda Işığın Yayılması”. Journal of the Institute of Science and Technology 11, sy. 3 (Eylül 2021): 1928-38. https://doi.org/10.21597/jist.759393.
EndNote Nutku F, Gökşin S (01 Eylül 2021) Aperiyodik Dizilişli Dielektrik Tabakalarda Işığın Yayılması. Journal of the Institute of Science and Technology 11 3 1928–1938.
IEEE F. Nutku ve S. Gökşin, “Aperiyodik Dizilişli Dielektrik Tabakalarda Işığın Yayılması”, Iğdır Üniv. Fen Bil Enst. Der., c. 11, sy. 3, ss. 1928–1938, 2021, doi: 10.21597/jist.759393.
ISNAD Nutku, Ferhat - Gökşin, Sakine. “Aperiyodik Dizilişli Dielektrik Tabakalarda Işığın Yayılması”. Journal of the Institute of Science and Technology 11/3 (Eylül 2021), 1928-1938. https://doi.org/10.21597/jist.759393.
JAMA Nutku F, Gökşin S. Aperiyodik Dizilişli Dielektrik Tabakalarda Işığın Yayılması. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:1928–1938.
MLA Nutku, Ferhat ve Sakine Gökşin. “Aperiyodik Dizilişli Dielektrik Tabakalarda Işığın Yayılması”. Journal of the Institute of Science and Technology, c. 11, sy. 3, 2021, ss. 1928-3, doi:10.21597/jist.759393.
Vancouver Nutku F, Gökşin S. Aperiyodik Dizilişli Dielektrik Tabakalarda Işığın Yayılması. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(3):1928-3.