Araştırma Makalesi
BibTex RIS Kaynak Göster

Aqueous Extract of Onion Peels as A Biowaste-Based Sensitizer for Photovoltaic Cells

Yıl 2023, Cilt: 10 Sayı: 4, 1063 - 1070, 11.11.2023
https://doi.org/10.18596/jotcsa.1260709

Öz

In the present paper, two natural photosensitizers extracted from red onion peels have been experimentally studied to sensitize the photovoltaic cells. The two natural dyes were prepared overnight, soaking the red onion peel powder in distilled water without acidification (UW) and acidified water (AW). Dye characteristics were identified by UV-vis Spectrophotometer and FT-IR Spectrophotometer. The cell performance was assessed by calculating the produced voltage and current by multi-meter. Red onion peel dyes absorb visible light at a wavelength of 507 nm and promote electron transfer into the porous semiconductor surface. A higher power conversion efficiency (η=0.0535 %) was featured by an unacidified solvent with a short circuit current density (Jsc) of 0.96 mA.cm-2, an open circuit voltage (Voc) of 338 mV and a fill factor of 0.2576. This paper presents a fascinating preliminary study to develop renewable and sustainable energy sources using bulky biowaste.

Destekleyen Kurum

Institute for Research and Community Service (LPPM)

Proje Numarası

No. 45/UN60/LPPM/PP/2021

Teşekkür

LPPM UNIVERSITAS TIMOR

Kaynakça

  • 1. Aduloju KA, Shitta MB. Dye sensitized solar cell using natural dyes extracted from red leave onion. Int J Phys Sci [Internet]. 2012 Jan 30;7(5):709–12. Available from: <URL>.
  • 2. Richhariya G, Kumar A, Tekasakul P, Gupta B. Natural dyes for dye sensitized solar cell: A review. Renew Sustain Energy Rev [Internet]. 2017 Mar 1;69:705–18. Available from: <URL>.
  • 3. Calogero G, Bartolotta A, Di Marco G, Di Carlo A, Bonaccorso F. Vegetable-based dye-sensitized solar cells. Chem Soc Rev [Internet]. 2015;44(10):3244–94. Available from: <URL>.
  • 4. Marques A dos S, da Silva VAS, Ribeiro ES, Malta LFB. Dye-sensitized solar cells: Components screening for glass substrate, counter-electrode, photoanode and electrolyte. Mater Res [Internet]. 2020;23(5):e20200168. Available from: <URL>.
  • 5. Rahman S, Haleem A, Siddiq M, Hussain MK, Qamar S, Hameed S, et al. Research on dye sensitized solar cells: recent advancement toward the various constituents of dye sensitized solar cells for efficiency enhancement and future prospects. RSC Adv [Internet]. 2023;13(28):19508–29. Available from: <URL>.
  • 6. Sharma K, Sharma V, Sharma SS. Dye-sensitized solar cells: Fundamentals and current status. Nanoscale Res Lett [Internet]. 2018 Dec 28;13(1):381. Available from: <URL>.
  • 7. Pandey AK, Ahmad MS, Rahim NA, Tyagi V V., Saidur R. Natural sensitizers and their applications in dye-sensitized solar cell. In: environmental biotechnology: For sustainable future [Internet]. Singapore: Springer Singapore; 2019. p. 375–401. Available from: <URL>.
  • 8. Adedokun O, Titilope K, Awodugba AO. Review on Natural Dye-Sensitized Solar Cells (DSSCs). Int J Eng Technol IJET [Internet]. 2016 Jun 22;2(2):34. Available from: <URL>.
  • 9. Ye M, Wen X, Wang M, Iocozzia J, Zhang N, Lin C, et al. Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater Today [Internet]. 2015 Apr 1;18(3):155–62. Available from: <URL>.
  • 10. Ammar AM, Mohamed HSH, Yousef MMK, Abdel-Hafez GM, Hassanien AS, Khalil ASG. Dye-Sensitized Solar Cells (DSSCs) Based on Extracted Natural Dyes. J Nanomater [Internet]. 2019 Apr 18;2019:1867271. Available from: <URL>.
  • 11. Hardeli, Zainul R, Isara LP. Preparation of Dye Sensitized Solar Cell (DSSC) using anthocyanin color dyes from jengkol shell (Pithecellobium lobatum Benth.) by the gallate acid copigmentation. J Phys Conf Ser [Internet]. 2019 Apr 1;1185(1):012021. Available from: <URL>.
  • 12. Syafinar R, Gomesh N, Irwanto M, Fareq M, Irwan YM. Potential of purple cabbage, coffee, blueberry and turmeric as nature based dyes for dye sensitized solar cell (dssc). Energy Procedia [Internet]. 2015 Nov 1;79:799–807. Available from: <URL>.
  • 13. Al Batty S, Al-Jubouri SM, Wali Hakami M, Sarief A, Haque SM. Innovative economic anthocyanin dye source for enhancing the performance of dye-sensitized solar cell. J Taibah Univ Sci [Internet]. 2022 Dec 31;16(1):415–22. Available from: <URL>.
  • 14. Kim J-H, Kim D-H, So J-H, Koo H-J. Toward eco-friendly dye-sensitized solar cells (DSSCs): Natural Dyes and Aqueous Electrolytes. Energies [Internet]. 2021 Dec 29;15(1):219. Available from: <URL>.
  • 15. Collings DA. Anthocyanin in the vacuole of red onion epidermal cells quenches other fluorescent molecules. Plants [Internet]. 2019 Dec 12;8(12):596. Available from: <URL>.
  • 16. Celano R, Docimo T, Piccinelli AL, Gazzerro P, Tucci M, Di Sanzo R, et al. Onion peel: Turning a food waste into a resource. Antioxidants. 2021 Feb 16;10(2):304. Available from: <URL>.
  • 17. Prabavathy N, Shalini S, Balasundaraprabhu R, Velauthapillai D, Prasanna S, Walke P, et al. Effect of solvents in the extraction and stability of anthocyanin from the petals of Caesalpinia pulcherrima for natural dye sensitized solar cell applications. J Mater Sci Mater Electron. 2017 Jul 23;28(13):9882–92. Available from: <URL>.
  • 18. Adu REY, Gelyaman G, Kabosu M. Pemanfaatan ekstrak antosianin dari limbah kulit bawang merah (Allium cepa) sebagai zat pemeka (sensitizer) pada dye sensitized solar cell (DSSC). ALCHEMY J Penelit Kim [Internet]. 2022 Feb 9;18(1):103–11. Available from: <URL>.
  • 19. Adu REY. Dye sensitized solar cell (DSSC) fabrication using methanol extract of onion peel as a natural sensitizer. J Turkish Chem Soc Sect A Chem [Internet]. 2022 Nov 30;9(4):1285–94. Available from: <URL>.
  • 20. Zhang S, Deng P, Xu Y, Lü S, Wang J. Quantification and analysis of anthocyanin and flavonoids compositions, and antioxidant activities in onions with three different colors. J Integr Agric [Internet]. 2016 Sep;15(9):2175–81. Available from: <URL>.
  • 21. Samota MK, Sharma M, Kaur K, Sarita, Yadav DK, Pandey AK, et al. Onion anthocyanins: Extraction, stability, bioavailability, dietary effect, and health implications. Front Nutr [Internet]. 2022 Jul 27;9:917617. Available from: <URL>.
  • 22. Constantin OE, Istrati DI. Extraction, quantification and characterization techniques for anthocyanin compounds in various food matrices—a review. Horticulturae [Internet]. 2022 Nov 16;8(11):1084. Available from: <URL>.
  • 23. Tena N, Asuero AG. Up-to-date analysis of the extraction methods for anthocyanins: principles of the techniques, optimization, technical progress, and industrial application. Antioxidants [Internet]. 2022 Jan 30;11(2):286. Available from: <URL>.
  • 24. Saptarini NM, Herawati IE. Extraction methods and varieties affect total anthocyanins content in acidified extract of papery skin of onion (Allium cepa L.). Drug Invent Today [Internet]. 2018;10(4):471–4. Available from: <URL>.
  • 25. Ali O-H, Al-sayed H, Yasin N, Afifi E. Effect of different extraction methods on stablity of anthocyanins extracted from red onion peels (Allium cepa) and Its Uses as Food Colorants. Bull Natl Nutr Inst [Internet]. 2016 Nov 1;47(2):1–24. Available from: <URL>.
  • 26. Giusti MM, Polit MF, Ayvaz H, Tay D, Manrique I. Characterization and Quantitation of Anthocyanins and other phenolics in native andean potatoes. J Agric Food Chem [Internet]. 2014 May 14;62(19):4408–16. Available from: <URL>.
  • 27. Oancea S, Draghici O. pH and thermal stability of anthocyanin-based optimised extracts of Romanian red onion cultivars. Czech J Food Sci [Internet]. 2013 Jun 30;31(3):283–91. Available from: <URL>.
  • 28. Hosseinnezhad M, Gharanjig K, Moradian S, Saeb MR. In quest of power conversion efficiency in nature-inspired dye-sensitized solar cells: Individual, co-sensitized or tandem configuration? Energy [Internet]. 2017 Sep 1;134:864–70. Available from: <URL>.
  • 29. Ghann W, Kang H, Sheikh T, Yadav S, Chavez-Gil T, Nesbitt F, et al. Fabrication, optimization and characterization of natural dye sensitized solar cell. Sci Rep [Internet]. 2017 Jan 27;7(1):41470. Available from: <URL>.
  • 30. Lee C-P, Lin RY-Y, Lin L-Y, Li C-T, Chu T-C, Sun S-S, et al. Recent progress in organic sensitizers for dye-sensitized solar cells. RSC Adv [Internet]. 2015 Mar 4;5(30):23810–25. Available from: <URL>.
  • 31. Swer TL, Mukhim C, Bashir K, Chauhan K. Optimization of enzyme aided extraction of anthocyanins from Prunus nepalensis L. LWT [Internet]. 2018 May 1;91:382–90. Available from: <URL>.
  • 32. Amelia F, Afnani GN, Musfiroh A, Fikriyani AN, Ucche S, Murrukmihadi M. Extraction and stability test of anthocyanin from buni fruits (Antidesma bunius L) as an alternative natural and safe food colorants. J Food Pharm Sci [Internet]. 2013 May 8;1(2):49–53. Available from: <URL>.
  • 33. Ramanarayanan R, P. N, C.V. N, S. S. Natural dyes from red amaranth leaves as light-harvesting pigments for dye-sensitized solar cells. Mater Res Bull [Internet]. 2017 Jun 1;90:156–61. Available from: <URL>.
  • 34. Castillo-Robles JA, Rocha-Rangel E, Ramírez-de-León JA, Caballero-Rico FC, Armendáriz-Mireles EN. Advances on dye-sensitized solar cells (DSSCs) nanostructures and natural colorants: A review. J Compos Sci [Internet]. 2021 Oct 29;5(11):288. Available from: <URL>.
  • 35. Almalki ASA, Shoair AGF, Badawi A, Al-Baradi AM, Atta AA, Algarni SA, et al. Enhancement of the open-circuit voltage of the dye-sensitized solar cells using a modified ruthenium dye. Appl Phys A [Internet]. 2021 Mar 6;127(3):171. Available from: <URL>.
  • 36. Shanmugam V, Manoharan S, Anandan S, Murugan R. Performance of dye-sensitized solar cells fabricated with extracts from fruits of ivy gourd and flowers of red frangipani as sensitizers. Spectrochim Acta Part A Mol Biomol Spectrosc [Internet]. 2013 Mar 1;104:35–40. Available from: <URL>.
  • 37. Rodriguez‐Saona LE, Wrolstad RE. Extraction, isolation, and purification of anthocyanins. Curr Protoc Food Anal Chem [Internet]. 2001 Apr 1;00(1):F1.1.1-F1.1.11. Available from: <URL>.
  • 38. Taghavi T, Patel H, Rafie R. Anthocyanin extraction method and sample preparation affect anthocyanin yield of strawberries. Nat Prod Commun [Internet]. 2022 May 13;17(5):1–7. Available from: <URL>.
Yıl 2023, Cilt: 10 Sayı: 4, 1063 - 1070, 11.11.2023
https://doi.org/10.18596/jotcsa.1260709

Öz

Proje Numarası

No. 45/UN60/LPPM/PP/2021

Kaynakça

  • 1. Aduloju KA, Shitta MB. Dye sensitized solar cell using natural dyes extracted from red leave onion. Int J Phys Sci [Internet]. 2012 Jan 30;7(5):709–12. Available from: <URL>.
  • 2. Richhariya G, Kumar A, Tekasakul P, Gupta B. Natural dyes for dye sensitized solar cell: A review. Renew Sustain Energy Rev [Internet]. 2017 Mar 1;69:705–18. Available from: <URL>.
  • 3. Calogero G, Bartolotta A, Di Marco G, Di Carlo A, Bonaccorso F. Vegetable-based dye-sensitized solar cells. Chem Soc Rev [Internet]. 2015;44(10):3244–94. Available from: <URL>.
  • 4. Marques A dos S, da Silva VAS, Ribeiro ES, Malta LFB. Dye-sensitized solar cells: Components screening for glass substrate, counter-electrode, photoanode and electrolyte. Mater Res [Internet]. 2020;23(5):e20200168. Available from: <URL>.
  • 5. Rahman S, Haleem A, Siddiq M, Hussain MK, Qamar S, Hameed S, et al. Research on dye sensitized solar cells: recent advancement toward the various constituents of dye sensitized solar cells for efficiency enhancement and future prospects. RSC Adv [Internet]. 2023;13(28):19508–29. Available from: <URL>.
  • 6. Sharma K, Sharma V, Sharma SS. Dye-sensitized solar cells: Fundamentals and current status. Nanoscale Res Lett [Internet]. 2018 Dec 28;13(1):381. Available from: <URL>.
  • 7. Pandey AK, Ahmad MS, Rahim NA, Tyagi V V., Saidur R. Natural sensitizers and their applications in dye-sensitized solar cell. In: environmental biotechnology: For sustainable future [Internet]. Singapore: Springer Singapore; 2019. p. 375–401. Available from: <URL>.
  • 8. Adedokun O, Titilope K, Awodugba AO. Review on Natural Dye-Sensitized Solar Cells (DSSCs). Int J Eng Technol IJET [Internet]. 2016 Jun 22;2(2):34. Available from: <URL>.
  • 9. Ye M, Wen X, Wang M, Iocozzia J, Zhang N, Lin C, et al. Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater Today [Internet]. 2015 Apr 1;18(3):155–62. Available from: <URL>.
  • 10. Ammar AM, Mohamed HSH, Yousef MMK, Abdel-Hafez GM, Hassanien AS, Khalil ASG. Dye-Sensitized Solar Cells (DSSCs) Based on Extracted Natural Dyes. J Nanomater [Internet]. 2019 Apr 18;2019:1867271. Available from: <URL>.
  • 11. Hardeli, Zainul R, Isara LP. Preparation of Dye Sensitized Solar Cell (DSSC) using anthocyanin color dyes from jengkol shell (Pithecellobium lobatum Benth.) by the gallate acid copigmentation. J Phys Conf Ser [Internet]. 2019 Apr 1;1185(1):012021. Available from: <URL>.
  • 12. Syafinar R, Gomesh N, Irwanto M, Fareq M, Irwan YM. Potential of purple cabbage, coffee, blueberry and turmeric as nature based dyes for dye sensitized solar cell (dssc). Energy Procedia [Internet]. 2015 Nov 1;79:799–807. Available from: <URL>.
  • 13. Al Batty S, Al-Jubouri SM, Wali Hakami M, Sarief A, Haque SM. Innovative economic anthocyanin dye source for enhancing the performance of dye-sensitized solar cell. J Taibah Univ Sci [Internet]. 2022 Dec 31;16(1):415–22. Available from: <URL>.
  • 14. Kim J-H, Kim D-H, So J-H, Koo H-J. Toward eco-friendly dye-sensitized solar cells (DSSCs): Natural Dyes and Aqueous Electrolytes. Energies [Internet]. 2021 Dec 29;15(1):219. Available from: <URL>.
  • 15. Collings DA. Anthocyanin in the vacuole of red onion epidermal cells quenches other fluorescent molecules. Plants [Internet]. 2019 Dec 12;8(12):596. Available from: <URL>.
  • 16. Celano R, Docimo T, Piccinelli AL, Gazzerro P, Tucci M, Di Sanzo R, et al. Onion peel: Turning a food waste into a resource. Antioxidants. 2021 Feb 16;10(2):304. Available from: <URL>.
  • 17. Prabavathy N, Shalini S, Balasundaraprabhu R, Velauthapillai D, Prasanna S, Walke P, et al. Effect of solvents in the extraction and stability of anthocyanin from the petals of Caesalpinia pulcherrima for natural dye sensitized solar cell applications. J Mater Sci Mater Electron. 2017 Jul 23;28(13):9882–92. Available from: <URL>.
  • 18. Adu REY, Gelyaman G, Kabosu M. Pemanfaatan ekstrak antosianin dari limbah kulit bawang merah (Allium cepa) sebagai zat pemeka (sensitizer) pada dye sensitized solar cell (DSSC). ALCHEMY J Penelit Kim [Internet]. 2022 Feb 9;18(1):103–11. Available from: <URL>.
  • 19. Adu REY. Dye sensitized solar cell (DSSC) fabrication using methanol extract of onion peel as a natural sensitizer. J Turkish Chem Soc Sect A Chem [Internet]. 2022 Nov 30;9(4):1285–94. Available from: <URL>.
  • 20. Zhang S, Deng P, Xu Y, Lü S, Wang J. Quantification and analysis of anthocyanin and flavonoids compositions, and antioxidant activities in onions with three different colors. J Integr Agric [Internet]. 2016 Sep;15(9):2175–81. Available from: <URL>.
  • 21. Samota MK, Sharma M, Kaur K, Sarita, Yadav DK, Pandey AK, et al. Onion anthocyanins: Extraction, stability, bioavailability, dietary effect, and health implications. Front Nutr [Internet]. 2022 Jul 27;9:917617. Available from: <URL>.
  • 22. Constantin OE, Istrati DI. Extraction, quantification and characterization techniques for anthocyanin compounds in various food matrices—a review. Horticulturae [Internet]. 2022 Nov 16;8(11):1084. Available from: <URL>.
  • 23. Tena N, Asuero AG. Up-to-date analysis of the extraction methods for anthocyanins: principles of the techniques, optimization, technical progress, and industrial application. Antioxidants [Internet]. 2022 Jan 30;11(2):286. Available from: <URL>.
  • 24. Saptarini NM, Herawati IE. Extraction methods and varieties affect total anthocyanins content in acidified extract of papery skin of onion (Allium cepa L.). Drug Invent Today [Internet]. 2018;10(4):471–4. Available from: <URL>.
  • 25. Ali O-H, Al-sayed H, Yasin N, Afifi E. Effect of different extraction methods on stablity of anthocyanins extracted from red onion peels (Allium cepa) and Its Uses as Food Colorants. Bull Natl Nutr Inst [Internet]. 2016 Nov 1;47(2):1–24. Available from: <URL>.
  • 26. Giusti MM, Polit MF, Ayvaz H, Tay D, Manrique I. Characterization and Quantitation of Anthocyanins and other phenolics in native andean potatoes. J Agric Food Chem [Internet]. 2014 May 14;62(19):4408–16. Available from: <URL>.
  • 27. Oancea S, Draghici O. pH and thermal stability of anthocyanin-based optimised extracts of Romanian red onion cultivars. Czech J Food Sci [Internet]. 2013 Jun 30;31(3):283–91. Available from: <URL>.
  • 28. Hosseinnezhad M, Gharanjig K, Moradian S, Saeb MR. In quest of power conversion efficiency in nature-inspired dye-sensitized solar cells: Individual, co-sensitized or tandem configuration? Energy [Internet]. 2017 Sep 1;134:864–70. Available from: <URL>.
  • 29. Ghann W, Kang H, Sheikh T, Yadav S, Chavez-Gil T, Nesbitt F, et al. Fabrication, optimization and characterization of natural dye sensitized solar cell. Sci Rep [Internet]. 2017 Jan 27;7(1):41470. Available from: <URL>.
  • 30. Lee C-P, Lin RY-Y, Lin L-Y, Li C-T, Chu T-C, Sun S-S, et al. Recent progress in organic sensitizers for dye-sensitized solar cells. RSC Adv [Internet]. 2015 Mar 4;5(30):23810–25. Available from: <URL>.
  • 31. Swer TL, Mukhim C, Bashir K, Chauhan K. Optimization of enzyme aided extraction of anthocyanins from Prunus nepalensis L. LWT [Internet]. 2018 May 1;91:382–90. Available from: <URL>.
  • 32. Amelia F, Afnani GN, Musfiroh A, Fikriyani AN, Ucche S, Murrukmihadi M. Extraction and stability test of anthocyanin from buni fruits (Antidesma bunius L) as an alternative natural and safe food colorants. J Food Pharm Sci [Internet]. 2013 May 8;1(2):49–53. Available from: <URL>.
  • 33. Ramanarayanan R, P. N, C.V. N, S. S. Natural dyes from red amaranth leaves as light-harvesting pigments for dye-sensitized solar cells. Mater Res Bull [Internet]. 2017 Jun 1;90:156–61. Available from: <URL>.
  • 34. Castillo-Robles JA, Rocha-Rangel E, Ramírez-de-León JA, Caballero-Rico FC, Armendáriz-Mireles EN. Advances on dye-sensitized solar cells (DSSCs) nanostructures and natural colorants: A review. J Compos Sci [Internet]. 2021 Oct 29;5(11):288. Available from: <URL>.
  • 35. Almalki ASA, Shoair AGF, Badawi A, Al-Baradi AM, Atta AA, Algarni SA, et al. Enhancement of the open-circuit voltage of the dye-sensitized solar cells using a modified ruthenium dye. Appl Phys A [Internet]. 2021 Mar 6;127(3):171. Available from: <URL>.
  • 36. Shanmugam V, Manoharan S, Anandan S, Murugan R. Performance of dye-sensitized solar cells fabricated with extracts from fruits of ivy gourd and flowers of red frangipani as sensitizers. Spectrochim Acta Part A Mol Biomol Spectrosc [Internet]. 2013 Mar 1;104:35–40. Available from: <URL>.
  • 37. Rodriguez‐Saona LE, Wrolstad RE. Extraction, isolation, and purification of anthocyanins. Curr Protoc Food Anal Chem [Internet]. 2001 Apr 1;00(1):F1.1.1-F1.1.11. Available from: <URL>.
  • 38. Taghavi T, Patel H, Rafie R. Anthocyanin extraction method and sample preparation affect anthocyanin yield of strawberries. Nat Prod Commun [Internet]. 2022 May 13;17(5):1–7. Available from: <URL>.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm ARAŞTIRMA MAKALELERİ
Yazarlar

Rısna Ernı Yatı Adu 0000-0002-8599-5478

Gebhardus Djugian Gelyaman 0000-0003-0531-4095

Proje Numarası No. 45/UN60/LPPM/PP/2021
Yayımlanma Tarihi 11 Kasım 2023
Gönderilme Tarihi 6 Mart 2023
Kabul Tarihi 15 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 10 Sayı: 4

Kaynak Göster

Vancouver Adu REY, Gelyaman GD. Aqueous Extract of Onion Peels as A Biowaste-Based Sensitizer for Photovoltaic Cells. JOTCSA. 2023;10(4):1063-70.