İnceleme Makalesi
BibTex RIS Kaynak Göster

A Review on Selected Durability Parameters on Performance of Geopolymers Containing Industrial By-products, Agro- Wastes and Natural Pozzolan

Yıl 2022, Cilt: 7 Sayı: 4, 375 - 400, 30.12.2022
https://doi.org/10.47481/jscmt.1190244

Öz

The applications of geopolymers as cementitious systems are becoming an alternative source of cement daily. The use of potentially suitable aluminosilicate inorganic waste materials incorporated with agro-industrial waste in the production of suitable geopolymer binders has been reported. Calcined clay and some agro-waste ash, such as coconut shells, are examples of aluminosilicate materials that exhibit strong pozzolanic activity because of their high silica-alumina composition. The pozzolanic reaction is primarily caused by the amorphous silica present in properly burned agricultural waste and clay. Based on a variety of available literature on concrete and mortar including geopolymers synthesized from agro-industrial waste, a critical review of raw materials and the mechanism of synthesis of the geopolymer has been outlined in this work. Additionally, the durability characteristics of agro-industrial waste geopolymer concrete and mortar, including resistance to chloride, corrosion, sulfate, acid attack, depth of carbonation, water absorption, thermal resistivity, Creep and drying shrinkage, are briefly reviewed.

Destekleyen Kurum

MAPRONANO ACE, Makerere University-Uganda

Proje Numarası

MAP/PhD/046 2019

Teşekkür

The authors wish to acknowledge the MAPRONANO ACE in collaboration with the World Bank and Pwani University, Kenya, for funding this research.

Kaynakça

  • [1] Datau, S. G., Bawa, M. A., Jatau, J. S., Muhammad, M. H., & Bello, A. S. (2020). The potentials of kyanite particles and coconut shell ash as strengthener in aluminum alloy composite for automobile brake disc. Journal of Minerals and Materials Characterization and Engineering, 8(3), 84–96. [CrossRef]
  • [2] Minkova, V., Marinov, S. P., Zanzi, R., Björnbom, E., Budinova, T., Stefanova, M., & Lakov, L. (2000). Thermochemical Treatment of Biomass in a Flow of Steam or in a Mixture of Steam and Carbon Dioxide. Fuel Processing Technology, 62(1), 45–52. [CrossRef]
  • [3] Putun, A. E., Ozbay, N., Onal, E. P., & Putun, E. (2005). Fixed-bed pyrolysis of cotton stalk for liquid and solid products. Fuel Processing Technology, 86(11), 1207–1219. [CrossRef]
  • [4] Savova, D., Apak, E., Ekinci, E., Yardim, F., Petrov, N., Budinova, T., Razvigorova, M., & Minkova, V. (2001). Biomass conversion to carbon adsorbents and gas. Biomass and Bioenergy, 21(2), 133–142. [CrossRef]
  • [5] Tsai, W., Chang, C. Y., & Lee, S. L. (1997). Preparation and characterization of activated carbons from corn cob. Carbon, 35(8), 1198–1200. [CrossRef]
  • [6] Intiya, W., Thepsuwan, U., Sirisinha, C., & Sae-Oui, P. (2017). Possible use of sludge ash as filler in natural rubber. Journal of Material Cycles and Waste Management, 19(2), 774–781. [CrossRef]
  • [7] Jalali, M., & Aboulghazi, F. (2013). Sunflower stalk, an agricultural waste, as an adsorbent for the removal of lead and cadmium from aqueous solutions. Journal of Material Cycles and Waste Management, 15(4), 548–555. [CrossRef]
  • [8] Fan, M., Marshall, W., Daugaard, D., & Brown, R. C. (2004). Steam activation of chars produced from oat hulls and corn stover. Bioresource Technology, 93(1), 103–107. [CrossRef]
  • [9] Ahmedna, M., Marshall, W. E., & Rao, R. M. (2000). Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties. Bioresource Technology, 71(2), 113–123. [CrossRef]
  • [10] El-Dakroury, A., & Gasser, M. S. (2008). Alkali-activated materials. Journal of Nuclear Materials, 381(3), 271–277. [CrossRef]
  • [11] Asavapisit, S., & Macphee, D. E. (2007). Immobilization of metal-containing waste in alkali-activated lime–RHA cementitious matrices. Cement and Concrete Research, 37(5), 776–780. [CrossRef]
  • [12] Nair, D. G., Jagadish, K. S., & Fraaij, A. (2006). Reactive pozzolanas from rice husk ash: An alternative to cement for rural housing. Cement and Concrete Research, 36(6), 1062–1071. [CrossRef]
  • [13] Salas, D. A., Ramirez, A. D., Ulloa, N., Baykara, H., & Boero, A. J. (2018). Life cycle assessment of geopolymer concrete. Construction and Building Materials, 190, 170–177. [CrossRef]
  • [14] Elbasir O. (2020). Influence of cement content on the compressive strength and engineering properties of palm oil fuel ash-based hybrid alkaline cement. Influence of cement content on the compressive strength and engineering properties of palm oil fuel ash-based hybrid alkaline cement. Third International Conference on Technical Sciences (ICST2020), 28 - 30 November 2020, Tripoli – Libya.
  • [15] Kim, D., Lai, H. T., Chilingar, G. V., & Yen, T. F. (2006). Geopolymer formation and its unique properties. Environmental Geology, 51(1), 103– 111. [CrossRef]
  • [16] Zhang, Y. J., Wang, Y. C., Xu, D. L., Li, S. (2010). Mechanical performance and hydration mechanism of geopolymer composite reinforced by resin. Materials Science and Engineering, 527(24-25), 6574–6580. [CrossRef]
  • [17] Juenger, M. C. G., Winnefeld, F., Provis, J. L., Ideker, J. H. (2011). Advances in alternative cementitious binders. Cement and Concrete Research, 41(12), 1232–1243. [CrossRef]
  • [18] Duxson, P., Provis, J. L., Lukey, G. C., & Van Deventer, J. S. (2007). The role of inorganic polymer technology in the development of ‘Green Concrete’. Cement And Concrete Research, 37(12), 1590–1597. [CrossRef]
  • [19] Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & Van Deventer, J. S. (2007). Geopolymer technology: The current state of the art. Journal of Materials Science, 42(9), 2917– 2933. [CrossRef]
  • [20] Palomo, A., Grutzeck, M. W., & Blanco, M. T. (1999). Alkali-activated fly ashes: A cement for the future. Cement and Concrete Research, 29(8), 1323–1329. [CrossRef]
  • [21] Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014). Recycled aggregate from C&D waste & its use in concrete–A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials, 68, 501–516. [CrossRef]
  • [22] McLellan, B. C., Williams, R. P., Lay, J., Van Riessen, A., & Corder, G. D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. Journal of Cleaner Production, 19(9-10), 1080–1090. [CrossRef]
  • [23] Xu, H.P., & Deventer, J.V. (2003). Effect of source materials on geopolymerization. Industrial & Engineering Chemistry Research, 42(8), 1698–1706. [CrossRef]
  • [24] Akcaoglu, T., Cubukcuoglu, B., & Awad, A. (2019). A critical review of slag and fly-ash based geopolymer concrete. Computers and Concrete, 24(5), 453–458.
  • [25] Wang, W., Liu, X., Guo, L., & Duan, P. (2019). Evaluation of properties and microstructure of cement paste blended with metakaolin subjected to high temperatures. Materials, 12(6), Article 941. [CrossRef]
  • [26] Wang, K. (2004). Proceedings of the International Workshop on Sustainable Development and Concrete Technology, Beijing, China, May 20-21, 2004. Center for Transportation Research and Education, Iowa State University; 2004.
  • [27] Khale, D., & Chaudhary, R. (2007). Mechanism of geopolymerization and factors influencing its development: A review. Journal of Materials Science, 42(3), 729–746. [CrossRef]
  • [28] Oh, J. E., Monteiro, P. J., Jun, S. S., Choi, S., & Clark, S. M. (2010). The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cement and Concrete Research, 40(2), 189–196. [CrossRef]
  • [29] Garcia-Lodeiro, I., Donatello, S., Fernández-Jimenez, A., & Palomo, A. (2013). Basic principles of hybrid alkaline cements. Romanian Journal of Materials, 42(4), 330–335.
  • [30] Palomo, Á., Maltseva, O., García-Lodeiro, I., & Fernández-Jiménez, A. (2013). Hybrid alkaline cements. Part II: The clinker factor. Romanian Journal of Materials, 43(1), 74–80.
  • [31] Garcia-Lodeiro, I., Fernandez-Jimenez, A., & Palomo, A. (2013). Hydration kinetics in hybrid binders: Early reaction stages. Cement and Concrete Composites, 39, 82–92. [CrossRef]
  • [32] Provis, J. L. (2018). Alkali-activated materials. Cement and Concrete Research, 114, 40–48. [CrossRef]
  • [33] Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya, S. K. (2015). Geopolymer concrete: A review of some recent developments. Construction and Building Materials, 85, 78–90. [CrossRef]
  • [34] Naveena, K., & Rao, H. S. (2016). A review on strength and durability studies on geopolymer concrete produced with recycled aggregates. International Journal for Scientific Research and Development, 4(07), 27–30.
  • [35] Givi, A. N., Rashid, S. A., Aziz, F. N. A., & Salleh, M. A. M. (2010). Contribution of rice husk ash to the properties of mortar and concrete: A review. Journal of American Science, 6(3), 157–165.
  • [36] Feng, D., Provis, J. L., & Van Deventer, J. S. J. (2012). Thermal activation of albite for the synthesis of onepart mix geopolymers. Journal of the American Ceramic Society, 95(2), 565–572. [CrossRef]
  • [37] Duxson, P., & Provis, J. L. (2008). Designing precursors for geopolymer cements. Journal of The American Ceramic Society, 91(12), 3864–3869. [CrossRef]
  • [38] Koloušek, D., Brus, J., Urbanova, M., Andertova, J., Hulinsky, V., & Vorel, J. (2007). Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers. Journal of Materials Science, 42(22), 9267–9275. [CrossRef]
  • [39] Samadhi, T. W., Wulandari, W., Prasetyo, M.I., & Fernando MR. (2017). Reuse of coconut shell, rice husk, and coal ash blends in geopolymer synthesis. IOP Conference Series: Materials Science and Engineering, 248, Article 012008. [CrossRef]
  • [40] Xu, H., & Van Deventer, J. S. J. (2000). The geopolymerisation of alumino-silicate minerals. International Journal of Mineral Processing, 59(3), 247–266. [CrossRef]
  • [41] Provis, J. L., Palomo, A., & Shi, C. (2015). Advances in understanding alkali-activated materials. Cement and Concrete Research, 78, 110–125. [CrossRef]
  • [42] Mucsi, G., & Ambrus, M. (2017). Raw materials for geopolymerisation. In: The Publications of the MultiScience - XXXI. MicroCAD International Scientific Conference. University of Miskolc, 2017. [CrossRef]
  • [43] Mucsi, G., Kumar, S., Csőke, B., Kumar, R., Molnár, Z., Rácz, Á., Mádai, F., & Debreczeni, Á. (2015). Control of geopolymer properties by grinding of land filled fly ash. International Journal of Mineral Processing, 143, 50–58. [CrossRef]
  • [44] Balczár, I., Korim, T., Kovács, A., & Makó, É. (2016). Mechanochemical and thermal activation of kaolin for manufacturing geopolymer mortars–comparative study. Ceramics International, 42(14), 15367– 15375. [CrossRef]
  • [45] Rashad, A. M. (2013). Metakaolin as cementitious material: History, scours, production and composition–A comprehensive overview. Construction and Building Materials, 41, 303–318. [CrossRef]
  • [46] Tironi, A., Trezza, M. A., Scian, A. N., & Irassar, E. F. (2013). Assessment of pozzolanic activity of different calcined clays. Cement and Concrete Composites, 37, 319–327. [CrossRef]
  • [47] Vizcayno, C., De Gutierrez, R. M., Castelló, R., Rodríguez, E., & Guerrero, C. E. (2010). Pozzolan obtained by mechanochemical and thermal treatments of kaolin. Applied Clay Science, 49(4), 405– 413. [CrossRef]
  • [48] Marangu, J. M., Riding, K., Alaibani, A., Zayed, A., Thiong’o, J. K., & Wachira, J. M. (2020). Potential for selected kenyan clay in production of limestone calcined clay cement. Springer. [CrossRef]
  • [49] Yip, C. K., & Van Deventer, J. S. J. (2003). Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder. Journal of Materials Science, 38(18), 3851–3860. [CrossRef]
  • [50] Charles, E. W., & Lin DP. (2009). The chemistry of clay minerals weaver. Charles E.; Pollard, Lin D. 2009. https://masterpdf.pro/download/4330427- the-chemistry-of-clay-minerals-weaver-charles-epollard-lin-d Accessed September 9, 2022.
  • [51] Kadhim, A., Sadique, M., Al-Mufti, R., & Hashim, K. (2021). Developing one-part alkali-activated metakaolin/natural pozzolan binders using lime waste. Advances in Cement Research, 33(8), 342– 356. [CrossRef]
  • [52] Rocha, J., & Klinowski, J. (1990). Solid‐state NMR studies of the structure and reactivity of metakaolinite. Angewandte Chemie International Edition, 29(5), 553–554. [CrossRef]
  • [53] Mlinárik, L., & Kopecskó, K. (2013). Impact of metakaolin - a new supplementary material - on the hydration mechanism of cements. Civil Engineering, 56(2), Article 11.
  • [54] Ngui, F. M., Wachira, J. M., Thiong’o, J. K., & Marangu, J. M. (2019). Performance of Ground Clay Brick Mortars in Simulated Chloride and Sulphate Media. Journal of Engineering, 2019, Article 6430868. [CrossRef]
  • [55] Dubois, J., Murat, M., Amroune, A., Carbonneau, X., & Gardon, R. (1995). High-temperature transformation in Kaolinite: The role of the crystallinity and of the firing atmosphere. Applied Clay Science, 10(3), 187–198. [CrossRef]
  • [56] Shvarzman, A., Kovler, K., Grader, G. S., & Shter, G. E. (2003). The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite. Cement and Concrete Research, 33(3), 405– 416. [CrossRef]
  • [57] Sha, W., & Pereira, G. B. (2001). Differential scanning calorimetry study of ordinary Portland cement paste containing metakaolin and theoretical approach of metakaolin activity. Cement and Concrete Composites, 23(6), 455–461. [CrossRef]
  • [58] Zhang, Z., Provis, J. L., Reid, A., & Wang, H. (2014). Geopolymer foam concrete: An emerging material for sustainable construction. Construction and Building Materials, 56, 113–127. [CrossRef]
  • [59] Provis, J. L., & Bernal, S. A. (2014). Geopolymers and related alkali-activated materials. Annual Review of Materials Research, 44, 299–327. [CrossRef]
  • [60] Toniolo, N., & Boccaccini, A. R. (2017). Fly ashbased geopolymers containing added silicate waste. A review. Ceramics International, 43(17), 14545– 14551. [CrossRef]
  • [61] Payá, J., Monzó, J., Borrachero, M. V., & Tashima, M. M. (2015). Reuse of Aluminosilicate Industrial Waste Materials in the Production of Alkali-Activated Concrete Binders. In Handbook of Alkali-Activated Cements, Mortars and Concretes. F. Pacheco-Torgal, J. A. Labrincha, C. Leonelli, A. Palomo, P. Chindaprasirt, (Eds.), (pp. 487–518). Woodhead Publishing. [CrossRef]
  • [62] Arafa, S. A., Ali, A. Z. M., Awal, A. S. M. A., & Loon, L. Y. (2018). Optimum mix for fly ash geopolymer binder based on workability and compressive strength. IOP Conference Series: Earth and Environmental Science, 140, Article 012157. [CrossRef]
  • [63] Komnitsas, K., & Zaharaki, D. (2007). Geopolymerisation: A review and prospects for the minerals industry. Minerals Engineering, 20(14), 1261– 1277. [CrossRef]
  • [64] Swanepoel, J. C., & Strydom, C. A. (2002). Utilisation of fly ash in a geopolymeric material. Applied Geochemistry, 17(8), 1143–1148. [CrossRef]
  • [65] Kumar, S., Djobo, J. N. Y., Kumar, A., & Kumar, S. (2016). Geopolymerization behavior of fine ironrich fraction of brown fly ash. Journal of Building Engineering, 8, 172–178. [CrossRef]
  • [66] Lloyd, R. R., Provis, J. L., & Van Deventer, J. S. (2009). Microscopy and microanalysis of inorganic polymer cements. 2: The gel binder. Journal of Materials Science, 44(2), 620–631. [CrossRef]
  • [67] Kumar, S., Kumar, R., & Mehrotra, S. P. (2010). Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. Journal of Materials Science, 45(3), 607–615. [CrossRef]
  • [68] Higuera, I., Varga, C., Palomo, J. G., Gil-Maroto, A., Vázquez, T., Puertas, F. (2012). Mechanical behaviour of alkali-activated blast furnace slag-activated me-takaolin blended pastes, Statistical study. Materiales de Construcción, 62(306):163–181. [CrossRef]
  • [69] Roy, D. M. (1999). Alkali-activated cements opportunities and challenges. Cement and Concrete Research, 29(2), 249–254. [CrossRef]
  • [70] Yip, C. K., Lukey, G. C., & van Deventer Dean, J. S. J. (2012). Effect of blast furnace slag addition on microstructure and properties of metakaolinite geopolymeric materials. In: N. P. Bansal, J. P. Singh, W.M. Kriven, H. Schneider, (Eds,). Ceramic Transactions Series (pp. 187–209). John Wiley & Sons, Inc. [CrossRef]
  • [71] Buchwald, A., Hilbig, H., & Kaps, C. (2007). Alkali-activated metakaolin-slag blends—performance and structure in dependence of their composition. Journal of Materials Science, 42(9), 3024–3032. [CrossRef]
  • [72] Hadi, M. N., Farhan, N. A., & Sheikh, M. N. (2017). Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method. Construction and Building Materials, 140, 424– 431. [CrossRef]
  • [73] Hasnaoui, A., Ghorbel, E., & Wardeh, G. (2021). Effect of curing conditions on the performance of geopolymer concrete based on granulated blast furnace slag and metakaolin. Journal of Materials in Civil Engineering, 33(3), Article 04020501. [CrossRef]
  • [74] Dani, M., Borad, J., & Shukla, R. (2015). Review on utilization ofmodified red mud by organic modifier in composite material. International Journal of Advance Research in Science and Engineering, 4(3), 216–225. [CrossRef]
  • [75] Alshaaer, M., & Jeon, H. Y. (2020). Geopolymers and other geosynthetics. Intech Open. [CrossRef]
  • [76] Kumar, A., & Kumar, S. (2013). Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization. Construction and Building Materials, 38, 865–871. [CrossRef]
  • [77] Liang, X., & Ji, Y. (2021). Experimental study on durability of red mud-blast furnace slag geopolymer mortar. Construction and Building Materials, 267, Article 120942. [CrossRef]
  • [78] Mucsi G., Szabó, R., Rácz, Á., Kristály, F., & Kumar S. (2019). Combined utilization of red mud and mech,anically activated fly ash in geopolymer. Rudarsko-Geološko-Naftni Zbornik. 34(1), Article 44. [CrossRef]
  • [79] Vance, E. R., Perera, R., Imperia, D. S., Cassidy, P., Davis, D. J., & Gourley, J. T. (2009). Perlite waste as a precursor for geopolymer formation. Journal of the Australian Ceramic Society, 45(1), 44-49. [CrossRef]
  • [80] Vaou, V., & Panias, D. (2010). Thermal insulating foamy geopolymers from perlite. Minerals Engineering, 23(14), 1146–1151. [CrossRef]
  • [81] Fernández-Jiménez, A., García-Lodeiro, I., & Palomo, A. (2007). Durability of alkali-activated fly ash cementitious materials. Journal of Materials Science, 42(9), 3055–3065. [CrossRef]
  • [82] Shi, C., Jiménez, A. F., & Palomo, A. (2011). New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research, 41(7), 750–763. [CrossRef]
  • [83] Davidovits, J. (1991). Geopolymers: Inorganic polymeric new materials. Journal of Thermal Analysis and Calorimetry, 37(8), 1633–1656. [CrossRef]
  • [84] Catauro, M., Dal Poggetto, G., Sgarlata, C., Ciprioti, S. V., Pacifico, S., & Leonelli, C. (2020). Thermal and microbiological performance of metakaolin-based geopolymers cement with waste glass. Applied Clay Science, 197, Article 105763. [CrossRef]
  • [85] Yousef, R. I., El-Eswed, B., Alshaaer, M., Khalili, F., & Rahier, H. (2012). Degree of reactivity of two kaolinitic minerals in alkali solution using zeolitic tuff or silica sand filler. Ceramics International, 38(6), 5061–5067.
  • [86] Davidovits J. (1994). Properties of geopolymer cements. Geopolymer Institue. [CrossRef]
  • [87] Khan, H. A., Castel, A., & Khan, M. S. (2020). Corrosion investigation of fly ash based geopolymer mortar in natural sewer environment and sulphuric acid solution. Corrosion Science, 168, Article 108586. [CrossRef]
  • [88] Yan, B., Duan, P., & Ren, D. (2017). Mechanical strength, surface abrasion resistance and microstructure of fly ash-metakaolin-sepiolite geopolymer composites. Ceramics International, 43(1), 1052–1060.
  • [89] Shima, P., Szczotok, A. M., Rodríguez, J. F., Valentini, L., & Lanzón, M. (2016). Effect of freeze-thaw cycles on the mechanical behavior of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials. Elsevier Enhanced Reader. [CrossRef]
  • [90] Zhao, R., Yuan, Y., Cheng, Z., Wen, T., Li, J., Li, F., & Ma, Z. J. (2019). Freeze-thaw resistance of Class F fly ash-based geopolymer concrete. Construction and Building Materials, 222, 474–483. [CrossRef]
  • [91] Huseien, G. F., & Shah, K. W. (2020). Durability and life cycle evaluation of self-compacting concrete containing fly ash as GBFS replacement with alkali activation. Construction and Building Materials, 235, Article 117458. [CrossRef]
  • [92] Puertas, F., & Fernández-Jiménez, A. (2003). Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes. Cement and Concrete Composites, 25(3), 287–292. [CrossRef]
  • [93] Detwiler R. J., & Taylor P. C. (2005). Specifier’s guide to durable concrete. Engineering Bulletin 221, https://trid.trb.org/view/900218 Accessed on Sep 27, 2022.
  • [94] Faten, S., Hani, K., Hubert, R., & Jan, W. (2015). Durability of alkali activated cement produced from kaolinitic clay. Applied Clay Science, 104, 229–237. [CrossRef]
  • [95] Chen, K., Wu, D., Xia, L., Cai, Q., Zhang, Z. (2021). Geopolymer concrete durability subjected to aggressive environments – A review of influence factors and comparison with ordinary Portland cement. Construction and Building Materials, 279, Article 122496. [CrossRef]
  • [96] Koenig, A., & Dehn, F. (2016). Main considerations for the determination and evaluation of the acid resistance of cementitious materials. Materials and Structures, 49(5), 1693–1703. [CrossRef]
  • [97] Temuujin, J., Minjigmaa, A., Lee, M., Chen-Tan, N., & Van Riessen, A. (2011). Characterisation of class F fly ash geopolymer pastes immersed in acid and alkaline solutions. Cement and Concrete Composites, 33(10), 1086–1091. [CrossRef]
  • [98] Matalkah, F., Soroushian, P., Balchandra, A., & Peyvandi, A. (2017). Characterization of Alkali-Activated Nonwood Biomass Ash–Based Geopolymer Concrete. Journal of Materials in Civil Engineering, 29(4), Article 04016270. [CrossRef]
  • [99] Bakharev, T. (2005). Resistance of geopolymer materials to acid attack. Cement and Concrete Research, 35(4), 658–670. [CrossRef]
  • [100] Bouguermouh, K., Bouzidi, N., Mahtout, L., Pérez-Villarejo, L., Lourdes, M., & Martínez-Cartas, M. L. (2017). Effect of acid attack on microstructure and composition of metakaolin-based geopolymers: The role of alkaline activator. Journal of Non-Crystalline Solids, 463, 128–137. [CrossRef]
  • [101] Ariffin, M. A. M., Bhutta, M. A. R., Hussin, M. W., Tahir, M. M., & Aziah, N. (2013). Sulfuric acid resistance of blended ash geopolymer concrete. Construction and Building Materials, 43, 80–86. [CrossRef]
  • [102] Sata, V., Sathonsaowaphak, A., & Chindaprasirt, P. (2012). Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack. Cement and Concrete Composites, 34(5), 700–708. [CrossRef]
  • [103] Bernal, S. A., Rodríguez, E. D., Mejía de Gutiérrez, R., & Provis, J. L. (2012). Performance of alkali-activated slag mortars exposed to acids. Journal of Sustainable Cement-Based Materials, 1(3), 138–151. [CrossRef]
  • [104] Dimas, D., Giannopoulou, I., & Panias, D. (2009). Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology. Journal of Materials Science, 44(14), 3719– 3730. [CrossRef]
  • [105] Ajay, A., Ramaswamy, K. P., & Thomas, A. V. (2020). A critical review on the durability of geopolymer composites in acidic environment. IOP Conference Series: Earth and Environmental Science, 491(1), Article 012044. [CrossRef]
  • [106] Chen‐Tan, N. W., Van Riessen, A., Ly, C. V., & Southam, D. C. (2009). Determining the] reactivity of a fly ash for production of geopolymer. Journal of the American Ceramic Society, 92(4), 881–887. [CrossRef]
  • [107] Koenig, A., Herrmann, A., Overmann, S., & Dehn, F. (2017). Resistance of alkali-activated binders to organic acid attack: Assessment of evaluation criteria and damage mechanisms. Construction and Building Materials, 151, 405–413. [CrossRef]
  • [108] Roy, D. M., Arjunan, P., & Silsbee, M. R. (2001). Effect of silica fume, metakaolin, and low-calcium fly ash on chemical resistance of concrete. Cement and Concrete Research, 31(12), 1809–1813.
  • [109] Shi, C., & Stegemann, J. A. (2000). Acid corrosion resistance of different cementing materials. Cement and Concrete Research, 30(5), 803–808. [CrossRef]
  • [110] Mori, T., Nonaka, T., Tazaki, K., Koga, M., Hikosaka, Y., & Noda, S. (1992). Interactions of nutrients, moisture and PH on microbial corrosion of concrete sewer pipes. Water Research, 26(1), 29–37. [CrossRef]
  • [111] Davis, J. L., Nica, D., Shields, K., & Roberts, D. J. (1998). Analysis of concrete from corroded sewer pipe. International Biodeterioration & Biodegradation, 42(1), 75–84. [CrossRef]
  • [112] Marquez-Peñaranda, J. F., Sanchez-Silva, M., Husserl, J., & Bastidas-Arteaga, E. (2016). Effects of biodeterioration on the mechanical properties of concrete. Materials and Structures, 49(10), 4085– 4099. [CrossRef]
  • [113] Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2008). Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products. Construction and Building Materials, 22(7), 1305–1314. [CrossRef]
  • [114] Bernal, S. A., Provis, J. L., Rose, V., & De Gutiérrez, R. M. (2013). High‐resolution X‐ray diffraction and fluorescence microscopy characterization of alkali‐activated slag‐metakaolin binders. Journal of The American Ceramic Society, 96(6), 1951–1957. [CrossRef]
  • [115] Davidovits, J. (1994). Geopolymers: man-made rock geosynthesis and the resulting development of very early high strength cement. Journal of Materials Education, 16(2-3), 91–139.
  • [116] Lee, N. K., & Lee, H. K. (2016). Influence of the slag content on the chloride and sulfuric acid resistances of alkali-activated fly ash/slag paste. Cement and Concrete Composites, 72, 168–179. [CrossRef]
  • [117] Bondar, D., Lynsdale, C. J., Milestone, N. B., & Hassani, N. (2015). Sulfate resistance of alkali activated pozzolans. International Journal of Concrete Structures and Materials, 9(2), 145–158. [CrossRef]
  • [118] Lloyd, R. R., Provis, J. L., & Van Deventer, J. S. (2012). Acid resistance of inorganic polymer binders. 1. Corrosion rate. Materials and Structures, 45(1), 1–14. [CrossRef]
  • [119] Bakharev T. (2005). Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cement and Concrete Research, 35(6), 1224–1232. [CrossRef]
  • [120] Senhadji, Y., Escadeillas, G., Mouli, M., Benosman, A. S., & Khelafi, H. (2014). Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar. Powder Technology, 254, 314–323. [CrossRef]
  • [121] Thokchom, S., Dutta, D., & Ghosh, S. (2011). Effect of incorporating silica fume in fly ash geopolymers. International Journal of Civil and Environmental Engineering, 5(12), 750–754.
  • [122] Purbasari, A., Samadhi, T. W., & Bindar, Y. (2012). Sulfuric acid resistance of geopolymer mortars from co-combustion residuals of bamboo and kaolin. ASEAN Journal of Chemical Engineering, 18(2), 22–30.
  • [123] Lavanya, G., & Jegan, J. (2015). Durability study on high calcium fly ash based geopolymer concrete. Advances in Materials Science and Engineering, 6, 1–7. [CrossRef]
  • [124] Song, Y., Liu, J., Hui, Wang., & Shu, H. (2019). Research progress of nitrite corrosion inhibitor in concrete. International Journal of Corrosion, 5, 1–9. [CrossRef]
  • [125] Kumaravel, S., & Girija, K. (2013). Acid and salt resistance of geopolymer concrete with varying concentration of NaOH. Journal of Engineering Research and Studies, 4(4), 1–3.
  • [126] Ramaswamy, K. P., & Santhanam, M. (2019). Degradation kinetics of cement-based materials in citric acid. In A. R. M. Rao, & K. Ramanjaneyulu (Eds.), Recent Advances in Structural Engineering, Volume 1 (pp. 891–905). Springer. [CrossRef]
  • [127] Suiryanrayna, M. V., & Ramana, J. V. (2015). A review of the effects of dietary organic acids fed to swine. Journal of Animal Science and Biotechnology, 6(1), 1–11. [CrossRef]
  • [128] Ukrainczyk, N., Muthu, M., Vogt, O., & Koenders, E. (2019). Geopolymer, calcium aluminate, and Portland cement-based mortars: Comparing degradation using acetic acid. Materials, 12(19), Article 3115. [CrossRef]
  • [129] Xie, F., Li, J., Zhao, G., Zhou, P., & Zheng, H. (2020). Experimental study on performance of cast-in-situ recycled aggregate concrete under different sulfate attack exposures. Construction and Building Materials, 253, Article 119144. [CrossRef]
  • [130] Villa, C., Pecina, E. T., Torres, R., & Gómez, L. (2010). Geopolymer synthesis using alkaline activation of natural zeolite. Construction and Building Materials, 24(11), 2084–2090. [CrossRef]
  • [131] Alcamand, H. A., Borges, P. H., Silva, F. A., & Trindade, A. C. C. (2018). The effect of matrix composition and calcium content on the sulfate durability of metakaolin and metakaolin/slag alkali-activated mortars. Ceramics International, 44(5), 5037–5044. [CrossRef]
  • [132] Taylor, H. F. W. (1997). Cement Chemistry (2nd ed.). Thomas Telford Publishing. [CrossRef]
  • [133] Menéndez, E., Matschei, T., & Glasser, F. P. (2013). Sulfate attack of concrete. In: M. Alexander, A. Bertron, N. De Belie, (Eds,). Performance of Cement-Based Materials in Aggressive Aqueous Environments (pp. 7–74). Vol 10. RILEM State-of-theArt Reports. Springer. [CrossRef]
  • [134] Alexander, M., Bertron, A., & De Belie, N., (Eds.). (2013). Performance of Cement-Based Materials in Aggressive Aqueous Environments: State-of-theArt Report. RILEM TC 211 - PAE. Vol 10. Springer. [CrossRef]
  • [135] Elyamany, H. E., Abd Elmoaty, M., & Elshaboury, A. M. (2018). Magnesium sulfate resistance of geopolymer mortar. Construction and Building Materials, 184, 111–127. [CrossRef]
  • [136] Ismail, I., Bernal, S. A., Provis, J. L., Hamdan, S., & Van Deventer, J. S. (2013). Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Materials and Structures, 46(3), 361–373.
  • [137] Ismail, I., Bernal, S. A., Provis, J. L., San Nicolas, R., Brice, D. G., Kilcullen, A. R., Hamdan, S., & Van Deventer, J. S. (2013). Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes. Construction and Building Materials, 48, 1187–1201. [CrossRef]
  • [138] Chithambar Ganesh, A., Rajesh Kumar, K., Vinod Kumar, M., et al. (2020). Durability Studies on the Hybrid Fiber reinforced Geopolymer concrete made of M-sand under ambient curing. IOP Conf Ser: Mater Sci Eng. 981(3):032074. doi:10.1088/ 1757-899X/981/3/032074. [CrossRef]
  • [139] Albitar, M., Ali, M. M., Visintin, P., & Drechsler, M. (2017). Durability evaluation of geopolymer and conventional concretes. Construction and Building Materials, 136, 374–385. [CrossRef]
  • [140] Gupta, A., Gupta, N., Saxena, K. K. (2021). Experimental study of the mechanical and durability properties of Slag and Calcined Clay based geopolymer composite. Advances in Materials and Processing Technologies, 10, 1–15.
  • [141] Thokchom, S., Ghosh, P., & Ghosh, S. (2009). Acid resistance of fly ash based geopolymer mortars. International Journal of Recent Trends in Engineering, 1(6), 36-40.
  • [142] Choi, Y. S., Kim, J. G., & Lee, K. M. (2006). Corrosion behavior of steel bar embedded in fly ash concrete. Corrosion Science, 48(7), 1733–1745. [CrossRef]
  • [143] Noushini, A., Castel, A., Aldred, J., & Rawal, A. (2020). Chloride diffusion resistance and chloride binding capacity of fly ash-based geopolymer concrete. Cement and Concrete Composites, 105, Article 103290. [CrossRef]
  • [144] Wang, A., Zheng, Y., Zhang, Z., Liu, K., Li, Y., Shi, L., & Sun, D. (2020). The durability of alkali-activated materials in comparison with ordinary Portland cements and concretes: A review. Engineering, 6(6), 695–706. [CrossRef]
  • [145] Yuan, Q., Shi, C., De Schutter, G., Audenaert, K., & Deng, D. (2009). Chloride binding of cement-based materials subjected to external chloride environment–a review. Construction and Building Materials, 23(1), 1–13. [CrossRef]
  • [146] Gunasekara, C., Law, D., Bhuiyan, S., Setunge, S., & Ward, L. (2019). Chloride induced corrosion in different fly ash based geopolymer concretes. Construction and Building Materials, 200, 502–513. [CrossRef]
  • [147] de Oliveira, L. B., De Azevedo, A. R., Marvila, M. T., Pereira, E. C., Fediuk, R., & Vieira, C. M. F. (2022). Durability of geopolymers with industrial waste. Case Studies in Construction Materials, 16, Article e00839. [CrossRef]
  • [148] Zhang, J., Shi, C., & Zhang, Z. (2019). Chloride binding of alkali-activated slag/fly ash cements. Construction and Building Materials, 226, 21– 31. [CrossRef]
  • [149] Logesh Kumar, M., & Revathi, V. (2021). Durability Performance On Alkali Activated Metakaolin And Bottom Ash Based Geopolymer Concrete. Preprint. https://doi.org/10.21203/rs.3.rs-703480/v1[CrossRef]
  • [150] Parveen, S., Pham, T. M., Lim, Y. Y., Pradhan S. S., Jatin, & Kumar, J. (2021). Performance of rice husk Ash-Based sustainable geopolymer concrete with Ultra-Fine slag and Corn cob ash. Construction and Building Materials, 279, Article 122526. [CrossRef]
  • [151] Mashaly, A. O., El-Kaliouby, B. A., Shalaby, B. N., El– Gohary, A. M., & Rashwan, M. A. (2016). Effects of marble sludge incorporation on the properties of cement composites and concrete paving blocks. Journal of Cleaner Production, 112, 731–741. [CrossRef]
  • [152] Saranya, P., Nagarajan, P., & Shashikala, A. P. (2021). Performance studies on steel fiber–Reinforced GGBS-dolomite geopolymer concrete. Journal of Materials in Civil Engineering, 33(2), Article 04020447. [CrossRef]
  • [153] Saxena, R., Gupta, T., Sharma, R. K., & Panwar, N. L. (2021). Influence of granite waste on mechanical and durability properties of fly ash-based geopolymer concrete. Environment, Development and Sustainability, 23(12), 17810–17834. [CrossRef]
  • [154] Sravanthi, D., Himath Kumar, Y., Sarath Chandra Kumar, B.. (2020). Comparative study on flow characteristics, strength and durability of GGBS based geopolymer concrete. IOP Conference Series: Materials Science and Engineering, 912(6), Article 062032. [CrossRef]
  • [155] De Ceukelaire, L., & Van Nieuwenburg, D. (1993). Accelerated carbonation of a blast-furnace cement concrete. Cement and Concrete Research, 23(2), 442–452. [CrossRef]
  • [156] Khan, M. S. H., Castel, A., & Noushini, A. (2017). Carbonation of a low-calcium fly ash geopolymer concrete. Magazine of Concrete Research, 69(1), 24–34.
  • [157] Adamczyk, K., Prémont-Schwarz, M., Pines, D., Pines, E., & Nibbering, E. T. J. (2009). Real-time observation of carbonic acid formation in aqueous solution. Science, 326(5960), 1690–1694. [CrossRef]
  • [158] Dubina, E., Korat, L., Black, L., Strupi-Šuput, J., & Plank, J. (2013). Influence of water vapour and carbon di-oxide on free lime during storage at 80°C, studied by Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 11, 299– 303. [CrossRef]
  • [159] Fernández-Díaz, L., Fernández-González, Á., & Prieto, M. (2010). The role of sulfate groups in controlling CaCO3 polymorphism. Geochimica et Cosmochimi-ca Acta, 74(21), 6064–6076. [CrossRef]
  • [160] Johannesson, B., & Utgenannt, P. (2001). Microstructural changes caused by carbonation of cement mortar. Cement and Concrete Research, 31(6), 925–931. [CrossRef]
  • [161] Bernal, S. A., de Gutierrez, R. M., Provis, J. L., & Rose, V. (2010). Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cement and Concrete Research. 40(6), 898–907. [CrossRef]
  • [162] Liu, J., Yao, S., Ba, M., He, Z., & Li, Y. (2016). Effects of carbonation on micro structures of hardened cement paste. Journal Wuhan University of Technology, Materials Science Edition, 31(1), 146–150. [CrossRef]
  • [163] Zhang, R., & Panesar, D. K. (2020). Carbonated binder systems containing reactive MgO and Portland cement: Strength, chemical composition and pore structure. Journal of Cleaner Production, 271, Article 122021. [CrossRef]
  • [164] von Greve-Dierfeld, S., Lothenbach, B., Vollpracht, A., Wu, B., Huet, B., Andrade C., Medina, C., Thiel, C., Gruyaert, E., Vanoutrive, H., Saez del Bosque, I. F., Ignjatovic, I., Elsen, J., Provis, J. L., Scrivener, K., Thienel K-C., Sideris, K., Zajac, M., Alderete N., Cizer, Ö., Van den Heede, P., Hooton, R.D., Kamali-Bernard, S., Bernal, S. A., Zhao, Z., Shi, Z., & De Belle, N. (2020). Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCC. Materials and Structure, 53(6), Article 136. [CrossRef]
  • [165] Leemann A., & Moro, F. (2016). Carbonation of concrete: the role of CO2 concentration, relative humidity and CO2 buffer capacity. Materials and Structures, 50(1), Article 30. [CrossRef]
  • [166] Huseien, G. F., Sam, A. R. M, Shah, K. W., Mirza, J., & Tahir, M. (2019). Evaluation of alkali-activated mortars containing high volume waste ceramic powder and fly ash replacing GBFS. Construction and Building Materials, 210, 78–92. [CrossRef]
  • [167] Morandeau, A. (2014). Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties. Cement and Concrete Research, 2014, Article 18. [CrossRef]
  • [168] Aziz, I. H., Al Bakri Abdullah, M. M., Cheng Yong, H., Yun Ming, L., Hussin, K., Azimi, E. A. (2015). A review on mechanical properties of geopolymer composites for high temperature application. KEM, 660, 34–38. [CrossRef]
  • [169] Pasupathy, K., Berndt, M., Sanjayan, J., Rajeev, P., Cheema, D. S. (2018). Durability performance of precast fly ash–based geopolymer concrete under atmospheric exposure conditions. Journal of Materials in Civil Engineering, 30(3), Article 04018007. [CrossRef]
  • [170] Li, Z., & Li, S. (2020). Effects of wetting and drying on alkalinity and strength of fly ash/slag-activated materials. Construction and Building Materials, 254, Article 119069. [CrossRef]
  • [171] Li, N., Farzadnia, N., & Shi, C. (2017). Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation. Cement and Concrete Research, 100, 214–226. [CrossRef]
  • [172] Vu, T. H., Gowripalan, N., De Silva, P., Paradowska, A., Garbe, U., Kidd, P., & Sirivivatnanon, V. (2020). Assessing carbonation in one-part fly ash/slag geopolymer mortar: Change in pore characteristics using the stateof-the-art technique neutron tomography. Cement and Concrete Composites, 114, Article 103759. [CrossRef]
  • [173] Morla, P., Gupta, R., Azarsa, P., & Sharma, A. (2021). Corrosion evaluation of geopolymer concrete made with fly ash and bottom ash. Sustainability, 13(1), Article 398. [CrossRef]
  • [174] Law, D. W., Adam, A. A., Molyneaux, T. K., Patnaikuni, I., & Wardhono, A. (2015). Long term durability properties of class F fly ash geopolymer concrete. Materials and Structures, 48(3), 721–731. [CrossRef]
  • [175] Li, Z., & Li, S. (2018,). Carbonation resistance of fly ash and blast furnace slag based geopolymer concrete. Construction and Building Materials, 163, 668–680. [CrossRef]
  • [176] Bakharev, T., Sanjayan, J. G., Cheng, Y. B. (2001). Resistance of alkali-activated slag concrete to carbonation. Cement and Concrete Research, 31(9), 1277–1283. [CrossRef]
  • [177] Marcos-Meson, V., Fischer, G., Edvardsen, C., Skovhus, T. L., & Michel, A. (2019). Durability of steel fibre reinforced Concrete (SFRC) exposed to acid attack – a literature review. Construction and Building Materials, 200, 490–501. [CrossRef]
  • [178] Park, J. W., Ann, K. Y., & Cho, C. G. (2015). Resistance of alkali-activated slag concrete to chloride-induced corrosion. Advances in Materials Science and Engineering, 2015, 1–7. [CrossRef]
  • [179] Nkwaju, R. Y., Djobo, J. N. Y., Nouping, J. N. F., Huisken, P. W. M., Deutou, J.G. N., & Courard, L. (2019). Iron-rich laterite-bagasse fibers based geopolymer composite: Mechanical, durability and insulating properties. Applied Clay Science, 183, Article 105333. [CrossRef]
  • [180] Huang, G., Ji, Y., Li, J., Hou, Z., & Jin, C. (2018). Use of slaked lime and Portland cement to improve the resistance of MSWI bottom ash-GBFS geopolymer concrete against carbonation. Construction and Building Materials, 166, 290–300. [CrossRef]
  • [181] Pasupathy, K., Berndt, M., Sanjayan, J., Rajeev, P., & Cheema, D. S. (2017). Durability of low calcium fly ash based geopolymer concrete culvert in a saline environment. Cement and Concrete Research, 100, 297–310. [CrossRef]
  • [182] Yahya, Z., Bakri Abdullah, M. M. A., Jing, L. Y., Li, L.Y., & Razak, R. A. (2020). Seawater exposure effect on fly ash based geopolymer concrete with inclusion of steel fiber. IOP Conference Series: Materials Science and Engineering, 743(1), Article 012013. [CrossRef]
  • [183] Xu, T., Huang, J., Castel, A., Zhao, R., & Yang, C. (2018). Influence of steel–concrete bond damage on the dynamic stiffness of cracked reinforced concrete beams. Advances in Structural Engineering, 21(13), 1977–1989. [CrossRef]
  • [184] Liang, G., Liu, T., Li, H., Dong, B., & Shi, T. (2022). A novel synthesis of lightweight and high-strength green geopolymer foamed material by rice husk ash and ground-granulated blast-furnace slag. Resources, Conservation and Recycling. 176, Article 105922. [CrossRef]
  • [185] Liang, M., Chang, Z., Wan, Z., Gan, Y., Schlangen, E., & Šavija, B. (2022). Interpretable Ensemble-Machine-Learning models for predicting creep behavior of concrete. Cement and Concrete Composites, 125, Article 104295. [CrossRef]
  • [186] Rovnaník, P. (2010). Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Construction and Building Materials, 24(7), 1176–1183. [CrossRef]
  • [187] Yusuf, M. O., Megat Johari, M. A., Ahmad, Z. A., & Maslehuddin, M. (2014). Shrinkage and strength of alkaline activated ground steel slag/ultrafine palm oil fuel ash pastes and mortars. Materials & Design, 63, 710–718. [CrossRef]
  • [188] Seneviratne, C., Gunasekara, C., Law, D. W., Setunge, S., & Robert, D. (2020). Creep, shrinkage and permeation characteristics of geopolymer aggregate concrete: long-term performance. Archive of Civil and Mechanical Engineering, 20(4), Article 140. [CrossRef]
  • [189] Mechtcherine, V., & Hans-Wolf Reinhardt, W. (2012). Application of super absorbent polymers (SAP) in concrete construction. Springer. [CrossRef]
  • [190] Slowik, V., & Ju, J. W. (2011). Discrete modeling of plastic cement paste subjected to drying. Cement and Concrete Composites, 33(9), 925–935. [CrossRef]
  • [191] Gettu, R., Patel, A., Rathi, V., Prakasan, S., Basavaraj, S., & Maity, S. (2019). Influence of supplementary cementitious materials on the sustainability parameters of cements and concretes in the Indian context. Materials and Structures, 52(1), Article 10. [CrossRef]
  • [192] Neupane, K., & Hadigheh, S. A. (2021). Sodium hydroxide-free geopolymer binder for prestressed concrete applications. Construction and Building Materials, 293, Article 123397. [CrossRef]
  • [193] Hardjito, D., & Rangan, B. V. (2005). Development and properties of low-calcium fly ash-based geopolymer concrete. Research Report GC 1 Faculty of Engineering Curtin University of Technology Perth, Australia.
  • [194] Mehta, A., Siddique, R., Ozbakkaloglu, T., Uddin Ahmed Shaikh, F., & Belarbi, R. (2020). Fly ash and ground granulated blast furnace slag-based alkali-activated concrete: Mechanical, transport and microstructural properties. Construction and Building Materials, 257, Article 119548. [CrossRef]
  • [195] Duxson, P., Provis, J. L., Lukey, G. C., Mallicoat, S. W., Kriv-en, W. M., & Van Deventer, J. S. (2005). Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269(1-3), 47–58. [CrossRef]
  • [196] Amin, N., Alam, S., & Gul, S. (2016). Effect of thermally activated clay on corrosion and chloride resistivity of cement mortar. Journal of Cleaner Production, 111, 155–160. [CrossRef]
  • [197] Saloni, P., & Pham, T. M. (2020). Enhanced properties of high-silica rice husk ash-based geopolymer paste by incorporating basalt fibers. Construction and Building Materials, 245, Article 118422. [CrossRef]
  • [198] Saha, A. K. (2018). Effect of class F fly ash on the durability properties of concrete. Sustainable Environment Research, 28(1), 25–31. [CrossRef]
  • [199] Khan, M. S. H., Castel, A., & Noushini A. (2017). The effect of adding fibers on dry shrinkage of geopolymer concrete. Civil Engineering Journal, 7(12), 2099–2108. [CrossRef]
  • [200] Frayyeh, Q. J., & Kamil, M. H. (2021). The effect of adding fibers on dry shrinkage of geopolymer concrete. Civil Engineering Journal, 7(12), 2099– 2108. [CrossRef]
  • [201] Banthia, N., & Gupta, R. (2006). Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cement and Concrete Research, 36(7), 1263–1267. [CrossRef]
  • [202] Kani, E. N., & Allahverdi, A. (2011). Investigating shrinkage changes of natural pozzolan based geopolymer cementpaste. Iranian Journal of Materials Science and Engineering, 8(3), 50–60.
  • [203] Nazari, A., Bagheri, A., Sanjayan, J., Yadav, P. N. J. A., & Tariq, H. (2019). A comparative study of void distribution pattern on the strength development between opc-based and geopolymer concrete. Advances in Materials Science and Engineering, 2019, Article 1412757. [CrossRef]
  • [204] Negahban, E., Bagheri, A., & Sanjayan, J. (2021). Pore gradation effect on Portland cement and geopolymer concretes. Cement and Concrete Composites, 122, Article 104141. [CrossRef]
  • [205] Amin, M., Elsakhawy, Y., Abu El-hassan, K., A., Abdelsalam, B. A. (2021). Behavior evaluation of sustainable high strength geopolymer concrete based on fly ash, metakaolin, and slag. Case Studies in Construction Materials, 16, Article e00976. [CrossRef]
  • [206] Aydın, S., & Baradan, B. (2007). Effect of pumice and fly ash incorporation on high temperature resistance of cement-based mortars. Cement and Concrete Research, 37(6), 988–995. [CrossRef]
  • [207] Lahoti, M., Tan, K. H., Yang, E. H. (2019). A critical review of geopolymer properties for structural fire-resistance applications. Construction and Building Materials, 221, 514–526. [CrossRef]
  • [208] Lin, W., Zhou, F., Luo, W., & You, L. (2021). Recycling the waste dolomite powder with excellent consolidation properties: Sample synthesis, mechanical evaluation, and consolidation mechanism analysis. Construction and Building Materials, 290, Article 123198. [CrossRef]
  • [209] Jeon, D., Yum, W. S., Song, H., Sim, S., & Oh, J. E. (2018). The temperature-dependent action of sugar in the retardation and strength improvement of Ca(OH)2-Na2CO3-activated fly ash systems through calcium complexation. Construction and Building Materials, 190, 918–928. [CrossRef]
  • [210] Rivera, O. G., Long, W. R., Weiss Jr., CA, Moser, R. D., Williams, B. A., Gore, E. R., & Allison, P. G. (2016). Effect of elevated temperature on alkali-activated geopolymeric binders compared to portland cement-based binders. Cement and Concrete Research, 90, 43–51. [CrossRef]
  • [211] Jiang, X., Xiao, R., Ma, Y., Zhang, M., Bai, Y., & Huang, B. (2020). Influence of waste glass powder on the physico-mechanical properties and microstructures of fly ash-based geopolymer paste after exposure to high temperatures. Construction and Building Materials, 262, Article 120579. [CrossRef]
  • [212] Jaya, N. A., Yun-Ming, L., Cheng-Yong, H., Abdullah, M. M. A. B., & Hussin, K. (2020). Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer. Construction and Building Materials, 247, Article 118641. [CrossRef]
  • [213] Cheng-Yong, H., Yun-Ming, L., Abdullah, M. M. A. B., & Hussin, K. (2017). Thermal resistance variations of fly ash geopolymers: foaming responses. Scientific Report, 7(1), Article 45355. [CrossRef]
  • [214] Wang, J., Basheer, P., Nanukuttan, S., & Bai, Y. (2014). Influence of compressive loading on chloride ingress through concrete,” Civil Engineering Research Association of Ireland (CERAI) Proceedings August 2014, Queen’s University Belfast, UK.
  • [215] Zhang, H. Y., Kodur, V., Qi, S. L., Cao, L., & Wu, B. (2014). Development of metakaolin–fly ash based geopolymers for fire resistance applications. Construction and Building Materials, 55, 38–45. [CrossRef]
  • [216] Abdulkareem, O. A., Mustafa Al Bakri, A. M., Kamarudin, H., Khairul Nizar, I., & Saif, A. A. (2014). Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete. Construction and Building Materials, 50, 377–387. [CrossRef]
  • [217] Chithambaram, S. J., Kumar, S., & Prasad, M. M. (2019). Thermo-mechanical characteristics of geopolymer mortar. Construction and Building Materials, 213, 100–108. [CrossRef]
Yıl 2022, Cilt: 7 Sayı: 4, 375 - 400, 30.12.2022
https://doi.org/10.47481/jscmt.1190244

Öz

Proje Numarası

MAP/PhD/046 2019

Kaynakça

  • [1] Datau, S. G., Bawa, M. A., Jatau, J. S., Muhammad, M. H., & Bello, A. S. (2020). The potentials of kyanite particles and coconut shell ash as strengthener in aluminum alloy composite for automobile brake disc. Journal of Minerals and Materials Characterization and Engineering, 8(3), 84–96. [CrossRef]
  • [2] Minkova, V., Marinov, S. P., Zanzi, R., Björnbom, E., Budinova, T., Stefanova, M., & Lakov, L. (2000). Thermochemical Treatment of Biomass in a Flow of Steam or in a Mixture of Steam and Carbon Dioxide. Fuel Processing Technology, 62(1), 45–52. [CrossRef]
  • [3] Putun, A. E., Ozbay, N., Onal, E. P., & Putun, E. (2005). Fixed-bed pyrolysis of cotton stalk for liquid and solid products. Fuel Processing Technology, 86(11), 1207–1219. [CrossRef]
  • [4] Savova, D., Apak, E., Ekinci, E., Yardim, F., Petrov, N., Budinova, T., Razvigorova, M., & Minkova, V. (2001). Biomass conversion to carbon adsorbents and gas. Biomass and Bioenergy, 21(2), 133–142. [CrossRef]
  • [5] Tsai, W., Chang, C. Y., & Lee, S. L. (1997). Preparation and characterization of activated carbons from corn cob. Carbon, 35(8), 1198–1200. [CrossRef]
  • [6] Intiya, W., Thepsuwan, U., Sirisinha, C., & Sae-Oui, P. (2017). Possible use of sludge ash as filler in natural rubber. Journal of Material Cycles and Waste Management, 19(2), 774–781. [CrossRef]
  • [7] Jalali, M., & Aboulghazi, F. (2013). Sunflower stalk, an agricultural waste, as an adsorbent for the removal of lead and cadmium from aqueous solutions. Journal of Material Cycles and Waste Management, 15(4), 548–555. [CrossRef]
  • [8] Fan, M., Marshall, W., Daugaard, D., & Brown, R. C. (2004). Steam activation of chars produced from oat hulls and corn stover. Bioresource Technology, 93(1), 103–107. [CrossRef]
  • [9] Ahmedna, M., Marshall, W. E., & Rao, R. M. (2000). Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties. Bioresource Technology, 71(2), 113–123. [CrossRef]
  • [10] El-Dakroury, A., & Gasser, M. S. (2008). Alkali-activated materials. Journal of Nuclear Materials, 381(3), 271–277. [CrossRef]
  • [11] Asavapisit, S., & Macphee, D. E. (2007). Immobilization of metal-containing waste in alkali-activated lime–RHA cementitious matrices. Cement and Concrete Research, 37(5), 776–780. [CrossRef]
  • [12] Nair, D. G., Jagadish, K. S., & Fraaij, A. (2006). Reactive pozzolanas from rice husk ash: An alternative to cement for rural housing. Cement and Concrete Research, 36(6), 1062–1071. [CrossRef]
  • [13] Salas, D. A., Ramirez, A. D., Ulloa, N., Baykara, H., & Boero, A. J. (2018). Life cycle assessment of geopolymer concrete. Construction and Building Materials, 190, 170–177. [CrossRef]
  • [14] Elbasir O. (2020). Influence of cement content on the compressive strength and engineering properties of palm oil fuel ash-based hybrid alkaline cement. Influence of cement content on the compressive strength and engineering properties of palm oil fuel ash-based hybrid alkaline cement. Third International Conference on Technical Sciences (ICST2020), 28 - 30 November 2020, Tripoli – Libya.
  • [15] Kim, D., Lai, H. T., Chilingar, G. V., & Yen, T. F. (2006). Geopolymer formation and its unique properties. Environmental Geology, 51(1), 103– 111. [CrossRef]
  • [16] Zhang, Y. J., Wang, Y. C., Xu, D. L., Li, S. (2010). Mechanical performance and hydration mechanism of geopolymer composite reinforced by resin. Materials Science and Engineering, 527(24-25), 6574–6580. [CrossRef]
  • [17] Juenger, M. C. G., Winnefeld, F., Provis, J. L., Ideker, J. H. (2011). Advances in alternative cementitious binders. Cement and Concrete Research, 41(12), 1232–1243. [CrossRef]
  • [18] Duxson, P., Provis, J. L., Lukey, G. C., & Van Deventer, J. S. (2007). The role of inorganic polymer technology in the development of ‘Green Concrete’. Cement And Concrete Research, 37(12), 1590–1597. [CrossRef]
  • [19] Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & Van Deventer, J. S. (2007). Geopolymer technology: The current state of the art. Journal of Materials Science, 42(9), 2917– 2933. [CrossRef]
  • [20] Palomo, A., Grutzeck, M. W., & Blanco, M. T. (1999). Alkali-activated fly ashes: A cement for the future. Cement and Concrete Research, 29(8), 1323–1329. [CrossRef]
  • [21] Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014). Recycled aggregate from C&D waste & its use in concrete–A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials, 68, 501–516. [CrossRef]
  • [22] McLellan, B. C., Williams, R. P., Lay, J., Van Riessen, A., & Corder, G. D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. Journal of Cleaner Production, 19(9-10), 1080–1090. [CrossRef]
  • [23] Xu, H.P., & Deventer, J.V. (2003). Effect of source materials on geopolymerization. Industrial & Engineering Chemistry Research, 42(8), 1698–1706. [CrossRef]
  • [24] Akcaoglu, T., Cubukcuoglu, B., & Awad, A. (2019). A critical review of slag and fly-ash based geopolymer concrete. Computers and Concrete, 24(5), 453–458.
  • [25] Wang, W., Liu, X., Guo, L., & Duan, P. (2019). Evaluation of properties and microstructure of cement paste blended with metakaolin subjected to high temperatures. Materials, 12(6), Article 941. [CrossRef]
  • [26] Wang, K. (2004). Proceedings of the International Workshop on Sustainable Development and Concrete Technology, Beijing, China, May 20-21, 2004. Center for Transportation Research and Education, Iowa State University; 2004.
  • [27] Khale, D., & Chaudhary, R. (2007). Mechanism of geopolymerization and factors influencing its development: A review. Journal of Materials Science, 42(3), 729–746. [CrossRef]
  • [28] Oh, J. E., Monteiro, P. J., Jun, S. S., Choi, S., & Clark, S. M. (2010). The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cement and Concrete Research, 40(2), 189–196. [CrossRef]
  • [29] Garcia-Lodeiro, I., Donatello, S., Fernández-Jimenez, A., & Palomo, A. (2013). Basic principles of hybrid alkaline cements. Romanian Journal of Materials, 42(4), 330–335.
  • [30] Palomo, Á., Maltseva, O., García-Lodeiro, I., & Fernández-Jiménez, A. (2013). Hybrid alkaline cements. Part II: The clinker factor. Romanian Journal of Materials, 43(1), 74–80.
  • [31] Garcia-Lodeiro, I., Fernandez-Jimenez, A., & Palomo, A. (2013). Hydration kinetics in hybrid binders: Early reaction stages. Cement and Concrete Composites, 39, 82–92. [CrossRef]
  • [32] Provis, J. L. (2018). Alkali-activated materials. Cement and Concrete Research, 114, 40–48. [CrossRef]
  • [33] Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya, S. K. (2015). Geopolymer concrete: A review of some recent developments. Construction and Building Materials, 85, 78–90. [CrossRef]
  • [34] Naveena, K., & Rao, H. S. (2016). A review on strength and durability studies on geopolymer concrete produced with recycled aggregates. International Journal for Scientific Research and Development, 4(07), 27–30.
  • [35] Givi, A. N., Rashid, S. A., Aziz, F. N. A., & Salleh, M. A. M. (2010). Contribution of rice husk ash to the properties of mortar and concrete: A review. Journal of American Science, 6(3), 157–165.
  • [36] Feng, D., Provis, J. L., & Van Deventer, J. S. J. (2012). Thermal activation of albite for the synthesis of onepart mix geopolymers. Journal of the American Ceramic Society, 95(2), 565–572. [CrossRef]
  • [37] Duxson, P., & Provis, J. L. (2008). Designing precursors for geopolymer cements. Journal of The American Ceramic Society, 91(12), 3864–3869. [CrossRef]
  • [38] Koloušek, D., Brus, J., Urbanova, M., Andertova, J., Hulinsky, V., & Vorel, J. (2007). Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers. Journal of Materials Science, 42(22), 9267–9275. [CrossRef]
  • [39] Samadhi, T. W., Wulandari, W., Prasetyo, M.I., & Fernando MR. (2017). Reuse of coconut shell, rice husk, and coal ash blends in geopolymer synthesis. IOP Conference Series: Materials Science and Engineering, 248, Article 012008. [CrossRef]
  • [40] Xu, H., & Van Deventer, J. S. J. (2000). The geopolymerisation of alumino-silicate minerals. International Journal of Mineral Processing, 59(3), 247–266. [CrossRef]
  • [41] Provis, J. L., Palomo, A., & Shi, C. (2015). Advances in understanding alkali-activated materials. Cement and Concrete Research, 78, 110–125. [CrossRef]
  • [42] Mucsi, G., & Ambrus, M. (2017). Raw materials for geopolymerisation. In: The Publications of the MultiScience - XXXI. MicroCAD International Scientific Conference. University of Miskolc, 2017. [CrossRef]
  • [43] Mucsi, G., Kumar, S., Csőke, B., Kumar, R., Molnár, Z., Rácz, Á., Mádai, F., & Debreczeni, Á. (2015). Control of geopolymer properties by grinding of land filled fly ash. International Journal of Mineral Processing, 143, 50–58. [CrossRef]
  • [44] Balczár, I., Korim, T., Kovács, A., & Makó, É. (2016). Mechanochemical and thermal activation of kaolin for manufacturing geopolymer mortars–comparative study. Ceramics International, 42(14), 15367– 15375. [CrossRef]
  • [45] Rashad, A. M. (2013). Metakaolin as cementitious material: History, scours, production and composition–A comprehensive overview. Construction and Building Materials, 41, 303–318. [CrossRef]
  • [46] Tironi, A., Trezza, M. A., Scian, A. N., & Irassar, E. F. (2013). Assessment of pozzolanic activity of different calcined clays. Cement and Concrete Composites, 37, 319–327. [CrossRef]
  • [47] Vizcayno, C., De Gutierrez, R. M., Castelló, R., Rodríguez, E., & Guerrero, C. E. (2010). Pozzolan obtained by mechanochemical and thermal treatments of kaolin. Applied Clay Science, 49(4), 405– 413. [CrossRef]
  • [48] Marangu, J. M., Riding, K., Alaibani, A., Zayed, A., Thiong’o, J. K., & Wachira, J. M. (2020). Potential for selected kenyan clay in production of limestone calcined clay cement. Springer. [CrossRef]
  • [49] Yip, C. K., & Van Deventer, J. S. J. (2003). Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder. Journal of Materials Science, 38(18), 3851–3860. [CrossRef]
  • [50] Charles, E. W., & Lin DP. (2009). The chemistry of clay minerals weaver. Charles E.; Pollard, Lin D. 2009. https://masterpdf.pro/download/4330427- the-chemistry-of-clay-minerals-weaver-charles-epollard-lin-d Accessed September 9, 2022.
  • [51] Kadhim, A., Sadique, M., Al-Mufti, R., & Hashim, K. (2021). Developing one-part alkali-activated metakaolin/natural pozzolan binders using lime waste. Advances in Cement Research, 33(8), 342– 356. [CrossRef]
  • [52] Rocha, J., & Klinowski, J. (1990). Solid‐state NMR studies of the structure and reactivity of metakaolinite. Angewandte Chemie International Edition, 29(5), 553–554. [CrossRef]
  • [53] Mlinárik, L., & Kopecskó, K. (2013). Impact of metakaolin - a new supplementary material - on the hydration mechanism of cements. Civil Engineering, 56(2), Article 11.
  • [54] Ngui, F. M., Wachira, J. M., Thiong’o, J. K., & Marangu, J. M. (2019). Performance of Ground Clay Brick Mortars in Simulated Chloride and Sulphate Media. Journal of Engineering, 2019, Article 6430868. [CrossRef]
  • [55] Dubois, J., Murat, M., Amroune, A., Carbonneau, X., & Gardon, R. (1995). High-temperature transformation in Kaolinite: The role of the crystallinity and of the firing atmosphere. Applied Clay Science, 10(3), 187–198. [CrossRef]
  • [56] Shvarzman, A., Kovler, K., Grader, G. S., & Shter, G. E. (2003). The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite. Cement and Concrete Research, 33(3), 405– 416. [CrossRef]
  • [57] Sha, W., & Pereira, G. B. (2001). Differential scanning calorimetry study of ordinary Portland cement paste containing metakaolin and theoretical approach of metakaolin activity. Cement and Concrete Composites, 23(6), 455–461. [CrossRef]
  • [58] Zhang, Z., Provis, J. L., Reid, A., & Wang, H. (2014). Geopolymer foam concrete: An emerging material for sustainable construction. Construction and Building Materials, 56, 113–127. [CrossRef]
  • [59] Provis, J. L., & Bernal, S. A. (2014). Geopolymers and related alkali-activated materials. Annual Review of Materials Research, 44, 299–327. [CrossRef]
  • [60] Toniolo, N., & Boccaccini, A. R. (2017). Fly ashbased geopolymers containing added silicate waste. A review. Ceramics International, 43(17), 14545– 14551. [CrossRef]
  • [61] Payá, J., Monzó, J., Borrachero, M. V., & Tashima, M. M. (2015). Reuse of Aluminosilicate Industrial Waste Materials in the Production of Alkali-Activated Concrete Binders. In Handbook of Alkali-Activated Cements, Mortars and Concretes. F. Pacheco-Torgal, J. A. Labrincha, C. Leonelli, A. Palomo, P. Chindaprasirt, (Eds.), (pp. 487–518). Woodhead Publishing. [CrossRef]
  • [62] Arafa, S. A., Ali, A. Z. M., Awal, A. S. M. A., & Loon, L. Y. (2018). Optimum mix for fly ash geopolymer binder based on workability and compressive strength. IOP Conference Series: Earth and Environmental Science, 140, Article 012157. [CrossRef]
  • [63] Komnitsas, K., & Zaharaki, D. (2007). Geopolymerisation: A review and prospects for the minerals industry. Minerals Engineering, 20(14), 1261– 1277. [CrossRef]
  • [64] Swanepoel, J. C., & Strydom, C. A. (2002). Utilisation of fly ash in a geopolymeric material. Applied Geochemistry, 17(8), 1143–1148. [CrossRef]
  • [65] Kumar, S., Djobo, J. N. Y., Kumar, A., & Kumar, S. (2016). Geopolymerization behavior of fine ironrich fraction of brown fly ash. Journal of Building Engineering, 8, 172–178. [CrossRef]
  • [66] Lloyd, R. R., Provis, J. L., & Van Deventer, J. S. (2009). Microscopy and microanalysis of inorganic polymer cements. 2: The gel binder. Journal of Materials Science, 44(2), 620–631. [CrossRef]
  • [67] Kumar, S., Kumar, R., & Mehrotra, S. P. (2010). Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. Journal of Materials Science, 45(3), 607–615. [CrossRef]
  • [68] Higuera, I., Varga, C., Palomo, J. G., Gil-Maroto, A., Vázquez, T., Puertas, F. (2012). Mechanical behaviour of alkali-activated blast furnace slag-activated me-takaolin blended pastes, Statistical study. Materiales de Construcción, 62(306):163–181. [CrossRef]
  • [69] Roy, D. M. (1999). Alkali-activated cements opportunities and challenges. Cement and Concrete Research, 29(2), 249–254. [CrossRef]
  • [70] Yip, C. K., Lukey, G. C., & van Deventer Dean, J. S. J. (2012). Effect of blast furnace slag addition on microstructure and properties of metakaolinite geopolymeric materials. In: N. P. Bansal, J. P. Singh, W.M. Kriven, H. Schneider, (Eds,). Ceramic Transactions Series (pp. 187–209). John Wiley & Sons, Inc. [CrossRef]
  • [71] Buchwald, A., Hilbig, H., & Kaps, C. (2007). Alkali-activated metakaolin-slag blends—performance and structure in dependence of their composition. Journal of Materials Science, 42(9), 3024–3032. [CrossRef]
  • [72] Hadi, M. N., Farhan, N. A., & Sheikh, M. N. (2017). Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method. Construction and Building Materials, 140, 424– 431. [CrossRef]
  • [73] Hasnaoui, A., Ghorbel, E., & Wardeh, G. (2021). Effect of curing conditions on the performance of geopolymer concrete based on granulated blast furnace slag and metakaolin. Journal of Materials in Civil Engineering, 33(3), Article 04020501. [CrossRef]
  • [74] Dani, M., Borad, J., & Shukla, R. (2015). Review on utilization ofmodified red mud by organic modifier in composite material. International Journal of Advance Research in Science and Engineering, 4(3), 216–225. [CrossRef]
  • [75] Alshaaer, M., & Jeon, H. Y. (2020). Geopolymers and other geosynthetics. Intech Open. [CrossRef]
  • [76] Kumar, A., & Kumar, S. (2013). Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization. Construction and Building Materials, 38, 865–871. [CrossRef]
  • [77] Liang, X., & Ji, Y. (2021). Experimental study on durability of red mud-blast furnace slag geopolymer mortar. Construction and Building Materials, 267, Article 120942. [CrossRef]
  • [78] Mucsi G., Szabó, R., Rácz, Á., Kristály, F., & Kumar S. (2019). Combined utilization of red mud and mech,anically activated fly ash in geopolymer. Rudarsko-Geološko-Naftni Zbornik. 34(1), Article 44. [CrossRef]
  • [79] Vance, E. R., Perera, R., Imperia, D. S., Cassidy, P., Davis, D. J., & Gourley, J. T. (2009). Perlite waste as a precursor for geopolymer formation. Journal of the Australian Ceramic Society, 45(1), 44-49. [CrossRef]
  • [80] Vaou, V., & Panias, D. (2010). Thermal insulating foamy geopolymers from perlite. Minerals Engineering, 23(14), 1146–1151. [CrossRef]
  • [81] Fernández-Jiménez, A., García-Lodeiro, I., & Palomo, A. (2007). Durability of alkali-activated fly ash cementitious materials. Journal of Materials Science, 42(9), 3055–3065. [CrossRef]
  • [82] Shi, C., Jiménez, A. F., & Palomo, A. (2011). New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research, 41(7), 750–763. [CrossRef]
  • [83] Davidovits, J. (1991). Geopolymers: Inorganic polymeric new materials. Journal of Thermal Analysis and Calorimetry, 37(8), 1633–1656. [CrossRef]
  • [84] Catauro, M., Dal Poggetto, G., Sgarlata, C., Ciprioti, S. V., Pacifico, S., & Leonelli, C. (2020). Thermal and microbiological performance of metakaolin-based geopolymers cement with waste glass. Applied Clay Science, 197, Article 105763. [CrossRef]
  • [85] Yousef, R. I., El-Eswed, B., Alshaaer, M., Khalili, F., & Rahier, H. (2012). Degree of reactivity of two kaolinitic minerals in alkali solution using zeolitic tuff or silica sand filler. Ceramics International, 38(6), 5061–5067.
  • [86] Davidovits J. (1994). Properties of geopolymer cements. Geopolymer Institue. [CrossRef]
  • [87] Khan, H. A., Castel, A., & Khan, M. S. (2020). Corrosion investigation of fly ash based geopolymer mortar in natural sewer environment and sulphuric acid solution. Corrosion Science, 168, Article 108586. [CrossRef]
  • [88] Yan, B., Duan, P., & Ren, D. (2017). Mechanical strength, surface abrasion resistance and microstructure of fly ash-metakaolin-sepiolite geopolymer composites. Ceramics International, 43(1), 1052–1060.
  • [89] Shima, P., Szczotok, A. M., Rodríguez, J. F., Valentini, L., & Lanzón, M. (2016). Effect of freeze-thaw cycles on the mechanical behavior of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials. Elsevier Enhanced Reader. [CrossRef]
  • [90] Zhao, R., Yuan, Y., Cheng, Z., Wen, T., Li, J., Li, F., & Ma, Z. J. (2019). Freeze-thaw resistance of Class F fly ash-based geopolymer concrete. Construction and Building Materials, 222, 474–483. [CrossRef]
  • [91] Huseien, G. F., & Shah, K. W. (2020). Durability and life cycle evaluation of self-compacting concrete containing fly ash as GBFS replacement with alkali activation. Construction and Building Materials, 235, Article 117458. [CrossRef]
  • [92] Puertas, F., & Fernández-Jiménez, A. (2003). Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes. Cement and Concrete Composites, 25(3), 287–292. [CrossRef]
  • [93] Detwiler R. J., & Taylor P. C. (2005). Specifier’s guide to durable concrete. Engineering Bulletin 221, https://trid.trb.org/view/900218 Accessed on Sep 27, 2022.
  • [94] Faten, S., Hani, K., Hubert, R., & Jan, W. (2015). Durability of alkali activated cement produced from kaolinitic clay. Applied Clay Science, 104, 229–237. [CrossRef]
  • [95] Chen, K., Wu, D., Xia, L., Cai, Q., Zhang, Z. (2021). Geopolymer concrete durability subjected to aggressive environments – A review of influence factors and comparison with ordinary Portland cement. Construction and Building Materials, 279, Article 122496. [CrossRef]
  • [96] Koenig, A., & Dehn, F. (2016). Main considerations for the determination and evaluation of the acid resistance of cementitious materials. Materials and Structures, 49(5), 1693–1703. [CrossRef]
  • [97] Temuujin, J., Minjigmaa, A., Lee, M., Chen-Tan, N., & Van Riessen, A. (2011). Characterisation of class F fly ash geopolymer pastes immersed in acid and alkaline solutions. Cement and Concrete Composites, 33(10), 1086–1091. [CrossRef]
  • [98] Matalkah, F., Soroushian, P., Balchandra, A., & Peyvandi, A. (2017). Characterization of Alkali-Activated Nonwood Biomass Ash–Based Geopolymer Concrete. Journal of Materials in Civil Engineering, 29(4), Article 04016270. [CrossRef]
  • [99] Bakharev, T. (2005). Resistance of geopolymer materials to acid attack. Cement and Concrete Research, 35(4), 658–670. [CrossRef]
  • [100] Bouguermouh, K., Bouzidi, N., Mahtout, L., Pérez-Villarejo, L., Lourdes, M., & Martínez-Cartas, M. L. (2017). Effect of acid attack on microstructure and composition of metakaolin-based geopolymers: The role of alkaline activator. Journal of Non-Crystalline Solids, 463, 128–137. [CrossRef]
  • [101] Ariffin, M. A. M., Bhutta, M. A. R., Hussin, M. W., Tahir, M. M., & Aziah, N. (2013). Sulfuric acid resistance of blended ash geopolymer concrete. Construction and Building Materials, 43, 80–86. [CrossRef]
  • [102] Sata, V., Sathonsaowaphak, A., & Chindaprasirt, P. (2012). Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack. Cement and Concrete Composites, 34(5), 700–708. [CrossRef]
  • [103] Bernal, S. A., Rodríguez, E. D., Mejía de Gutiérrez, R., & Provis, J. L. (2012). Performance of alkali-activated slag mortars exposed to acids. Journal of Sustainable Cement-Based Materials, 1(3), 138–151. [CrossRef]
  • [104] Dimas, D., Giannopoulou, I., & Panias, D. (2009). Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology. Journal of Materials Science, 44(14), 3719– 3730. [CrossRef]
  • [105] Ajay, A., Ramaswamy, K. P., & Thomas, A. V. (2020). A critical review on the durability of geopolymer composites in acidic environment. IOP Conference Series: Earth and Environmental Science, 491(1), Article 012044. [CrossRef]
  • [106] Chen‐Tan, N. W., Van Riessen, A., Ly, C. V., & Southam, D. C. (2009). Determining the] reactivity of a fly ash for production of geopolymer. Journal of the American Ceramic Society, 92(4), 881–887. [CrossRef]
  • [107] Koenig, A., Herrmann, A., Overmann, S., & Dehn, F. (2017). Resistance of alkali-activated binders to organic acid attack: Assessment of evaluation criteria and damage mechanisms. Construction and Building Materials, 151, 405–413. [CrossRef]
  • [108] Roy, D. M., Arjunan, P., & Silsbee, M. R. (2001). Effect of silica fume, metakaolin, and low-calcium fly ash on chemical resistance of concrete. Cement and Concrete Research, 31(12), 1809–1813.
  • [109] Shi, C., & Stegemann, J. A. (2000). Acid corrosion resistance of different cementing materials. Cement and Concrete Research, 30(5), 803–808. [CrossRef]
  • [110] Mori, T., Nonaka, T., Tazaki, K., Koga, M., Hikosaka, Y., & Noda, S. (1992). Interactions of nutrients, moisture and PH on microbial corrosion of concrete sewer pipes. Water Research, 26(1), 29–37. [CrossRef]
  • [111] Davis, J. L., Nica, D., Shields, K., & Roberts, D. J. (1998). Analysis of concrete from corroded sewer pipe. International Biodeterioration & Biodegradation, 42(1), 75–84. [CrossRef]
  • [112] Marquez-Peñaranda, J. F., Sanchez-Silva, M., Husserl, J., & Bastidas-Arteaga, E. (2016). Effects of biodeterioration on the mechanical properties of concrete. Materials and Structures, 49(10), 4085– 4099. [CrossRef]
  • [113] Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2008). Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products. Construction and Building Materials, 22(7), 1305–1314. [CrossRef]
  • [114] Bernal, S. A., Provis, J. L., Rose, V., & De Gutiérrez, R. M. (2013). High‐resolution X‐ray diffraction and fluorescence microscopy characterization of alkali‐activated slag‐metakaolin binders. Journal of The American Ceramic Society, 96(6), 1951–1957. [CrossRef]
  • [115] Davidovits, J. (1994). Geopolymers: man-made rock geosynthesis and the resulting development of very early high strength cement. Journal of Materials Education, 16(2-3), 91–139.
  • [116] Lee, N. K., & Lee, H. K. (2016). Influence of the slag content on the chloride and sulfuric acid resistances of alkali-activated fly ash/slag paste. Cement and Concrete Composites, 72, 168–179. [CrossRef]
  • [117] Bondar, D., Lynsdale, C. J., Milestone, N. B., & Hassani, N. (2015). Sulfate resistance of alkali activated pozzolans. International Journal of Concrete Structures and Materials, 9(2), 145–158. [CrossRef]
  • [118] Lloyd, R. R., Provis, J. L., & Van Deventer, J. S. (2012). Acid resistance of inorganic polymer binders. 1. Corrosion rate. Materials and Structures, 45(1), 1–14. [CrossRef]
  • [119] Bakharev T. (2005). Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cement and Concrete Research, 35(6), 1224–1232. [CrossRef]
  • [120] Senhadji, Y., Escadeillas, G., Mouli, M., Benosman, A. S., & Khelafi, H. (2014). Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar. Powder Technology, 254, 314–323. [CrossRef]
  • [121] Thokchom, S., Dutta, D., & Ghosh, S. (2011). Effect of incorporating silica fume in fly ash geopolymers. International Journal of Civil and Environmental Engineering, 5(12), 750–754.
  • [122] Purbasari, A., Samadhi, T. W., & Bindar, Y. (2012). Sulfuric acid resistance of geopolymer mortars from co-combustion residuals of bamboo and kaolin. ASEAN Journal of Chemical Engineering, 18(2), 22–30.
  • [123] Lavanya, G., & Jegan, J. (2015). Durability study on high calcium fly ash based geopolymer concrete. Advances in Materials Science and Engineering, 6, 1–7. [CrossRef]
  • [124] Song, Y., Liu, J., Hui, Wang., & Shu, H. (2019). Research progress of nitrite corrosion inhibitor in concrete. International Journal of Corrosion, 5, 1–9. [CrossRef]
  • [125] Kumaravel, S., & Girija, K. (2013). Acid and salt resistance of geopolymer concrete with varying concentration of NaOH. Journal of Engineering Research and Studies, 4(4), 1–3.
  • [126] Ramaswamy, K. P., & Santhanam, M. (2019). Degradation kinetics of cement-based materials in citric acid. In A. R. M. Rao, & K. Ramanjaneyulu (Eds.), Recent Advances in Structural Engineering, Volume 1 (pp. 891–905). Springer. [CrossRef]
  • [127] Suiryanrayna, M. V., & Ramana, J. V. (2015). A review of the effects of dietary organic acids fed to swine. Journal of Animal Science and Biotechnology, 6(1), 1–11. [CrossRef]
  • [128] Ukrainczyk, N., Muthu, M., Vogt, O., & Koenders, E. (2019). Geopolymer, calcium aluminate, and Portland cement-based mortars: Comparing degradation using acetic acid. Materials, 12(19), Article 3115. [CrossRef]
  • [129] Xie, F., Li, J., Zhao, G., Zhou, P., & Zheng, H. (2020). Experimental study on performance of cast-in-situ recycled aggregate concrete under different sulfate attack exposures. Construction and Building Materials, 253, Article 119144. [CrossRef]
  • [130] Villa, C., Pecina, E. T., Torres, R., & Gómez, L. (2010). Geopolymer synthesis using alkaline activation of natural zeolite. Construction and Building Materials, 24(11), 2084–2090. [CrossRef]
  • [131] Alcamand, H. A., Borges, P. H., Silva, F. A., & Trindade, A. C. C. (2018). The effect of matrix composition and calcium content on the sulfate durability of metakaolin and metakaolin/slag alkali-activated mortars. Ceramics International, 44(5), 5037–5044. [CrossRef]
  • [132] Taylor, H. F. W. (1997). Cement Chemistry (2nd ed.). Thomas Telford Publishing. [CrossRef]
  • [133] Menéndez, E., Matschei, T., & Glasser, F. P. (2013). Sulfate attack of concrete. In: M. Alexander, A. Bertron, N. De Belie, (Eds,). Performance of Cement-Based Materials in Aggressive Aqueous Environments (pp. 7–74). Vol 10. RILEM State-of-theArt Reports. Springer. [CrossRef]
  • [134] Alexander, M., Bertron, A., & De Belie, N., (Eds.). (2013). Performance of Cement-Based Materials in Aggressive Aqueous Environments: State-of-theArt Report. RILEM TC 211 - PAE. Vol 10. Springer. [CrossRef]
  • [135] Elyamany, H. E., Abd Elmoaty, M., & Elshaboury, A. M. (2018). Magnesium sulfate resistance of geopolymer mortar. Construction and Building Materials, 184, 111–127. [CrossRef]
  • [136] Ismail, I., Bernal, S. A., Provis, J. L., Hamdan, S., & Van Deventer, J. S. (2013). Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Materials and Structures, 46(3), 361–373.
  • [137] Ismail, I., Bernal, S. A., Provis, J. L., San Nicolas, R., Brice, D. G., Kilcullen, A. R., Hamdan, S., & Van Deventer, J. S. (2013). Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes. Construction and Building Materials, 48, 1187–1201. [CrossRef]
  • [138] Chithambar Ganesh, A., Rajesh Kumar, K., Vinod Kumar, M., et al. (2020). Durability Studies on the Hybrid Fiber reinforced Geopolymer concrete made of M-sand under ambient curing. IOP Conf Ser: Mater Sci Eng. 981(3):032074. doi:10.1088/ 1757-899X/981/3/032074. [CrossRef]
  • [139] Albitar, M., Ali, M. M., Visintin, P., & Drechsler, M. (2017). Durability evaluation of geopolymer and conventional concretes. Construction and Building Materials, 136, 374–385. [CrossRef]
  • [140] Gupta, A., Gupta, N., Saxena, K. K. (2021). Experimental study of the mechanical and durability properties of Slag and Calcined Clay based geopolymer composite. Advances in Materials and Processing Technologies, 10, 1–15.
  • [141] Thokchom, S., Ghosh, P., & Ghosh, S. (2009). Acid resistance of fly ash based geopolymer mortars. International Journal of Recent Trends in Engineering, 1(6), 36-40.
  • [142] Choi, Y. S., Kim, J. G., & Lee, K. M. (2006). Corrosion behavior of steel bar embedded in fly ash concrete. Corrosion Science, 48(7), 1733–1745. [CrossRef]
  • [143] Noushini, A., Castel, A., Aldred, J., & Rawal, A. (2020). Chloride diffusion resistance and chloride binding capacity of fly ash-based geopolymer concrete. Cement and Concrete Composites, 105, Article 103290. [CrossRef]
  • [144] Wang, A., Zheng, Y., Zhang, Z., Liu, K., Li, Y., Shi, L., & Sun, D. (2020). The durability of alkali-activated materials in comparison with ordinary Portland cements and concretes: A review. Engineering, 6(6), 695–706. [CrossRef]
  • [145] Yuan, Q., Shi, C., De Schutter, G., Audenaert, K., & Deng, D. (2009). Chloride binding of cement-based materials subjected to external chloride environment–a review. Construction and Building Materials, 23(1), 1–13. [CrossRef]
  • [146] Gunasekara, C., Law, D., Bhuiyan, S., Setunge, S., & Ward, L. (2019). Chloride induced corrosion in different fly ash based geopolymer concretes. Construction and Building Materials, 200, 502–513. [CrossRef]
  • [147] de Oliveira, L. B., De Azevedo, A. R., Marvila, M. T., Pereira, E. C., Fediuk, R., & Vieira, C. M. F. (2022). Durability of geopolymers with industrial waste. Case Studies in Construction Materials, 16, Article e00839. [CrossRef]
  • [148] Zhang, J., Shi, C., & Zhang, Z. (2019). Chloride binding of alkali-activated slag/fly ash cements. Construction and Building Materials, 226, 21– 31. [CrossRef]
  • [149] Logesh Kumar, M., & Revathi, V. (2021). Durability Performance On Alkali Activated Metakaolin And Bottom Ash Based Geopolymer Concrete. Preprint. https://doi.org/10.21203/rs.3.rs-703480/v1[CrossRef]
  • [150] Parveen, S., Pham, T. M., Lim, Y. Y., Pradhan S. S., Jatin, & Kumar, J. (2021). Performance of rice husk Ash-Based sustainable geopolymer concrete with Ultra-Fine slag and Corn cob ash. Construction and Building Materials, 279, Article 122526. [CrossRef]
  • [151] Mashaly, A. O., El-Kaliouby, B. A., Shalaby, B. N., El– Gohary, A. M., & Rashwan, M. A. (2016). Effects of marble sludge incorporation on the properties of cement composites and concrete paving blocks. Journal of Cleaner Production, 112, 731–741. [CrossRef]
  • [152] Saranya, P., Nagarajan, P., & Shashikala, A. P. (2021). Performance studies on steel fiber–Reinforced GGBS-dolomite geopolymer concrete. Journal of Materials in Civil Engineering, 33(2), Article 04020447. [CrossRef]
  • [153] Saxena, R., Gupta, T., Sharma, R. K., & Panwar, N. L. (2021). Influence of granite waste on mechanical and durability properties of fly ash-based geopolymer concrete. Environment, Development and Sustainability, 23(12), 17810–17834. [CrossRef]
  • [154] Sravanthi, D., Himath Kumar, Y., Sarath Chandra Kumar, B.. (2020). Comparative study on flow characteristics, strength and durability of GGBS based geopolymer concrete. IOP Conference Series: Materials Science and Engineering, 912(6), Article 062032. [CrossRef]
  • [155] De Ceukelaire, L., & Van Nieuwenburg, D. (1993). Accelerated carbonation of a blast-furnace cement concrete. Cement and Concrete Research, 23(2), 442–452. [CrossRef]
  • [156] Khan, M. S. H., Castel, A., & Noushini, A. (2017). Carbonation of a low-calcium fly ash geopolymer concrete. Magazine of Concrete Research, 69(1), 24–34.
  • [157] Adamczyk, K., Prémont-Schwarz, M., Pines, D., Pines, E., & Nibbering, E. T. J. (2009). Real-time observation of carbonic acid formation in aqueous solution. Science, 326(5960), 1690–1694. [CrossRef]
  • [158] Dubina, E., Korat, L., Black, L., Strupi-Šuput, J., & Plank, J. (2013). Influence of water vapour and carbon di-oxide on free lime during storage at 80°C, studied by Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 11, 299– 303. [CrossRef]
  • [159] Fernández-Díaz, L., Fernández-González, Á., & Prieto, M. (2010). The role of sulfate groups in controlling CaCO3 polymorphism. Geochimica et Cosmochimi-ca Acta, 74(21), 6064–6076. [CrossRef]
  • [160] Johannesson, B., & Utgenannt, P. (2001). Microstructural changes caused by carbonation of cement mortar. Cement and Concrete Research, 31(6), 925–931. [CrossRef]
  • [161] Bernal, S. A., de Gutierrez, R. M., Provis, J. L., & Rose, V. (2010). Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cement and Concrete Research. 40(6), 898–907. [CrossRef]
  • [162] Liu, J., Yao, S., Ba, M., He, Z., & Li, Y. (2016). Effects of carbonation on micro structures of hardened cement paste. Journal Wuhan University of Technology, Materials Science Edition, 31(1), 146–150. [CrossRef]
  • [163] Zhang, R., & Panesar, D. K. (2020). Carbonated binder systems containing reactive MgO and Portland cement: Strength, chemical composition and pore structure. Journal of Cleaner Production, 271, Article 122021. [CrossRef]
  • [164] von Greve-Dierfeld, S., Lothenbach, B., Vollpracht, A., Wu, B., Huet, B., Andrade C., Medina, C., Thiel, C., Gruyaert, E., Vanoutrive, H., Saez del Bosque, I. F., Ignjatovic, I., Elsen, J., Provis, J. L., Scrivener, K., Thienel K-C., Sideris, K., Zajac, M., Alderete N., Cizer, Ö., Van den Heede, P., Hooton, R.D., Kamali-Bernard, S., Bernal, S. A., Zhao, Z., Shi, Z., & De Belle, N. (2020). Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCC. Materials and Structure, 53(6), Article 136. [CrossRef]
  • [165] Leemann A., & Moro, F. (2016). Carbonation of concrete: the role of CO2 concentration, relative humidity and CO2 buffer capacity. Materials and Structures, 50(1), Article 30. [CrossRef]
  • [166] Huseien, G. F., Sam, A. R. M, Shah, K. W., Mirza, J., & Tahir, M. (2019). Evaluation of alkali-activated mortars containing high volume waste ceramic powder and fly ash replacing GBFS. Construction and Building Materials, 210, 78–92. [CrossRef]
  • [167] Morandeau, A. (2014). Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties. Cement and Concrete Research, 2014, Article 18. [CrossRef]
  • [168] Aziz, I. H., Al Bakri Abdullah, M. M., Cheng Yong, H., Yun Ming, L., Hussin, K., Azimi, E. A. (2015). A review on mechanical properties of geopolymer composites for high temperature application. KEM, 660, 34–38. [CrossRef]
  • [169] Pasupathy, K., Berndt, M., Sanjayan, J., Rajeev, P., Cheema, D. S. (2018). Durability performance of precast fly ash–based geopolymer concrete under atmospheric exposure conditions. Journal of Materials in Civil Engineering, 30(3), Article 04018007. [CrossRef]
  • [170] Li, Z., & Li, S. (2020). Effects of wetting and drying on alkalinity and strength of fly ash/slag-activated materials. Construction and Building Materials, 254, Article 119069. [CrossRef]
  • [171] Li, N., Farzadnia, N., & Shi, C. (2017). Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation. Cement and Concrete Research, 100, 214–226. [CrossRef]
  • [172] Vu, T. H., Gowripalan, N., De Silva, P., Paradowska, A., Garbe, U., Kidd, P., & Sirivivatnanon, V. (2020). Assessing carbonation in one-part fly ash/slag geopolymer mortar: Change in pore characteristics using the stateof-the-art technique neutron tomography. Cement and Concrete Composites, 114, Article 103759. [CrossRef]
  • [173] Morla, P., Gupta, R., Azarsa, P., & Sharma, A. (2021). Corrosion evaluation of geopolymer concrete made with fly ash and bottom ash. Sustainability, 13(1), Article 398. [CrossRef]
  • [174] Law, D. W., Adam, A. A., Molyneaux, T. K., Patnaikuni, I., & Wardhono, A. (2015). Long term durability properties of class F fly ash geopolymer concrete. Materials and Structures, 48(3), 721–731. [CrossRef]
  • [175] Li, Z., & Li, S. (2018,). Carbonation resistance of fly ash and blast furnace slag based geopolymer concrete. Construction and Building Materials, 163, 668–680. [CrossRef]
  • [176] Bakharev, T., Sanjayan, J. G., Cheng, Y. B. (2001). Resistance of alkali-activated slag concrete to carbonation. Cement and Concrete Research, 31(9), 1277–1283. [CrossRef]
  • [177] Marcos-Meson, V., Fischer, G., Edvardsen, C., Skovhus, T. L., & Michel, A. (2019). Durability of steel fibre reinforced Concrete (SFRC) exposed to acid attack – a literature review. Construction and Building Materials, 200, 490–501. [CrossRef]
  • [178] Park, J. W., Ann, K. Y., & Cho, C. G. (2015). Resistance of alkali-activated slag concrete to chloride-induced corrosion. Advances in Materials Science and Engineering, 2015, 1–7. [CrossRef]
  • [179] Nkwaju, R. Y., Djobo, J. N. Y., Nouping, J. N. F., Huisken, P. W. M., Deutou, J.G. N., & Courard, L. (2019). Iron-rich laterite-bagasse fibers based geopolymer composite: Mechanical, durability and insulating properties. Applied Clay Science, 183, Article 105333. [CrossRef]
  • [180] Huang, G., Ji, Y., Li, J., Hou, Z., & Jin, C. (2018). Use of slaked lime and Portland cement to improve the resistance of MSWI bottom ash-GBFS geopolymer concrete against carbonation. Construction and Building Materials, 166, 290–300. [CrossRef]
  • [181] Pasupathy, K., Berndt, M., Sanjayan, J., Rajeev, P., & Cheema, D. S. (2017). Durability of low calcium fly ash based geopolymer concrete culvert in a saline environment. Cement and Concrete Research, 100, 297–310. [CrossRef]
  • [182] Yahya, Z., Bakri Abdullah, M. M. A., Jing, L. Y., Li, L.Y., & Razak, R. A. (2020). Seawater exposure effect on fly ash based geopolymer concrete with inclusion of steel fiber. IOP Conference Series: Materials Science and Engineering, 743(1), Article 012013. [CrossRef]
  • [183] Xu, T., Huang, J., Castel, A., Zhao, R., & Yang, C. (2018). Influence of steel–concrete bond damage on the dynamic stiffness of cracked reinforced concrete beams. Advances in Structural Engineering, 21(13), 1977–1989. [CrossRef]
  • [184] Liang, G., Liu, T., Li, H., Dong, B., & Shi, T. (2022). A novel synthesis of lightweight and high-strength green geopolymer foamed material by rice husk ash and ground-granulated blast-furnace slag. Resources, Conservation and Recycling. 176, Article 105922. [CrossRef]
  • [185] Liang, M., Chang, Z., Wan, Z., Gan, Y., Schlangen, E., & Šavija, B. (2022). Interpretable Ensemble-Machine-Learning models for predicting creep behavior of concrete. Cement and Concrete Composites, 125, Article 104295. [CrossRef]
  • [186] Rovnaník, P. (2010). Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Construction and Building Materials, 24(7), 1176–1183. [CrossRef]
  • [187] Yusuf, M. O., Megat Johari, M. A., Ahmad, Z. A., & Maslehuddin, M. (2014). Shrinkage and strength of alkaline activated ground steel slag/ultrafine palm oil fuel ash pastes and mortars. Materials & Design, 63, 710–718. [CrossRef]
  • [188] Seneviratne, C., Gunasekara, C., Law, D. W., Setunge, S., & Robert, D. (2020). Creep, shrinkage and permeation characteristics of geopolymer aggregate concrete: long-term performance. Archive of Civil and Mechanical Engineering, 20(4), Article 140. [CrossRef]
  • [189] Mechtcherine, V., & Hans-Wolf Reinhardt, W. (2012). Application of super absorbent polymers (SAP) in concrete construction. Springer. [CrossRef]
  • [190] Slowik, V., & Ju, J. W. (2011). Discrete modeling of plastic cement paste subjected to drying. Cement and Concrete Composites, 33(9), 925–935. [CrossRef]
  • [191] Gettu, R., Patel, A., Rathi, V., Prakasan, S., Basavaraj, S., & Maity, S. (2019). Influence of supplementary cementitious materials on the sustainability parameters of cements and concretes in the Indian context. Materials and Structures, 52(1), Article 10. [CrossRef]
  • [192] Neupane, K., & Hadigheh, S. A. (2021). Sodium hydroxide-free geopolymer binder for prestressed concrete applications. Construction and Building Materials, 293, Article 123397. [CrossRef]
  • [193] Hardjito, D., & Rangan, B. V. (2005). Development and properties of low-calcium fly ash-based geopolymer concrete. Research Report GC 1 Faculty of Engineering Curtin University of Technology Perth, Australia.
  • [194] Mehta, A., Siddique, R., Ozbakkaloglu, T., Uddin Ahmed Shaikh, F., & Belarbi, R. (2020). Fly ash and ground granulated blast furnace slag-based alkali-activated concrete: Mechanical, transport and microstructural properties. Construction and Building Materials, 257, Article 119548. [CrossRef]
  • [195] Duxson, P., Provis, J. L., Lukey, G. C., Mallicoat, S. W., Kriv-en, W. M., & Van Deventer, J. S. (2005). Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269(1-3), 47–58. [CrossRef]
  • [196] Amin, N., Alam, S., & Gul, S. (2016). Effect of thermally activated clay on corrosion and chloride resistivity of cement mortar. Journal of Cleaner Production, 111, 155–160. [CrossRef]
  • [197] Saloni, P., & Pham, T. M. (2020). Enhanced properties of high-silica rice husk ash-based geopolymer paste by incorporating basalt fibers. Construction and Building Materials, 245, Article 118422. [CrossRef]
  • [198] Saha, A. K. (2018). Effect of class F fly ash on the durability properties of concrete. Sustainable Environment Research, 28(1), 25–31. [CrossRef]
  • [199] Khan, M. S. H., Castel, A., & Noushini A. (2017). The effect of adding fibers on dry shrinkage of geopolymer concrete. Civil Engineering Journal, 7(12), 2099–2108. [CrossRef]
  • [200] Frayyeh, Q. J., & Kamil, M. H. (2021). The effect of adding fibers on dry shrinkage of geopolymer concrete. Civil Engineering Journal, 7(12), 2099– 2108. [CrossRef]
  • [201] Banthia, N., & Gupta, R. (2006). Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cement and Concrete Research, 36(7), 1263–1267. [CrossRef]
  • [202] Kani, E. N., & Allahverdi, A. (2011). Investigating shrinkage changes of natural pozzolan based geopolymer cementpaste. Iranian Journal of Materials Science and Engineering, 8(3), 50–60.
  • [203] Nazari, A., Bagheri, A., Sanjayan, J., Yadav, P. N. J. A., & Tariq, H. (2019). A comparative study of void distribution pattern on the strength development between opc-based and geopolymer concrete. Advances in Materials Science and Engineering, 2019, Article 1412757. [CrossRef]
  • [204] Negahban, E., Bagheri, A., & Sanjayan, J. (2021). Pore gradation effect on Portland cement and geopolymer concretes. Cement and Concrete Composites, 122, Article 104141. [CrossRef]
  • [205] Amin, M., Elsakhawy, Y., Abu El-hassan, K., A., Abdelsalam, B. A. (2021). Behavior evaluation of sustainable high strength geopolymer concrete based on fly ash, metakaolin, and slag. Case Studies in Construction Materials, 16, Article e00976. [CrossRef]
  • [206] Aydın, S., & Baradan, B. (2007). Effect of pumice and fly ash incorporation on high temperature resistance of cement-based mortars. Cement and Concrete Research, 37(6), 988–995. [CrossRef]
  • [207] Lahoti, M., Tan, K. H., Yang, E. H. (2019). A critical review of geopolymer properties for structural fire-resistance applications. Construction and Building Materials, 221, 514–526. [CrossRef]
  • [208] Lin, W., Zhou, F., Luo, W., & You, L. (2021). Recycling the waste dolomite powder with excellent consolidation properties: Sample synthesis, mechanical evaluation, and consolidation mechanism analysis. Construction and Building Materials, 290, Article 123198. [CrossRef]
  • [209] Jeon, D., Yum, W. S., Song, H., Sim, S., & Oh, J. E. (2018). The temperature-dependent action of sugar in the retardation and strength improvement of Ca(OH)2-Na2CO3-activated fly ash systems through calcium complexation. Construction and Building Materials, 190, 918–928. [CrossRef]
  • [210] Rivera, O. G., Long, W. R., Weiss Jr., CA, Moser, R. D., Williams, B. A., Gore, E. R., & Allison, P. G. (2016). Effect of elevated temperature on alkali-activated geopolymeric binders compared to portland cement-based binders. Cement and Concrete Research, 90, 43–51. [CrossRef]
  • [211] Jiang, X., Xiao, R., Ma, Y., Zhang, M., Bai, Y., & Huang, B. (2020). Influence of waste glass powder on the physico-mechanical properties and microstructures of fly ash-based geopolymer paste after exposure to high temperatures. Construction and Building Materials, 262, Article 120579. [CrossRef]
  • [212] Jaya, N. A., Yun-Ming, L., Cheng-Yong, H., Abdullah, M. M. A. B., & Hussin, K. (2020). Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer. Construction and Building Materials, 247, Article 118641. [CrossRef]
  • [213] Cheng-Yong, H., Yun-Ming, L., Abdullah, M. M. A. B., & Hussin, K. (2017). Thermal resistance variations of fly ash geopolymers: foaming responses. Scientific Report, 7(1), Article 45355. [CrossRef]
  • [214] Wang, J., Basheer, P., Nanukuttan, S., & Bai, Y. (2014). Influence of compressive loading on chloride ingress through concrete,” Civil Engineering Research Association of Ireland (CERAI) Proceedings August 2014, Queen’s University Belfast, UK.
  • [215] Zhang, H. Y., Kodur, V., Qi, S. L., Cao, L., & Wu, B. (2014). Development of metakaolin–fly ash based geopolymers for fire resistance applications. Construction and Building Materials, 55, 38–45. [CrossRef]
  • [216] Abdulkareem, O. A., Mustafa Al Bakri, A. M., Kamarudin, H., Khairul Nizar, I., & Saif, A. A. (2014). Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete. Construction and Building Materials, 50, 377–387. [CrossRef]
  • [217] Chithambaram, S. J., Kumar, S., & Prasad, M. M. (2019). Thermo-mechanical characteristics of geopolymer mortar. Construction and Building Materials, 213, 100–108. [CrossRef]
Toplam 217 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri
Bölüm Makaleler
Yazarlar

Festus Ngui 0000-0003-0724-7113

Najya Muhammed Bu kişi benim 0000-0003-3119-0217

Fredrick Mulei Mutunga Bu kişi benim 0000-0003-1983-7217

Joseph Marangu 0000-0003-4228-602X

Ismael Kithinji Kınotı Bu kişi benim 0000-0001-6346-3772

Proje Numarası MAP/PhD/046 2019
Yayımlanma Tarihi 30 Aralık 2022
Gönderilme Tarihi 18 Ekim 2022
Kabul Tarihi 20 Kasım 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 7 Sayı: 4

Kaynak Göster

APA Ngui, F., Muhammed, N., Mutunga, F. M., Marangu, J., vd. (2022). A Review on Selected Durability Parameters on Performance of Geopolymers Containing Industrial By-products, Agro- Wastes and Natural Pozzolan. Journal of Sustainable Construction Materials and Technologies, 7(4), 375-400. https://doi.org/10.47481/jscmt.1190244

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr