Araştırma Makalesi
BibTex RIS Kaynak Göster

El Yapımı Patlayıcıların ve Patlayıcı Maddelerin Tespitinde Kullanılan Spektroskopi Tabanlı Yöntemlerin Karşılaştırılmasına İlişkin Bir İnceleme

Yıl 2021, Sayı: 39, 29 - 65, 12.04.2021
https://doi.org/10.17134/khosbd.913675

Öz

El Yapımı Patlayıcılar (EYP) ve patlayıcı maddeler nedeniyle her yıl binlerce kişi ölmekte, yaralanmakta ve psikolojik olarak zarar görmektedir. Ülkeler ulusal güvenliklerini sağlamak maksadıyla muazzam çaba sarf etmekte ve EYP’lere karşı tedbirler geliştirebilmek için hatırı sayılır harcamalar yapmaktadırlar. En güçlü orduların bile tespiti için çözüm geliştirmekte zorlandığı EYP’ler, Türk Silahlı Kuvvetleri için de büyük bir problem oluşturmaktadır. Son yıllarda ülkemizdeki terör eylemlerinde de sıklıkla kullanılması nedeniyle EYP ile mücadele her geçen gün daha çok önem kazanmaktadır.
Satıh altına gömülmüş bir patlayıcı maddenin tespit edilmesi; arazi yapısı, çevre koşulları, iklim yapısı ve gömülü maddenin özellikleri hakkında bilgi edinilmesini gerektiren zorlu bir süreçtir. Tespit yönteminin kullanılacağı arazi şartları, ihtiyaç duyulan uzaklık, hassasiyet ve süre gibi pek çok değişken sebebiyle standart bir EYP tespit yöntemi bulunmamaktadır. Bu nedenle dünyada çok çeşitli yöntemler üzerine birçok çalışma yürümektedir. Fakat patlayıcı maddeleri tespit ederken kullanılan her teknik ve usul faydalı olamamakta ve doğru sonuç vermemektedir. Tespit edilmesi arzulanan patlayıcı maddenin cinsine, çevresel etkenlerine, mesafesine, zemin altındaki derinliğine, kimyasal bileşenlerine vb. faktörlere göre en uygun tekniğin seçilmesi icap etmektedir.
Bu makalede, önce patlayıcı ve EYP’ler hakkında genel bilgi verilmiş, kimyasal yapıları ve tespit teknolojileri incelenmiştir. Daha sonra da EYP tespitinde kullanılan spektroskopi tabanlı dört yöntem ele alınmış, hangi durumlarda kullanılabilir olacakları, avantajları ve dezavantajları incelenmiştir. Otomatik ve temassız olarak kullanabilecek ve elektromanyetik spektrumun (EM) farklı alanlarına yoğunlaşarak patlayıcı tespitine farklı pencerelerden bakan bu yöntemler şunlardır: (i) Hiperspektral Görüntüleme, (ii) Fourier Dönüşüm Kızılötesi (FT-IR) Spektroskopisi, (iii) Terahertz Teknolojisi, (iv) Lazer Etkileşimli Plazma Spektroskopisi (LIBS). Bu yöntemler, yığın veya iz patlayıcı bulmadaki başarıları, laboratuvar ortamında veya operasyonel olarak kullanımları ve insan sağlığına etkileri açısından değerlendirilmişlerdir. Son olarak da patlayıcı ve EYP’lerin otomatik tespitinde dikkat edilmesi gereken hususlar verilmiş ve bu alandaki gelişmelerin geleceği tartışılmıştır.

Kaynakça

  • Gonzalez, R. C. & Woods, R. E. (2007). Digital Image Processing (3rd Edition). Pearson Prentice Hall.
  • Griffiths, P.R. ve Haseth, J.A.D. (2007). Fourier Transform Infrared Spectrometry. Wiley.
  • Jensen, J. R. (2015). Introductory digital image processing: a remote sensing perspective (4th Edition). Pearson Series in Geographic Information Science.
  • National Research Council. (2004). Existing and Potential Standoff Explosives Detection Techniques. Washington, DC: The National Academies Press.
  • Naumann, D. (2000). Infrared Spectroscopy in Microbiology. Wiley.
  • Pellegrino, P.M., Holthoff, E.L., Farrell, M.E., (2015). Laser-Based Optical Detection of Explosives. Florida: CRC Press.
  • Pu, R. (2017). Hyperspectral remote sensing: Fundamentals and practices. CRC Press,.
  • Skoog, D.A., Holler, F.J. ve Nieman, T.A. (1998). Principles of instrumental analysis. Cengage learning.
  • Venugopalan, S. (2015). Demystifying explosives: concepts in high energy materials. Elsevier.
  • Yinon, J. (1999). Forensic and Environmental Detection of Explosives. Wiley.
  • Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., & Sousa, J. (2017). Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sensing, 9(11), 1110.
  • Anzano, J. M., Gornushkin, I. B., Smith, B. W., & Winefordner, J. D. (2000). Laser‐induced plasma spectroscopy for plastic identification. Polymer Engineering & Science, 40(11), 2423-2429.
  • Bioucas-Dias, J. M., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N., & Chanussot, J. (2013). Hyperspectral remote sensing data analysis and future challenges. IEEE Geoscience and remote sensing magazine, 1(2), 6-36.
  • Blake, T. A., Kelly, J. F., Gallagher, N. B., Gassman, P. L., & Johnson, T. J. (2009). Passive standoff detection of RDX residues on metal surfaces via infrared hyperspectral imaging. Analytical and bioanalytical chemistry, 395(2), 337-348.
  • Cullum, H. E., McGavigan, C., Uttley, C. Z., Stroud, M. A., & Warren, D. C. (2004). A second survey of high explosives traces in public places. Journal of Forensic Science, 49(4), 1-7.
  • Davies, A. G., Burnett, A. D., Fan, W., Linfield, E. H., & Cunningham, J. E. (2008). Terahertz spectroscopy of explosives and drugs. Materials Today, 11(3), 18-26.
  • Day, J.S., Edwards, H. G. M., Dobrowski, S. A. ve Voice, A. M. (2004). The detection of drugs of abuse in fingerprints using Raman spectroscopy II: cyanoacrylate-fumed fingerprints. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 60(8-9), 1725-1730.
  • De la Ossa, A.F., Amigo, J.M., Garcia-Ruiz, C., (2014). Detection of residues from explosive manipulation by near infrared hyperspectral imaging: A promising forensic tool. Forensic Science International, 242, 228-235.
  • Elsherbiny, N., ve Aied Nassef, O. (2015). Wavelength dependence of laser induced breakdown spectroscopy (LIBS) on questioned document investigation. Science & Justice, 55(4), 254–263.
  • Ergün, S., ve Sönmez, S. (2015). Terahertz Technology For Military Applications. Journal of Military and Information Science, 3(1), 13.
  • Habib, M. K. (2007). Controlled biological and biomimetic systems for landmine detection. Biosensors and Bioelectronics, 23(1), 1-18.
  • Gottfried, J. L., De Lucia, F. C., Munson, C. A., & Miziolek, A. W. (2009). Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects. Analytical and Bioanalytical Chemistry, 395(2), 283-300.
  • Grant, A., Wilkinson, T.J., Holman, D.R. & Martin, M.C. (2005). Identification of recently handled materials by analysis of latent human fingerprints using infrared spectromicroscopy. Applied Spectroscopy, 59(9), 1182-1187.
  • Hybl, J.D., Lithgow, G.A., Buckley S.G. (2003). Laser-induced breakdown spectroscopy detection and classification of biological aerosols. Applied Spectroscopy, 57, pp.1207.
  • Iqbal, Z., Suryanarayanan, K., Bulusu, S., & Autera, J. R. (1972). Infrared and Raman Spectra of 1, 3, 5-trinitro-1, 3, 5-triazacyclohexane (RDX) (No. PA-TR-4401). PICATINNY ARSENAL DOVER NJ.
  • Junjuri R., Myakalwar A.K., Gundawar M.K. (2017) Standoff Detection of Explosives at 1 m using Laser Induced Breakdown Spectroscopy, Defence Science Journal, 67 (6), pp. 623–630.
  • Kemp, M. C. (2011) Explosives Detection by Terahertz Spectroscopy—A Bridge Too Far? IEEE Transactions on Terahertz Science and Technology, 1 (1), pp. 282-292.
  • Kılıç, G. B., & Karahan, A. G. (2010). Fourier Dönüşümlü Kızılötesi (FTIR) Spektroskopisi ve Laktik Asit Bakterilerinin Tanısında Kullanılması. GIDA, 35(6), 445-452.
  • Koz, A. (2019). Ground-Based Hyperspectral Image Surveillance Systems for Explosive Detection: Part I—State of the Art and Challenges. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12 (12), 4746-4753.
  • Kumar, M., Islam, M. N., Terry, F. L., Freeman, M. J., Chan, A., Neelakandan, M., & Manzur, T. (2012). Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source. Applied Optics, 51(15), 2794-2807.
  • Kunz, R. R., Gregory, K. E., Aernecke, M. J., Clark, M. L., Ostrinskaya, A., & Fountain III, A. W. (2012). Fate dynamics of environmentally exposed explosive traces. The Journal Of Physical Chemistry A, 116(14), 3611-3624.
  • Leahy-Hoppa, M.R., Fitch, M.J., Osiander, R. (2009). Terahertz spectroscopy techniques for explosives detection. Analytical and Bioanalytical Chemistry, 395 (2), pp 247–257.
  • McCanta, M. C., Dobosh, P. A., Dyar, M. D., & Newsom, H. E. (2013). Testing the veracity of LIBS analyses on Mars using the LIBSSIM program. Planetary and Space Science, 81, 48-54.
  • Moros J., Lorenzo J.A., Lucena P., Tobaria L.M., Laserna J.J. (2010) Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform. Anal. Chem. 82, 1389.
  • Munson, C. A., Gottfried, J. L., De Lucia Jr, F. C., McNesby, K. L., & Miziolek, A. W. (2007). Laser-based detection methods of explosives. In Counterterrorist Detection Techniques of Explosives (pp. 279-321). Elsevier Science BV.
  • Oxley, J. C., Smith, J. L., Kirschenbaum, L. J., & Marimganti, S. (2007). Accumulation of explosives in hair—part II: factors affecting sorption. Journal of Forensic Sciences, 52(6), 1291-1296.
  • Oxley, J. C., Smith, J. L., Kirschenbaum, L. J., Marimganti, S., Efremenko, I., Zach, R., and Zeiri, Y. (2012) Accumulation of explosives in hair—Part 3: Binding site study. Journal of Forensic Sciences, 57(3), 623–635.
  • Politzer, P., & Murray, J. S. (2014). Detonation performance and sensitivity: a quest for balance. In Advances in quantum chemistry, 69, pp. 1-30. Academic Press.
  • Portnov, A., Rosenwaks, S., Bar I. (2003) Emission following laser-induced breakdown spectroscopy of organic compounds in ambient air. Applied Optics, 42, pp. 2835.
  • Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba P., Gualtieri, A., & Marconcini, M. (2009). Recent advances in techniques for hyperspectral image processing. Remote sensing of environment, 113, S110-S122.
  • Shankaran, D. R., Gobi, K. V., Sakai, T., Matsumoto, K., Imato, T., Toko, K., & Miura, N. (2005). A novel surface plasmon resonance immunosensor for 2, 4, 6-trinitrotoluene (TNT) based on indirect competitive immunoreaction: a promising approach for on-site landmine detection. IEEE Sensors Journal, 5(4), 616-621.
  • Stine, J. R. (1992). Molecular structure and performance of high explosives. MRS Online Proceedings Library Archive, 296.
  • Ueno, Y., & Ajito, K. (2008). Analytical terahertz spectroscopy. Analytical Sciences, 24(2), 185-192.
  • Wang, Q., Teng, G., Li, C., Zhao, Y., & Peng, Z. (2019). Identification and classification of explosives using semi-supervised learning and laser-induced breakdown spectroscopy. Journal of Hazardous Materials, 369, 423–429.
  • Wang, Y., P. Reder, N., Kang, S., Glaser, A., Liu, J., (2017). Multiplexed Optical Imaging of Tumor-Directed Nanoparticles: A Review of Imaging Systems and Approaches. Nanotheranostics. 1(4), 369-388.
  • Yüksel, S. E., & Boyacı, M. (2018). Effect of LiDAR sensor on the success of shadow detection from hyperspectral data. Pamukkale Unıversıty Journal of Engineering Sciences - Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(2), 198-204.
  • Yüksel, S.E., Karakaya, A. (2016a) Fusion of Target Detection Algorithms in Hyperspectral Images. International Journal of Intelligent Systems and Applications in Engineering, 4(4), 103-110, 2016.
  • Yüksel, S.E., Kucuk, S., Gader, P., (2016b) SPICEE: An Extension of SPICE for Sparse Endmember Estimation in Hyperspectral Imagery. IEEE Geoscience and Remote Sensing Letters, 13(12), 1910-1914.
  • Yüksel, S.E., Dubroca, T., Hummel, R.E., Gader, P.D. (2013) Differential Reflection Spectroscopy: A Novel Method for Explosive Detection. Acta Physica Polonica A, 123 (2), pp. 263- 264.
  • Zhang W, Tang Y., Shi A., Bao L., Shen Y., Shen R., and Ye Y. (2018) Recent Developments in Spectroscopic Techniques for the Detection of Explosives. Materials. 11(8), 1364.
  • Aydın, E., & Erdem, S.E.Y. (2019, May). Transfer and multitask learning using convolutional neural networks for buried wire detection from ground penetrating radar data. In Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXIV (Vol. 11012, p. 110120Y). International Society for Optics and Photonics.
  • Bernacki, B. E., & Phillips, M. C. (2010, May). Standoff hyperspectral imaging of explosives residues using broadly tunable external cavity quantum cascade laser illumination. In Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XI (Vol. 7665, p. 76650I). International Society for Optics and Photonics.
  • Bingham, A. L., Lucey, P. G., Akagi, J. T., Hinrichs, J. L., & Knobbe, E. T. (2014, May). LWIR hyperspectral micro-imager for detection of trace explosive particles. In Next-Generation Spectroscopic Technologies Vii (Vol. 9101, p. 91010Z). International Society for Optics and Photonics.
  • Chirico, R., Almaviva, S., Botti, S., Cantarini, L., Colao, F., Fiorani, L., Nuvoli, M., & Palucci, A. (2012, October). Stand-off detection of traces of explosives and precursors on fabrics by UV Raman spectroscopy. In Optics and Photonics for Counterterrorism, Crime Fighting, and Defence VIII (Vol. 8546, p. 85460W). International Society for Optics and Photonics.
  • Fuchs, F., Wild, C., Kirn, B., Bronner, W., Raynor, B., Köhler, K., & Wagner, J. (2007, November). Remote sensing of explosives using mid-infrared quantum cascade lasers. In Electro-Optical Remote Sensing, Detection, and Photonic Technologies and Their Applications (Vol. 6739, p. 673904). International Society for Optics and Photonics.
  • Fuchs, F., Jarvis, J. P., Hugger, S., Kinzer, M., Yang, Q., Bronner, W., Driad R., & Aidam, R. (2012, September). Imaging standoff detection of explosives by diffuse reflectance IR laser spectroscopy. In Future Security Research Conference (pp. 388-399). Springer, Berlin, Heidelberg.
  • Hildenbrand, J., Herbst, J., Wöllenstein, J., & Lambrecht, A. (2009, January). Explosive detection using infrared laser spectroscopy. In Quantum sensing and nanophotonic devices VI (Vol. 7222, p. 72220B). International Society for Optics and Photonics.
  • Nelson, M. P., Basta, A., Patil, R., Klueva, O., & Treado, P. J. (2013, May). Development of a handheld widefield hyperspectral imaging (HSI) sensor for standoff detection of explosive, chemical, and narcotic residues. In Next-Generation Spectroscopic Technologies VI (Vol. 8726, p. 872605). International Society for Optics and Photonics.
  • Onat, B. M., Carver, G., & Itzler, M. (2009, April). A solid-state hyperspectral imager for real-time standoff explosives detection using shortwave infrared imaging. In Non-Intrusive Inspection Technologies II (Vol. 7310, p. 731004). International Society for Optics and Photonics.
  • Ruxton, K., Robertson, G., Miller, W., Malcolm, G. P. A., & Maker, G. T. (2012, October). Mid-infrared hyperspectral imaging for the detection of explosive compounds. In Optics and Photonics for Counterterrorism, Crime Fighting, and Defence VIII (Vol. 8546, p. 85460V). International Society for Optics and Photonics.
  • Sakarya, U., Teke, M., Demirkesen, C., Haliloğlu, O., Kozal, A. Ö., Deveci, H. S., & Gürbüz, S. Z. (2015, June). A short survey of hyperspectral remote sensing and hyperspectral remote sensing research at TÜBİTAK Uzay. In 2015 7th International Conference on Recent Advances in Space Technologies (RAST) (pp. 187-192). IEEE.
  • Waterbury, R., Rose, J., Vunck, D., Blank, T., Pohl, K., Ford, A. & Dottery, E. (2011, June). Fabrication and testing of a standoff trace explosives detection system. In Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII (Vol. 8018, p. 801818). International Society for Optics and Photonics.
  • Yüksel, S. E., Akar, G. B., & Öztürk, S. (2015, May). Fusion of forward-looking infrared camera and down-looking ground penetrating radar for buried target detection. In Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XX (Vol. 9454, p. 945418). International Society for Optics and Photonics.
  • Yüksel, S. E., Dubroca, T., Hummel, R. E., & Gader, P. D. (2012, May). An automatic detection software for differential reflection spectroscopy. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII (Vol. 8390, p. 83900B). International Society for Optics and Photonics.
  • Zhong, H., Karpowicz, N., Partridge, J., Xie, X., Xu, J., & Zhang, X. C. (2004, September). Terahertz wave imaging for landmine detection. In Terahertz for Military and Security Applications II (Vol. 5411, pp. 33-44). International Society for Optics and Photonics.
  • Küçük, S. (2015). Uzun Dalga Kızılötesi Hiperspektral Görüntülerde Hedef Tespiti. Yüksek Lisans Tezi, Hacettepe Üniversitesi, Ankara.
  • Makki, I., (2017). Hyperspectral Imaging for Landmine Detection. Ph.D. Thesis. Optimization and Control. Politecnico Di Torino.
  • Tekbaş, M. (2014). Terahertz görüntüleme ve tanıma sistemleri. Yüksek Lisans Tezi, Bilecik Şeyh Edebali Üniversitesi, Bilecik.
  • Beşergil, B. FTIR Absorbsiyon Spektroskopisi. 25 Mayıs 2019’da http://bilsenbesergil.blogspot.com/p/8_44.html adresinden alınmıştır.
  • Bingöl, O. ve Varlık, A.B., (2015). EYP Semineri - 1 Sonuç Raporu (merkezstrateji. com /assets/media/01-eyp-semineri-sonuc-raporu-tesud-mse-s1_1.pdf).
  • Cross, R. (2017) Glowing bacteria detect buried landmines. 19 Temmuz 2020’de https://www.sciencemag.org/news/2017/04/glowing-bacteria-detect-buried-landmines adresinden alınmıştır.
  • Emission Line. (2019). 19 Temmuz 2020’de https://astronomy.swin.edu.au/cosmos /E/emission+line adresinden alınmıştır.
  • Faust, B. (1997). Modern Chemical Techniques: An Essential Reference for Students and Teachers. http:// www. rsc.org/l earnchemistry/ resource/ res00001299/ infrared-spectroscopy adresinden alınmıştır.
  • Five ways to better protect civilians in conflict zones. (2019). 2 Mayıs 2019’da www.unocha.org adresinden alınmıştır.
  • Guest, T. (2020) Detecting Explosives Science, Technological Innovation and Solutions. 19 Temmuz 2020’de https://euro-sd.com/2020/03/allgemein/ 16541/detecting-explosives-science-technological-innovation-and-solutions adresinden alınmıştır.
  • Korvink, J. G., Badilita, V. & Abdo, M. (2018) Hyperspectral Imaging. 19 Temmuz 2020’de https://www.imt.kit.edu/hyper-spectral-imaging.phpadresinden alınmıştır.
  • Paula, B. (2016) Organic_Chemistry. 25 Mayıs 2019’da https://chem.libretexts.org /Bookshelves/Organic_Chemistry/Map%3A_Organic_Chemistry_(Bruice)/13%3A_Mass_Spectrometry%2C_Infrared_Spectroscopy%2C_and_Ultraviolet%2F%2FVisible_Spectroscopy adresinden alınmıştır.

A Study on the Comparison of Spectroscopy-based Methods Used in the Detection of Improvised Explosive Devices and Explosives

Yıl 2021, Sayı: 39, 29 - 65, 12.04.2021
https://doi.org/10.17134/khosbd.913675

Öz

Thousands of people are killed, injured and psychologically damaged every year by Improvised Explosive Devices (IED) and explosives. For this reason, countries have made tremendous efforts and spent a considerable amount of their budget to ensure their national security. IEDs, which even the most powerful armies find it difficult to develop solutions to take countermeasures, are a major problem for the Turkish Armed Forces. In recent years, the fight against IEDs has become more and more important as it is frequently used in terrorist acts in Turkey.
Detection of an explosive buried beneath the surface is a challenging process that requires obtaining information about the terrain, environmental conditions, climatic structure and characteristics of the buried material. There is no standard detection method due to many variables such as the conditions under which the detection method will be used, the required distance, sensitivity and speed. For this reason, there are many ongoing studies around the world. However, not all techniques and methods used to detect explosives are useful and do not provide accurate results. Depending on the type of explosive substance to be detected, environmental factors, distance, depth under the ground, chemical components and such factors should be considered for selecting the most appropriate technique. In this article, firstly general information about explosives and IEDs are given and their chemical structures and detection technologies are examined. Then, four spectroscopy-based methods used in IED detection are discussed; their advantages and disadvantages are examined. These automatic and non-contact methods focus on different areas of the electromagnetic spectrum (EM) and deal with explosive detection in different ways. These techniques are: (i) Hyperspectral Imaging, (ii) Fourier Transform Infrared (FT-IR) Spectroscopy, (iii) Terahertz Technology (iv) Laser Induced Breakdown Spectroscopy (LIBS). These methods have been evaluated in terms of their success in finding bulk or trace explosives, their use in laboratory or operational conditions and their effects on human health. Finally, the issues to be considered in automatic detection of explosives and IEDs, and the future of the developments in this field are discussed

Kaynakça

  • Gonzalez, R. C. & Woods, R. E. (2007). Digital Image Processing (3rd Edition). Pearson Prentice Hall.
  • Griffiths, P.R. ve Haseth, J.A.D. (2007). Fourier Transform Infrared Spectrometry. Wiley.
  • Jensen, J. R. (2015). Introductory digital image processing: a remote sensing perspective (4th Edition). Pearson Series in Geographic Information Science.
  • National Research Council. (2004). Existing and Potential Standoff Explosives Detection Techniques. Washington, DC: The National Academies Press.
  • Naumann, D. (2000). Infrared Spectroscopy in Microbiology. Wiley.
  • Pellegrino, P.M., Holthoff, E.L., Farrell, M.E., (2015). Laser-Based Optical Detection of Explosives. Florida: CRC Press.
  • Pu, R. (2017). Hyperspectral remote sensing: Fundamentals and practices. CRC Press,.
  • Skoog, D.A., Holler, F.J. ve Nieman, T.A. (1998). Principles of instrumental analysis. Cengage learning.
  • Venugopalan, S. (2015). Demystifying explosives: concepts in high energy materials. Elsevier.
  • Yinon, J. (1999). Forensic and Environmental Detection of Explosives. Wiley.
  • Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., & Sousa, J. (2017). Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sensing, 9(11), 1110.
  • Anzano, J. M., Gornushkin, I. B., Smith, B. W., & Winefordner, J. D. (2000). Laser‐induced plasma spectroscopy for plastic identification. Polymer Engineering & Science, 40(11), 2423-2429.
  • Bioucas-Dias, J. M., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N., & Chanussot, J. (2013). Hyperspectral remote sensing data analysis and future challenges. IEEE Geoscience and remote sensing magazine, 1(2), 6-36.
  • Blake, T. A., Kelly, J. F., Gallagher, N. B., Gassman, P. L., & Johnson, T. J. (2009). Passive standoff detection of RDX residues on metal surfaces via infrared hyperspectral imaging. Analytical and bioanalytical chemistry, 395(2), 337-348.
  • Cullum, H. E., McGavigan, C., Uttley, C. Z., Stroud, M. A., & Warren, D. C. (2004). A second survey of high explosives traces in public places. Journal of Forensic Science, 49(4), 1-7.
  • Davies, A. G., Burnett, A. D., Fan, W., Linfield, E. H., & Cunningham, J. E. (2008). Terahertz spectroscopy of explosives and drugs. Materials Today, 11(3), 18-26.
  • Day, J.S., Edwards, H. G. M., Dobrowski, S. A. ve Voice, A. M. (2004). The detection of drugs of abuse in fingerprints using Raman spectroscopy II: cyanoacrylate-fumed fingerprints. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 60(8-9), 1725-1730.
  • De la Ossa, A.F., Amigo, J.M., Garcia-Ruiz, C., (2014). Detection of residues from explosive manipulation by near infrared hyperspectral imaging: A promising forensic tool. Forensic Science International, 242, 228-235.
  • Elsherbiny, N., ve Aied Nassef, O. (2015). Wavelength dependence of laser induced breakdown spectroscopy (LIBS) on questioned document investigation. Science & Justice, 55(4), 254–263.
  • Ergün, S., ve Sönmez, S. (2015). Terahertz Technology For Military Applications. Journal of Military and Information Science, 3(1), 13.
  • Habib, M. K. (2007). Controlled biological and biomimetic systems for landmine detection. Biosensors and Bioelectronics, 23(1), 1-18.
  • Gottfried, J. L., De Lucia, F. C., Munson, C. A., & Miziolek, A. W. (2009). Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects. Analytical and Bioanalytical Chemistry, 395(2), 283-300.
  • Grant, A., Wilkinson, T.J., Holman, D.R. & Martin, M.C. (2005). Identification of recently handled materials by analysis of latent human fingerprints using infrared spectromicroscopy. Applied Spectroscopy, 59(9), 1182-1187.
  • Hybl, J.D., Lithgow, G.A., Buckley S.G. (2003). Laser-induced breakdown spectroscopy detection and classification of biological aerosols. Applied Spectroscopy, 57, pp.1207.
  • Iqbal, Z., Suryanarayanan, K., Bulusu, S., & Autera, J. R. (1972). Infrared and Raman Spectra of 1, 3, 5-trinitro-1, 3, 5-triazacyclohexane (RDX) (No. PA-TR-4401). PICATINNY ARSENAL DOVER NJ.
  • Junjuri R., Myakalwar A.K., Gundawar M.K. (2017) Standoff Detection of Explosives at 1 m using Laser Induced Breakdown Spectroscopy, Defence Science Journal, 67 (6), pp. 623–630.
  • Kemp, M. C. (2011) Explosives Detection by Terahertz Spectroscopy—A Bridge Too Far? IEEE Transactions on Terahertz Science and Technology, 1 (1), pp. 282-292.
  • Kılıç, G. B., & Karahan, A. G. (2010). Fourier Dönüşümlü Kızılötesi (FTIR) Spektroskopisi ve Laktik Asit Bakterilerinin Tanısında Kullanılması. GIDA, 35(6), 445-452.
  • Koz, A. (2019). Ground-Based Hyperspectral Image Surveillance Systems for Explosive Detection: Part I—State of the Art and Challenges. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12 (12), 4746-4753.
  • Kumar, M., Islam, M. N., Terry, F. L., Freeman, M. J., Chan, A., Neelakandan, M., & Manzur, T. (2012). Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source. Applied Optics, 51(15), 2794-2807.
  • Kunz, R. R., Gregory, K. E., Aernecke, M. J., Clark, M. L., Ostrinskaya, A., & Fountain III, A. W. (2012). Fate dynamics of environmentally exposed explosive traces. The Journal Of Physical Chemistry A, 116(14), 3611-3624.
  • Leahy-Hoppa, M.R., Fitch, M.J., Osiander, R. (2009). Terahertz spectroscopy techniques for explosives detection. Analytical and Bioanalytical Chemistry, 395 (2), pp 247–257.
  • McCanta, M. C., Dobosh, P. A., Dyar, M. D., & Newsom, H. E. (2013). Testing the veracity of LIBS analyses on Mars using the LIBSSIM program. Planetary and Space Science, 81, 48-54.
  • Moros J., Lorenzo J.A., Lucena P., Tobaria L.M., Laserna J.J. (2010) Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform. Anal. Chem. 82, 1389.
  • Munson, C. A., Gottfried, J. L., De Lucia Jr, F. C., McNesby, K. L., & Miziolek, A. W. (2007). Laser-based detection methods of explosives. In Counterterrorist Detection Techniques of Explosives (pp. 279-321). Elsevier Science BV.
  • Oxley, J. C., Smith, J. L., Kirschenbaum, L. J., & Marimganti, S. (2007). Accumulation of explosives in hair—part II: factors affecting sorption. Journal of Forensic Sciences, 52(6), 1291-1296.
  • Oxley, J. C., Smith, J. L., Kirschenbaum, L. J., Marimganti, S., Efremenko, I., Zach, R., and Zeiri, Y. (2012) Accumulation of explosives in hair—Part 3: Binding site study. Journal of Forensic Sciences, 57(3), 623–635.
  • Politzer, P., & Murray, J. S. (2014). Detonation performance and sensitivity: a quest for balance. In Advances in quantum chemistry, 69, pp. 1-30. Academic Press.
  • Portnov, A., Rosenwaks, S., Bar I. (2003) Emission following laser-induced breakdown spectroscopy of organic compounds in ambient air. Applied Optics, 42, pp. 2835.
  • Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba P., Gualtieri, A., & Marconcini, M. (2009). Recent advances in techniques for hyperspectral image processing. Remote sensing of environment, 113, S110-S122.
  • Shankaran, D. R., Gobi, K. V., Sakai, T., Matsumoto, K., Imato, T., Toko, K., & Miura, N. (2005). A novel surface plasmon resonance immunosensor for 2, 4, 6-trinitrotoluene (TNT) based on indirect competitive immunoreaction: a promising approach for on-site landmine detection. IEEE Sensors Journal, 5(4), 616-621.
  • Stine, J. R. (1992). Molecular structure and performance of high explosives. MRS Online Proceedings Library Archive, 296.
  • Ueno, Y., & Ajito, K. (2008). Analytical terahertz spectroscopy. Analytical Sciences, 24(2), 185-192.
  • Wang, Q., Teng, G., Li, C., Zhao, Y., & Peng, Z. (2019). Identification and classification of explosives using semi-supervised learning and laser-induced breakdown spectroscopy. Journal of Hazardous Materials, 369, 423–429.
  • Wang, Y., P. Reder, N., Kang, S., Glaser, A., Liu, J., (2017). Multiplexed Optical Imaging of Tumor-Directed Nanoparticles: A Review of Imaging Systems and Approaches. Nanotheranostics. 1(4), 369-388.
  • Yüksel, S. E., & Boyacı, M. (2018). Effect of LiDAR sensor on the success of shadow detection from hyperspectral data. Pamukkale Unıversıty Journal of Engineering Sciences - Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(2), 198-204.
  • Yüksel, S.E., Karakaya, A. (2016a) Fusion of Target Detection Algorithms in Hyperspectral Images. International Journal of Intelligent Systems and Applications in Engineering, 4(4), 103-110, 2016.
  • Yüksel, S.E., Kucuk, S., Gader, P., (2016b) SPICEE: An Extension of SPICE for Sparse Endmember Estimation in Hyperspectral Imagery. IEEE Geoscience and Remote Sensing Letters, 13(12), 1910-1914.
  • Yüksel, S.E., Dubroca, T., Hummel, R.E., Gader, P.D. (2013) Differential Reflection Spectroscopy: A Novel Method for Explosive Detection. Acta Physica Polonica A, 123 (2), pp. 263- 264.
  • Zhang W, Tang Y., Shi A., Bao L., Shen Y., Shen R., and Ye Y. (2018) Recent Developments in Spectroscopic Techniques for the Detection of Explosives. Materials. 11(8), 1364.
  • Aydın, E., & Erdem, S.E.Y. (2019, May). Transfer and multitask learning using convolutional neural networks for buried wire detection from ground penetrating radar data. In Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXIV (Vol. 11012, p. 110120Y). International Society for Optics and Photonics.
  • Bernacki, B. E., & Phillips, M. C. (2010, May). Standoff hyperspectral imaging of explosives residues using broadly tunable external cavity quantum cascade laser illumination. In Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XI (Vol. 7665, p. 76650I). International Society for Optics and Photonics.
  • Bingham, A. L., Lucey, P. G., Akagi, J. T., Hinrichs, J. L., & Knobbe, E. T. (2014, May). LWIR hyperspectral micro-imager for detection of trace explosive particles. In Next-Generation Spectroscopic Technologies Vii (Vol. 9101, p. 91010Z). International Society for Optics and Photonics.
  • Chirico, R., Almaviva, S., Botti, S., Cantarini, L., Colao, F., Fiorani, L., Nuvoli, M., & Palucci, A. (2012, October). Stand-off detection of traces of explosives and precursors on fabrics by UV Raman spectroscopy. In Optics and Photonics for Counterterrorism, Crime Fighting, and Defence VIII (Vol. 8546, p. 85460W). International Society for Optics and Photonics.
  • Fuchs, F., Wild, C., Kirn, B., Bronner, W., Raynor, B., Köhler, K., & Wagner, J. (2007, November). Remote sensing of explosives using mid-infrared quantum cascade lasers. In Electro-Optical Remote Sensing, Detection, and Photonic Technologies and Their Applications (Vol. 6739, p. 673904). International Society for Optics and Photonics.
  • Fuchs, F., Jarvis, J. P., Hugger, S., Kinzer, M., Yang, Q., Bronner, W., Driad R., & Aidam, R. (2012, September). Imaging standoff detection of explosives by diffuse reflectance IR laser spectroscopy. In Future Security Research Conference (pp. 388-399). Springer, Berlin, Heidelberg.
  • Hildenbrand, J., Herbst, J., Wöllenstein, J., & Lambrecht, A. (2009, January). Explosive detection using infrared laser spectroscopy. In Quantum sensing and nanophotonic devices VI (Vol. 7222, p. 72220B). International Society for Optics and Photonics.
  • Nelson, M. P., Basta, A., Patil, R., Klueva, O., & Treado, P. J. (2013, May). Development of a handheld widefield hyperspectral imaging (HSI) sensor for standoff detection of explosive, chemical, and narcotic residues. In Next-Generation Spectroscopic Technologies VI (Vol. 8726, p. 872605). International Society for Optics and Photonics.
  • Onat, B. M., Carver, G., & Itzler, M. (2009, April). A solid-state hyperspectral imager for real-time standoff explosives detection using shortwave infrared imaging. In Non-Intrusive Inspection Technologies II (Vol. 7310, p. 731004). International Society for Optics and Photonics.
  • Ruxton, K., Robertson, G., Miller, W., Malcolm, G. P. A., & Maker, G. T. (2012, October). Mid-infrared hyperspectral imaging for the detection of explosive compounds. In Optics and Photonics for Counterterrorism, Crime Fighting, and Defence VIII (Vol. 8546, p. 85460V). International Society for Optics and Photonics.
  • Sakarya, U., Teke, M., Demirkesen, C., Haliloğlu, O., Kozal, A. Ö., Deveci, H. S., & Gürbüz, S. Z. (2015, June). A short survey of hyperspectral remote sensing and hyperspectral remote sensing research at TÜBİTAK Uzay. In 2015 7th International Conference on Recent Advances in Space Technologies (RAST) (pp. 187-192). IEEE.
  • Waterbury, R., Rose, J., Vunck, D., Blank, T., Pohl, K., Ford, A. & Dottery, E. (2011, June). Fabrication and testing of a standoff trace explosives detection system. In Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII (Vol. 8018, p. 801818). International Society for Optics and Photonics.
  • Yüksel, S. E., Akar, G. B., & Öztürk, S. (2015, May). Fusion of forward-looking infrared camera and down-looking ground penetrating radar for buried target detection. In Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XX (Vol. 9454, p. 945418). International Society for Optics and Photonics.
  • Yüksel, S. E., Dubroca, T., Hummel, R. E., & Gader, P. D. (2012, May). An automatic detection software for differential reflection spectroscopy. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII (Vol. 8390, p. 83900B). International Society for Optics and Photonics.
  • Zhong, H., Karpowicz, N., Partridge, J., Xie, X., Xu, J., & Zhang, X. C. (2004, September). Terahertz wave imaging for landmine detection. In Terahertz for Military and Security Applications II (Vol. 5411, pp. 33-44). International Society for Optics and Photonics.
  • Küçük, S. (2015). Uzun Dalga Kızılötesi Hiperspektral Görüntülerde Hedef Tespiti. Yüksek Lisans Tezi, Hacettepe Üniversitesi, Ankara.
  • Makki, I., (2017). Hyperspectral Imaging for Landmine Detection. Ph.D. Thesis. Optimization and Control. Politecnico Di Torino.
  • Tekbaş, M. (2014). Terahertz görüntüleme ve tanıma sistemleri. Yüksek Lisans Tezi, Bilecik Şeyh Edebali Üniversitesi, Bilecik.
  • Beşergil, B. FTIR Absorbsiyon Spektroskopisi. 25 Mayıs 2019’da http://bilsenbesergil.blogspot.com/p/8_44.html adresinden alınmıştır.
  • Bingöl, O. ve Varlık, A.B., (2015). EYP Semineri - 1 Sonuç Raporu (merkezstrateji. com /assets/media/01-eyp-semineri-sonuc-raporu-tesud-mse-s1_1.pdf).
  • Cross, R. (2017) Glowing bacteria detect buried landmines. 19 Temmuz 2020’de https://www.sciencemag.org/news/2017/04/glowing-bacteria-detect-buried-landmines adresinden alınmıştır.
  • Emission Line. (2019). 19 Temmuz 2020’de https://astronomy.swin.edu.au/cosmos /E/emission+line adresinden alınmıştır.
  • Faust, B. (1997). Modern Chemical Techniques: An Essential Reference for Students and Teachers. http:// www. rsc.org/l earnchemistry/ resource/ res00001299/ infrared-spectroscopy adresinden alınmıştır.
  • Five ways to better protect civilians in conflict zones. (2019). 2 Mayıs 2019’da www.unocha.org adresinden alınmıştır.
  • Guest, T. (2020) Detecting Explosives Science, Technological Innovation and Solutions. 19 Temmuz 2020’de https://euro-sd.com/2020/03/allgemein/ 16541/detecting-explosives-science-technological-innovation-and-solutions adresinden alınmıştır.
  • Korvink, J. G., Badilita, V. & Abdo, M. (2018) Hyperspectral Imaging. 19 Temmuz 2020’de https://www.imt.kit.edu/hyper-spectral-imaging.phpadresinden alınmıştır.
  • Paula, B. (2016) Organic_Chemistry. 25 Mayıs 2019’da https://chem.libretexts.org /Bookshelves/Organic_Chemistry/Map%3A_Organic_Chemistry_(Bruice)/13%3A_Mass_Spectrometry%2C_Infrared_Spectroscopy%2C_and_Ultraviolet%2F%2FVisible_Spectroscopy adresinden alınmıştır.
Toplam 77 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Seniha Esen Yüksel Bu kişi benim 0000-0002-8868-1132

Sefa Küçük Bu kişi benim 0000-0002-0279-3185

Vedat Tekeli Bu kişi benim 0000-0003-0386-8713

Birol Kılıç 0000-0002-0515-7125

R.hamza Karakaya Bu kişi benim 0000-0002-7863-1756

Murat Berkay Zeka Bu kişi benim 0000-0002-8515-8629

Yayımlanma Tarihi 12 Nisan 2021
Gönderilme Tarihi 13 Şubat 2020
Yayımlandığı Sayı Yıl 2021 Sayı: 39

Kaynak Göster

IEEE S. E. Yüksel, S. Küçük, V. Tekeli, B. Kılıç, R. Karakaya, ve M. B. Zeka, “El Yapımı Patlayıcıların ve Patlayıcı Maddelerin Tespitinde Kullanılan Spektroskopi Tabanlı Yöntemlerin Karşılaştırılmasına İlişkin Bir İnceleme”, Savunma Bilimleri Dergisi, sy. 39, ss. 29–65, Nisan 2021, doi: 10.17134/khosbd.913675.