Araştırma Makalesi
BibTex RIS Kaynak Göster

EFFECT OF HEAT TREATMENT ON CORROSION RESISTANCE OF Al-Ni-Mn EUTECTIC ALLOY IN 3.5% NaCl SOLUTION

Yıl 2024, Cilt: 12 Sayı: 1, 69 - 83, 01.03.2024
https://doi.org/10.36306/konjes.1360036

Öz

In this study, the effects of solution heat treatment (SHT) on how the Al-Ni-Mn eutectic alloy reacts to corrosion were looked into. The composition of the Al-Ni-Mn eutectic alloy was chosen as Al–5.3%Ni–1.3%Mn (wt). In solution heat treatment, firstly, the samples were kept at 570oC and 600oC for 2 hours and quenched with water at room temperature. Then, artificial aging was carried out by keeping 0-2-4 and 8 hours at 180oC. The corrosion behavior of the alloy was investigated by immersion tests in a 3.5% NaCl solution and electrochemical methods such as Tafel polarization curves and Electrochemical Impedance Spectroscopy (EIS). According to the immersion test results, the heat treatment applied at 600oC took the alloy to the more noble side and further increased its corrosion resistance. The α-Al matrix phase in the Al-Ni-Mn alloy system preferentially dissolves in untreated and heat-treated samples, and SEM images reveal the presence of corrosion pits. The corrosion performance of the heat-treated sample at 570oC is the highest. Heat treatment reduced the corrosion current density, indicating a lower corrosion rate and higher corrosion resistance. Also, the open circuit potential of the Tafel polarization curves of heat-treated and unheat-treated samples at 570oC and 600oC was found to be -685 mV, -693 mV and -761 mV, respectively. Similarly, the corrosion resistance of heat-treated and untreated samples at 570oC and 600oC was found to be 58 kΩ, 433 kΩ and 408 kΩ, respectively.

Destekleyen Kurum

This project was supported by Aksaray University Scientific Research Project Unit,

Proje Numarası

Contract No: 2021-010

Teşekkür

The authors are obliged to Aksaray University for their financial contribution.

Kaynakça

  • G. M. Scamans, N. Birbilis, and R. G. Buchheit, “Corrosion of aluminum and its alloys,” in Corrosion of Aluminum and its Alloys, 2010, pp. 1974–2010.
  • Z. Zhang, E. Akiyama, Y. Watanabe, Y. Katada, and K. Tsuzaki, “Effect of α-Al/Al3Ni microstructure on the corrosion behaviour of Al-5.4 wt% Ni alloy fabricated by equal-channel angular pressing,” Corros. Sci., vol. 49, no. 7, pp. 2962–2972, 2007.
  • J. Fu and K. Cui, “Effect of Mn content on the microstructure and corrosion resistance of Al-Cu-Mg-Mn alloys,” J. Alloys Compd., vol. 896, p. 162903, 2022.
  • M. C. Reboul, T. J. Warner, H. Mayet, and B. Baroux, “A ten-step mechanism for the pitting corrosion of aluminium,” Mater. Sci. Forum, vol. 217–222, no. PART 3, pp. 1553–1558, 1996.
  • R. G. Buchheit, “A Compilation of Corrosion Potentials Reported for Intermetallic Phases in Aluminum Alloys,” J. Electrochem. Soc., vol. 142, no. 11, pp. 3994–3996, 1995.
  • Yusuf Kaygısız and Didem Balun Kayan, “Effect of Heat Treatment on the Mechanical Properties and Corrosion Behaviour of Al–Si–Mg Alloy Systems,” Phys. Met. Metallogr., vol. 123, no. 14, pp. 1499–1508, 2022.
  • Ş. Candan, S. Çim, S. Emir, and E. Candan, “AZ91 Mg Alaşımlarında Korozyon Davranışı-Fe Tolerans Sınırı Arasındaki İlişkinin Araştırılması,” Konya J. Eng. Sci., vol. 7, no. 3, pp. 654–662, 2019.
  • N. A. Belov, A. N. Alabin, and D. G. Eskin, “Improving the properties of cold-rolled Al-6%Ni sheets by alloying and heat treatment,” Scr. Mater., vol. 50, no. 1, pp. 89–94, 2004.
  • C. Suwanpreecha, P. Pandee, U. Patakham, and C. Limmaneevichitr, “New generation of eutectic Al-Ni casting alloys for elevated temperature services,” Mater. Sci. Eng. A, vol. 709, no. September 2017, pp. 46–54, 2018.
  • J. T. Kim, S. H. Hong, J. M. Park, J. Eckert, and K. B. Kim, “Microstructure and mechanical properties of hierarchical multi-phase composites based on Al-Ni-type intermetallic compounds in the Al-Ni-Cu-Si alloy system,” J. Alloys Compd., vol. 749, pp. 205–210, 2018.
  • F. Yousefi, R. Taghiabadi, and S. Baghshahi, “Effect of Partial Substitution of Mn for Ni on Mechanical Properties of Friction Stir Processed Hypoeutectic Al-Ni Alloys,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 49, no. 6, pp. 3007–3018, 2018.
  • E. Ma, M. A. Nicolet, and M. Nathan, “NiAl3 formation in Al/Ni thin-film bilayers with and without contamination,” J. Appl. Phys., vol. 65, no. 7, pp. 2703–2710, 1989.
  • E. Ma, C. V. Thompson, and L. A. Clevenger, “Nucleation and growth during reactions in multilayer Al/Ni films: The early stage of Al3Ni formation,” J. Appl. Phys., vol. 69, no. 4, pp. 2211–2218, 1991.
  • A. S. Edelstein, R. K. Everett, G. R. Richardson, S. B. Qadri, J. C. Foley, and J. H. Perepezko, “Reaction kinetics and biasing in Al/Ni multilayers,” Mater. Sci. Eng. A, vol. 195, no. C, pp. 13–19, 1995.
  • R. B. and K. B. C. Mıchaelsen, S. Wohlert, “The Early Stages of Solid-State Reactions In Ti/Al Multilayer Films,” Eff. Partial Substit. Mn Ni Mech. Prop. Frict. Stir Process. Hypoeutectic Al-Ni Alloy., vol. 398, pp. 245–250, 1996.
  • M. H. Da Silva Bassani, J. H. Perepezko, A. S. Edelstein, and R. K. Everett, “Initial phase evolution during interdiffusion reactions,” Scr. Mater., vol. 37, no. 2, pp. 227–232, 1997.
  • W. R. Osório, J. E. Spinelli, C. R. M. Afonso, L. C. Peixoto, and A. Garcia, “Electrochemical corrosion behavior of gas atomized Al-Ni alloy powders,” Electrochim. Acta, vol. 69, pp. 371–378, 2012.
  • E. H. Padilla, A. M. Flores, C. A. Ramírez, I. A. López, and L. B. Gómez, “Electrochemical corrosion characterization of nickel aluminides in acid rain,” Rev. Mater., vol. 23, no. 2, 2018.
  • C. Cao, D. Chen, J. Ren, J. Shen, L. Meng, and J. Liu, “Improved strength and enhanced pitting corrosion resistance of Al-Mn alloy with Zr addition,” Mater. Lett., vol. 255, p. 126535, 2019.
  • H. Mraied, W. Cai, and A. A. Sagüés, “Corrosion resistance of Al and Al–Mn thin films,” Thin Solid Films, vol. 615, pp. 391–401, 2016.
  • V. S. Zolotorevsky, N. A. Belov, and M. V. Glozoff, Plating Aluminium Alloys. Amsterdam: Elsevier Ltd., 2007.
  • Mondolfo L F., Aluminum Alloys-Structure and Properties. 1976.
  • X. Z. Lit and K. H. Kuo, “Decagonal quasicrystals with different periodicities along the tenfold axis in rapidly solidified al-ni alloys,” Philos. Mag. Lett., vol. 58, no. 3, pp. 167–171, 1988.
  • J. F. Nie and B. C. Muddle, “Microstructure in rapidly solidified Al-Ti-Ni alloys,” Mater. Sci. Eng. A, vol. 215, no. 1–2, pp. 92–103, 1996.
  • C. Pohla and P. L. Ryder, “Crystalline and quasicrystalline phases in rapidly solidified Al-Ni alloys,” Acta Mater., vol. 45, no. 5, pp. 2155–2166, 1997.
  • A. Yamamoto and H. Tsubakino, “Al9Ni2 precipitates formed in an Al-Ni dilute alloy,” Scr. Mater., vol. 37, no. 11, pp. 1721–1725, 1997.
  • M. A. Martínez-Villalobos et al., “Microstructural evolution of rapid solidified Al-Ni alloys,” J. Mex. Chem. Soc., vol. 60, no. 2, pp. 67–72, 2016.
  • J. Tao, “‘Surface composition and corrosion behavior of an Al-Cu alloy,’” Docteur De L’université Pierre Et Marie Curie, 2016.
  • J. A. D. G. R. Wıllıam D. Callıster, Materials Science and Engineering an Introduction, 9th ed. Wiley, 2013.
  • T. Suter and R. C. Alkire, “Microelectrochemical Studies of Pit Initiation at Single Inclusions in Al 2024-T3,” J. Electrochem. Soc., vol. 148, no. 1, p. B36, 2001.
  • R. L. Cervantes, L. E. Murr, and R. M. Arrowood, “Copper nucleation and growth during the corrosion of aluminum alloy 2524 in sodium chloride solutions,” J. Mater. Sci., vol. 36, no. 17, pp. 4079–4088, 2001.
  • D. Balun Kayan, D. Koçak, and M. İlhan, “Electrocatalytic hydrogen production on GCE/RGO/Au hybrid electrode,” Int. J. Hydrogen Energy, vol. 43, no. 23, pp. 10562–10568, 2018.
  • D. B. Kayan, M. İlhan, and D. Koçak, “Chitosan-based hybrid nanocomposite on aluminium for hydrogen production from water,” Ionics (Kiel)., vol. 24, no. 2, pp. 563–569, 2018.
  • Y. Yang et al., “Improved corrosion behavior of ultrafine-grained eutectic Al-12Si alloy produced by selective laser melting,” Mater. Des., vol. 146, pp. 239–248, 2018.
  • D. S. Carvalho, C. J. B. Joia, and O. R. Mattos, “Corrosion rate of iron and iron-chromium alloys in CO2 medium,” Corros. Sci., vol. 47, no. 12, pp. 2974–2986, 2005.
  • M. jia Li et al., “Improved intergranular corrosion resistance of Al-Mg-Mn alloys with Sc and Zr additions,” Micron, vol. 154, no. December 2021, p. 103202, 2022.
  • M. Mirzaee-Moghadam et al., “Dry sliding wear characteristics, corrosion behavior, and hot deformation properties of eutectic Al–Si piston alloy containing Ni-rich intermetallic compounds,” Mater. Chem. Phys., vol. 279, no. January, p. 125758, 2022.
  • D. Zhang and D. Kong, “Microstructures and immersion corrosion behavior of laser thermal sprayed amorphous Al-Ni coatings in 3.5 % NaCl solution,” J. Alloys Compd., vol. 735, pp. 1–12, 2018.
Yıl 2024, Cilt: 12 Sayı: 1, 69 - 83, 01.03.2024
https://doi.org/10.36306/konjes.1360036

Öz

Proje Numarası

Contract No: 2021-010

Kaynakça

  • G. M. Scamans, N. Birbilis, and R. G. Buchheit, “Corrosion of aluminum and its alloys,” in Corrosion of Aluminum and its Alloys, 2010, pp. 1974–2010.
  • Z. Zhang, E. Akiyama, Y. Watanabe, Y. Katada, and K. Tsuzaki, “Effect of α-Al/Al3Ni microstructure on the corrosion behaviour of Al-5.4 wt% Ni alloy fabricated by equal-channel angular pressing,” Corros. Sci., vol. 49, no. 7, pp. 2962–2972, 2007.
  • J. Fu and K. Cui, “Effect of Mn content on the microstructure and corrosion resistance of Al-Cu-Mg-Mn alloys,” J. Alloys Compd., vol. 896, p. 162903, 2022.
  • M. C. Reboul, T. J. Warner, H. Mayet, and B. Baroux, “A ten-step mechanism for the pitting corrosion of aluminium,” Mater. Sci. Forum, vol. 217–222, no. PART 3, pp. 1553–1558, 1996.
  • R. G. Buchheit, “A Compilation of Corrosion Potentials Reported for Intermetallic Phases in Aluminum Alloys,” J. Electrochem. Soc., vol. 142, no. 11, pp. 3994–3996, 1995.
  • Yusuf Kaygısız and Didem Balun Kayan, “Effect of Heat Treatment on the Mechanical Properties and Corrosion Behaviour of Al–Si–Mg Alloy Systems,” Phys. Met. Metallogr., vol. 123, no. 14, pp. 1499–1508, 2022.
  • Ş. Candan, S. Çim, S. Emir, and E. Candan, “AZ91 Mg Alaşımlarında Korozyon Davranışı-Fe Tolerans Sınırı Arasındaki İlişkinin Araştırılması,” Konya J. Eng. Sci., vol. 7, no. 3, pp. 654–662, 2019.
  • N. A. Belov, A. N. Alabin, and D. G. Eskin, “Improving the properties of cold-rolled Al-6%Ni sheets by alloying and heat treatment,” Scr. Mater., vol. 50, no. 1, pp. 89–94, 2004.
  • C. Suwanpreecha, P. Pandee, U. Patakham, and C. Limmaneevichitr, “New generation of eutectic Al-Ni casting alloys for elevated temperature services,” Mater. Sci. Eng. A, vol. 709, no. September 2017, pp. 46–54, 2018.
  • J. T. Kim, S. H. Hong, J. M. Park, J. Eckert, and K. B. Kim, “Microstructure and mechanical properties of hierarchical multi-phase composites based on Al-Ni-type intermetallic compounds in the Al-Ni-Cu-Si alloy system,” J. Alloys Compd., vol. 749, pp. 205–210, 2018.
  • F. Yousefi, R. Taghiabadi, and S. Baghshahi, “Effect of Partial Substitution of Mn for Ni on Mechanical Properties of Friction Stir Processed Hypoeutectic Al-Ni Alloys,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 49, no. 6, pp. 3007–3018, 2018.
  • E. Ma, M. A. Nicolet, and M. Nathan, “NiAl3 formation in Al/Ni thin-film bilayers with and without contamination,” J. Appl. Phys., vol. 65, no. 7, pp. 2703–2710, 1989.
  • E. Ma, C. V. Thompson, and L. A. Clevenger, “Nucleation and growth during reactions in multilayer Al/Ni films: The early stage of Al3Ni formation,” J. Appl. Phys., vol. 69, no. 4, pp. 2211–2218, 1991.
  • A. S. Edelstein, R. K. Everett, G. R. Richardson, S. B. Qadri, J. C. Foley, and J. H. Perepezko, “Reaction kinetics and biasing in Al/Ni multilayers,” Mater. Sci. Eng. A, vol. 195, no. C, pp. 13–19, 1995.
  • R. B. and K. B. C. Mıchaelsen, S. Wohlert, “The Early Stages of Solid-State Reactions In Ti/Al Multilayer Films,” Eff. Partial Substit. Mn Ni Mech. Prop. Frict. Stir Process. Hypoeutectic Al-Ni Alloy., vol. 398, pp. 245–250, 1996.
  • M. H. Da Silva Bassani, J. H. Perepezko, A. S. Edelstein, and R. K. Everett, “Initial phase evolution during interdiffusion reactions,” Scr. Mater., vol. 37, no. 2, pp. 227–232, 1997.
  • W. R. Osório, J. E. Spinelli, C. R. M. Afonso, L. C. Peixoto, and A. Garcia, “Electrochemical corrosion behavior of gas atomized Al-Ni alloy powders,” Electrochim. Acta, vol. 69, pp. 371–378, 2012.
  • E. H. Padilla, A. M. Flores, C. A. Ramírez, I. A. López, and L. B. Gómez, “Electrochemical corrosion characterization of nickel aluminides in acid rain,” Rev. Mater., vol. 23, no. 2, 2018.
  • C. Cao, D. Chen, J. Ren, J. Shen, L. Meng, and J. Liu, “Improved strength and enhanced pitting corrosion resistance of Al-Mn alloy with Zr addition,” Mater. Lett., vol. 255, p. 126535, 2019.
  • H. Mraied, W. Cai, and A. A. Sagüés, “Corrosion resistance of Al and Al–Mn thin films,” Thin Solid Films, vol. 615, pp. 391–401, 2016.
  • V. S. Zolotorevsky, N. A. Belov, and M. V. Glozoff, Plating Aluminium Alloys. Amsterdam: Elsevier Ltd., 2007.
  • Mondolfo L F., Aluminum Alloys-Structure and Properties. 1976.
  • X. Z. Lit and K. H. Kuo, “Decagonal quasicrystals with different periodicities along the tenfold axis in rapidly solidified al-ni alloys,” Philos. Mag. Lett., vol. 58, no. 3, pp. 167–171, 1988.
  • J. F. Nie and B. C. Muddle, “Microstructure in rapidly solidified Al-Ti-Ni alloys,” Mater. Sci. Eng. A, vol. 215, no. 1–2, pp. 92–103, 1996.
  • C. Pohla and P. L. Ryder, “Crystalline and quasicrystalline phases in rapidly solidified Al-Ni alloys,” Acta Mater., vol. 45, no. 5, pp. 2155–2166, 1997.
  • A. Yamamoto and H. Tsubakino, “Al9Ni2 precipitates formed in an Al-Ni dilute alloy,” Scr. Mater., vol. 37, no. 11, pp. 1721–1725, 1997.
  • M. A. Martínez-Villalobos et al., “Microstructural evolution of rapid solidified Al-Ni alloys,” J. Mex. Chem. Soc., vol. 60, no. 2, pp. 67–72, 2016.
  • J. Tao, “‘Surface composition and corrosion behavior of an Al-Cu alloy,’” Docteur De L’université Pierre Et Marie Curie, 2016.
  • J. A. D. G. R. Wıllıam D. Callıster, Materials Science and Engineering an Introduction, 9th ed. Wiley, 2013.
  • T. Suter and R. C. Alkire, “Microelectrochemical Studies of Pit Initiation at Single Inclusions in Al 2024-T3,” J. Electrochem. Soc., vol. 148, no. 1, p. B36, 2001.
  • R. L. Cervantes, L. E. Murr, and R. M. Arrowood, “Copper nucleation and growth during the corrosion of aluminum alloy 2524 in sodium chloride solutions,” J. Mater. Sci., vol. 36, no. 17, pp. 4079–4088, 2001.
  • D. Balun Kayan, D. Koçak, and M. İlhan, “Electrocatalytic hydrogen production on GCE/RGO/Au hybrid electrode,” Int. J. Hydrogen Energy, vol. 43, no. 23, pp. 10562–10568, 2018.
  • D. B. Kayan, M. İlhan, and D. Koçak, “Chitosan-based hybrid nanocomposite on aluminium for hydrogen production from water,” Ionics (Kiel)., vol. 24, no. 2, pp. 563–569, 2018.
  • Y. Yang et al., “Improved corrosion behavior of ultrafine-grained eutectic Al-12Si alloy produced by selective laser melting,” Mater. Des., vol. 146, pp. 239–248, 2018.
  • D. S. Carvalho, C. J. B. Joia, and O. R. Mattos, “Corrosion rate of iron and iron-chromium alloys in CO2 medium,” Corros. Sci., vol. 47, no. 12, pp. 2974–2986, 2005.
  • M. jia Li et al., “Improved intergranular corrosion resistance of Al-Mg-Mn alloys with Sc and Zr additions,” Micron, vol. 154, no. December 2021, p. 103202, 2022.
  • M. Mirzaee-Moghadam et al., “Dry sliding wear characteristics, corrosion behavior, and hot deformation properties of eutectic Al–Si piston alloy containing Ni-rich intermetallic compounds,” Mater. Chem. Phys., vol. 279, no. January, p. 125758, 2022.
  • D. Zhang and D. Kong, “Microstructures and immersion corrosion behavior of laser thermal sprayed amorphous Al-Ni coatings in 3.5 % NaCl solution,” J. Alloys Compd., vol. 735, pp. 1–12, 2018.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Korozyon
Bölüm Araştırma Makalesi
Yazarlar

Yusuf Kaygısız 0000-0002-2143-5965

Proje Numarası Contract No: 2021-010
Yayımlanma Tarihi 1 Mart 2024
Gönderilme Tarihi 19 Eylül 2023
Kabul Tarihi 22 Aralık 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 1

Kaynak Göster

IEEE Y. Kaygısız, “EFFECT OF HEAT TREATMENT ON CORROSION RESISTANCE OF Al-Ni-Mn EUTECTIC ALLOY IN 3.5% NaCl SOLUTION”, KONJES, c. 12, sy. 1, ss. 69–83, 2024, doi: 10.36306/konjes.1360036.