Araştırma Makalesi
BibTex RIS Kaynak Göster

ADSORPTION OF MALACHITE GREEN INTO POTATO PEEL: NONLINEAR ISOTHERM AND KINETIC

Yıl 2024, Cilt: 12 Sayı: 1, 150 - 161, 01.03.2024
https://doi.org/10.36306/konjes.1379888

Öz

Potato peels (PPs) were utilized for removal of malachite green (MG) from aqueous solutions. The adsorbent underwent characterization through attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR), Scanning electron microscope (SEM), point zero charge (pHPZC) X-Ray diffraction (XRD), and Energy dispersive X-ray spectroscopy (EDX). The removal of MG was found to be significantly influenced by pH, temperature, contact time, and initial concentration. Temperature and particle size were determined to have lesser influence compared to other factors. The adsorption process lasted for 120 minutes, with rapid removal occurring within the first 60 minutes. Adsorption kinetics were analyzed using the Elovich, pseudo first order, and pseudo second order models. The pseudo second order model was found to be more suitable for the kinetic study. Isotherm modeling was conducted using the Temkin, Freundlich, and Langmuir isotherms. Due to the exothermic nature of the study, the Freundlich and Langmuir models were found to be highly compatible. The maximum adsorption capacity was determined as 37.8 mg/g at 41°C. ATR-FTIR analysis revealed the involvement of hydroxide and carbonyl groups in the adsorption process. Overall, this study concluded that PPs is promising adsorbent for removal of MG from aqueous solutions.

Destekleyen Kurum

TUBITAK

Proje Numarası

2209-A

Kaynakça

  • S. Sharma, A. Hasan, N. Kumar, and L. M. Pandey, “Removal of methylene blue dye from aqueous solution using immobilized agrobacterium fabrum biomass along with iron oxide nanoparticles as biosorbent,” Environmental Science and Pollution Research, vol. 25, no. 22, pp. 21605–21615, 2018. doi:10.1007/s11356-018-2280-z
  • M. T. Yagub, T. K. Sen, S. Afroze, H.M. Ang, “Dye and its removal from aqueous solution by adsorption: A review,“ Advances in Colloid and Interface Science, vol. 209, pp. 172-184, 2014. doi:10.1016/j.cis.2014.04.002
  • K.Y.A. Lin, H.A. Chang, “Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water,“ Chemosphere, vol. 139, pp. 624–631, 2015. doi:10.1016/j.chemosphere.2015.01.041
  • A. Elhalil, H. Tounsadi, R. Elmoubarki, F.Z. Mahjoubi, M. Farnane, M. Sadiq, M. Abdennouri, S. Qourzal, N. Barka, “Factorial experimental design for the optimization of catalytic degradation of malachite green dye in aqueous solution by Fenton process,“ Water Resour Ind., vol. 15, pp. 41–48, 2016. doi:10.1016/j.wri.2016.07.002.
  • R. Selvasembian, P. Balasubramanian, “Utilization of unconventional lignocellulosic waste biomass for the biosorption of toxic triphenylmethane dye malachite green from aqueous solution,” International Journal of Phytoremediation, vol. 20 no. 6, pp. 624-633, 2018. doi:10.1080/15226514.2017.1413329.
  • M. Liu, Z. Liu, T. Yang, Q. He, K. Yang, H. Wang, “Studies of malachite green adsorption on covalently functionalized Fe3O4@SiO2–graphene oxides core–shell magnetic microspheres,” J Solgel Sci Technol., vol. 82, pp. 424–431, 2017. doi: 10.1007/s10971-017-4307-1.
  • H. A. Al-Yousef, B. M. Alotaibi, M. M. Alanazi, F. Aouaini, L. Sellaoui, A. Bonilla-Petriciolet, “Theoretical assessment of the adsorption mechanism of ibuprofen, ampicillin, orange G and malachite green on a biomass functionalized with plasma,” Journal of Environmental Chemical Engineering, vol. 9, no. 1, pp 104950, 2021. doi: 10.1016/j.jece.2020.104950.
  • B. Takam, J. B. Tarkwa, E. Acayanka, S. Nzali, D. M. Chesseu, G. Y. Kamgang, S. Laminsi, “Insight into the removal process mechanism of pharmaceutical compounds and dyes on plasma-modified biomass: the key role of adsorbate specificity.” Environ. Sci. Pollut. Res., vol. 27, pp. 20500–20515, 2020. doi: 10.1007/s11356-020-08536-3.
  • Sharma, Neetu, D. P. Tiwari, S. K. Singh, "The efficiency appraisal for removal of malachite green by potato peel and neem bark: isotherm and kinetic studies." International Journal, vol.5, no.2, pp. 84-88 2014.
  • A. Stavrinou, C.A. Aggelopoulos, C.D. Tsakiroglou, “Exploring the adsorption mechanisms of cationic and anionic dyes onto agricultural waste peels of banana, cucumber and potato: Adsorption kinetics and equilibrium isotherms as a tool.” Journal of Environmental Chemical Engineering, vol.6, no.6, pp. 6958-6970, 2018. doi: 10.1016/j.jece.2018.10.063.
  • Ioannis Anastopoulos, George Z. Kyzas, “Agricultural peels for dye adsorption: A review of recent literature.” Journal of Molecular Liquids, vol. 200, Part B, pp. 381-389, 2014. doi:10.1016/j.molliq.2014.11.006.
  • G. El-Khamsa, H. Oualid, “Sorption of malachite green from aqueous solution by potato peel: Kinetics and equilibrium modeling using non-linear analysis method,” Arabian Journal of Chemistry, vol. 9, pp. S416-S424, 2016. doi: 10.1016/j.arabjc.2011.05.011.
  • U. Farooq, M. A. Khan, M. Athar, J. A. Kozinski, “Effect of modification of environmentally friendly biosorbent wheat (Triticum aestivum) on the biosorptive removal of cadmium (II) ions from aqueous solution,” Chemical Engineering Journal, vol. 171, no. 2, pp. 400-410, 2011. doi: 10.1016/j.cej.2011.03.094.
  • T.K. Naiya, B. Singha, S.K. Das, “FTIR study for the Cr(VI) removal from aqueous solution using rice waste,” International Conference on Chemistry and Chemical Process-IPCBEE, vol. 10 pp114–119, 2011.
  • H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, pp. 1781–1788, 2007.
  • M. J. K. Ahmed, M. Ahmaruzzaman, R. A. Reza, “Lignocellulosic-derived modified agricultural waste: Development, characterisation and implementation in sequestering pyridine from aqueous solutions,” Journal of Colloid and Interface Science, vol. 428, pp. 222-234, 2014. doi. 10.1016/j.jcis.2014.04.049.
  • E. D. Asuquo, A. D. Martin, “Sorption of cadmium (II) ion from aqueous solution onto sweet potato (Ipomoea batatas L.) peel adsorbent: Characterisation, kinetic and isotherm studies,” Journal of Environmental Chemical Engineering, vol. 4, no. 4, pp. 4207-4228, 2016. doi: 10.1016/j.jece.2016.09.024.
  • Z. Zhezi, Z. Mingming, Z. Dongke, “A Thermogravimetric study of the characteristics of pyrolysis of cellulose isolated from selected biomass,” Applied Energy, vol. 220, pp. 87-93, 2018. doi: 10.1016/j.apenergy.2018.03.057.
  • W. Qu, T. Yuan, G. Yin, S. Xu, Q. Zhang, H. Su, “Effect of properties of activated carbon on malachite green adsorption,” Fuel, vol. 249, pp. 45-53, 2019. doi: 10.1016/j.fuel.2019.03.058.
  • M.A. Al-Ghouti, R.S. Al-Absi, “Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater,” Sci. Rep., vol. 10, pp. 15928, 2020. doi: 10.1038/s41598-020-72996-3.
  • C. Silva, B. Gama, A. Gonçalves, J. Medeiros, A. Abud, “Basic-dye adsorption in albedo residue: effect of pH, contact time, temperature, dye concentration, biomass dosage, rotation and ionic strength,” J. King Saud. Univ. Eng. Sci. vol. 32 no. 6, pp. 351–359 2019. doi: 10.1016/j.jksues.2019.04.006.
  • S. Ben-Ali, I. Jaouali, S. Souissi-Najar, A. Ouederni, “Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal, Journal of Cleaner Production,” vol. 142, no. 4, pp. 3809-3821, 2017. doi: 10.1016/j.jclepro.2016.10.081.
  • M. A. Al-Ghouti, D. A. Da'ana, “Guidelines for the use and interpretation of adsorption isotherm models: A review,” Journal of Hazardous Materials, vol. 393, pp. 122383, 2020. doi: 10.1016/j.jhazmat.2020.122383.
  • H. Swenson, N. Stadie, “Langmuir’s theory of adsorption: a centennial review,” Langmuir, vol. 35 no. 16, pp. 5409–5426, 2019. doi: 10.1021/acs.langmuir.9b00154.
  • N. Ayawei, A. N. Ebelegi, D. Wankasi, “Modelling and Interpretation of Adsorption Isotherms,” Hindawi Journal of Chemistry, vol. 11 pp. 3039817, 2017. doi: 10.1155/2017/3039817.
  • M. Vadi, A. Mansoorabad, M. Mohammadi, N. Rostami, “Investigation of Langmuir, Freundlich and temkin adsorption isotherm of tramadol by multi-wall carbon nanotube,” Asian J. Chem., vol. 25 no. 10, pp. 5467–5469, 2013. doi: 10.14233/ajchem.2013.14786.
  • J. Wang, X. Guo, “Adsorption kinetic models: Physical meanings, applications, and solving methods,” Journal of Hazardous Materials, vol. 390, pp. 122156, 2020. doi: 10.1016/j.jhazmat.2020.122156.
  • G. Ersan, Y. Kaya, M.S. Ersan, O.G. Apul, T. Karanfil, “Adsorption kinetics and aggregation for three classes of carbonaceous adsorbents in the presence of natural organic matter,” Chemosphere, vol. 229, pp. 514–524, 2019. doi: 10.1016/j.chemosphere.2019.05.014.
  • G. Sabarinathan, P. Karuppasamy, C.T. Vijayakumar, T. Arumuganathan, “Development of methylene blue removal methodology by adsorption using molecular polyoxometalate: kinetics, thermodynamics and mechanistic Study,” Microchem. J., vol. 146, pp. 315–326, 2019. doi: 10.1016/j.microc.2019.01.015.
  • C. Lin, W. Luo, T. Luo, Q. Zhou, H. Li, L. Jing, “A study on adsorption of Cr (VI) by modified rice straw: characteristics, performances and mechanism,” J. Clean. Prod., vol. 196, pp. 626–634, 2018. doi: 10.1016/j.jclepro.2018.05.279.
Yıl 2024, Cilt: 12 Sayı: 1, 150 - 161, 01.03.2024
https://doi.org/10.36306/konjes.1379888

Öz

Proje Numarası

2209-A

Kaynakça

  • S. Sharma, A. Hasan, N. Kumar, and L. M. Pandey, “Removal of methylene blue dye from aqueous solution using immobilized agrobacterium fabrum biomass along with iron oxide nanoparticles as biosorbent,” Environmental Science and Pollution Research, vol. 25, no. 22, pp. 21605–21615, 2018. doi:10.1007/s11356-018-2280-z
  • M. T. Yagub, T. K. Sen, S. Afroze, H.M. Ang, “Dye and its removal from aqueous solution by adsorption: A review,“ Advances in Colloid and Interface Science, vol. 209, pp. 172-184, 2014. doi:10.1016/j.cis.2014.04.002
  • K.Y.A. Lin, H.A. Chang, “Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water,“ Chemosphere, vol. 139, pp. 624–631, 2015. doi:10.1016/j.chemosphere.2015.01.041
  • A. Elhalil, H. Tounsadi, R. Elmoubarki, F.Z. Mahjoubi, M. Farnane, M. Sadiq, M. Abdennouri, S. Qourzal, N. Barka, “Factorial experimental design for the optimization of catalytic degradation of malachite green dye in aqueous solution by Fenton process,“ Water Resour Ind., vol. 15, pp. 41–48, 2016. doi:10.1016/j.wri.2016.07.002.
  • R. Selvasembian, P. Balasubramanian, “Utilization of unconventional lignocellulosic waste biomass for the biosorption of toxic triphenylmethane dye malachite green from aqueous solution,” International Journal of Phytoremediation, vol. 20 no. 6, pp. 624-633, 2018. doi:10.1080/15226514.2017.1413329.
  • M. Liu, Z. Liu, T. Yang, Q. He, K. Yang, H. Wang, “Studies of malachite green adsorption on covalently functionalized Fe3O4@SiO2–graphene oxides core–shell magnetic microspheres,” J Solgel Sci Technol., vol. 82, pp. 424–431, 2017. doi: 10.1007/s10971-017-4307-1.
  • H. A. Al-Yousef, B. M. Alotaibi, M. M. Alanazi, F. Aouaini, L. Sellaoui, A. Bonilla-Petriciolet, “Theoretical assessment of the adsorption mechanism of ibuprofen, ampicillin, orange G and malachite green on a biomass functionalized with plasma,” Journal of Environmental Chemical Engineering, vol. 9, no. 1, pp 104950, 2021. doi: 10.1016/j.jece.2020.104950.
  • B. Takam, J. B. Tarkwa, E. Acayanka, S. Nzali, D. M. Chesseu, G. Y. Kamgang, S. Laminsi, “Insight into the removal process mechanism of pharmaceutical compounds and dyes on plasma-modified biomass: the key role of adsorbate specificity.” Environ. Sci. Pollut. Res., vol. 27, pp. 20500–20515, 2020. doi: 10.1007/s11356-020-08536-3.
  • Sharma, Neetu, D. P. Tiwari, S. K. Singh, "The efficiency appraisal for removal of malachite green by potato peel and neem bark: isotherm and kinetic studies." International Journal, vol.5, no.2, pp. 84-88 2014.
  • A. Stavrinou, C.A. Aggelopoulos, C.D. Tsakiroglou, “Exploring the adsorption mechanisms of cationic and anionic dyes onto agricultural waste peels of banana, cucumber and potato: Adsorption kinetics and equilibrium isotherms as a tool.” Journal of Environmental Chemical Engineering, vol.6, no.6, pp. 6958-6970, 2018. doi: 10.1016/j.jece.2018.10.063.
  • Ioannis Anastopoulos, George Z. Kyzas, “Agricultural peels for dye adsorption: A review of recent literature.” Journal of Molecular Liquids, vol. 200, Part B, pp. 381-389, 2014. doi:10.1016/j.molliq.2014.11.006.
  • G. El-Khamsa, H. Oualid, “Sorption of malachite green from aqueous solution by potato peel: Kinetics and equilibrium modeling using non-linear analysis method,” Arabian Journal of Chemistry, vol. 9, pp. S416-S424, 2016. doi: 10.1016/j.arabjc.2011.05.011.
  • U. Farooq, M. A. Khan, M. Athar, J. A. Kozinski, “Effect of modification of environmentally friendly biosorbent wheat (Triticum aestivum) on the biosorptive removal of cadmium (II) ions from aqueous solution,” Chemical Engineering Journal, vol. 171, no. 2, pp. 400-410, 2011. doi: 10.1016/j.cej.2011.03.094.
  • T.K. Naiya, B. Singha, S.K. Das, “FTIR study for the Cr(VI) removal from aqueous solution using rice waste,” International Conference on Chemistry and Chemical Process-IPCBEE, vol. 10 pp114–119, 2011.
  • H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, pp. 1781–1788, 2007.
  • M. J. K. Ahmed, M. Ahmaruzzaman, R. A. Reza, “Lignocellulosic-derived modified agricultural waste: Development, characterisation and implementation in sequestering pyridine from aqueous solutions,” Journal of Colloid and Interface Science, vol. 428, pp. 222-234, 2014. doi. 10.1016/j.jcis.2014.04.049.
  • E. D. Asuquo, A. D. Martin, “Sorption of cadmium (II) ion from aqueous solution onto sweet potato (Ipomoea batatas L.) peel adsorbent: Characterisation, kinetic and isotherm studies,” Journal of Environmental Chemical Engineering, vol. 4, no. 4, pp. 4207-4228, 2016. doi: 10.1016/j.jece.2016.09.024.
  • Z. Zhezi, Z. Mingming, Z. Dongke, “A Thermogravimetric study of the characteristics of pyrolysis of cellulose isolated from selected biomass,” Applied Energy, vol. 220, pp. 87-93, 2018. doi: 10.1016/j.apenergy.2018.03.057.
  • W. Qu, T. Yuan, G. Yin, S. Xu, Q. Zhang, H. Su, “Effect of properties of activated carbon on malachite green adsorption,” Fuel, vol. 249, pp. 45-53, 2019. doi: 10.1016/j.fuel.2019.03.058.
  • M.A. Al-Ghouti, R.S. Al-Absi, “Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater,” Sci. Rep., vol. 10, pp. 15928, 2020. doi: 10.1038/s41598-020-72996-3.
  • C. Silva, B. Gama, A. Gonçalves, J. Medeiros, A. Abud, “Basic-dye adsorption in albedo residue: effect of pH, contact time, temperature, dye concentration, biomass dosage, rotation and ionic strength,” J. King Saud. Univ. Eng. Sci. vol. 32 no. 6, pp. 351–359 2019. doi: 10.1016/j.jksues.2019.04.006.
  • S. Ben-Ali, I. Jaouali, S. Souissi-Najar, A. Ouederni, “Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal, Journal of Cleaner Production,” vol. 142, no. 4, pp. 3809-3821, 2017. doi: 10.1016/j.jclepro.2016.10.081.
  • M. A. Al-Ghouti, D. A. Da'ana, “Guidelines for the use and interpretation of adsorption isotherm models: A review,” Journal of Hazardous Materials, vol. 393, pp. 122383, 2020. doi: 10.1016/j.jhazmat.2020.122383.
  • H. Swenson, N. Stadie, “Langmuir’s theory of adsorption: a centennial review,” Langmuir, vol. 35 no. 16, pp. 5409–5426, 2019. doi: 10.1021/acs.langmuir.9b00154.
  • N. Ayawei, A. N. Ebelegi, D. Wankasi, “Modelling and Interpretation of Adsorption Isotherms,” Hindawi Journal of Chemistry, vol. 11 pp. 3039817, 2017. doi: 10.1155/2017/3039817.
  • M. Vadi, A. Mansoorabad, M. Mohammadi, N. Rostami, “Investigation of Langmuir, Freundlich and temkin adsorption isotherm of tramadol by multi-wall carbon nanotube,” Asian J. Chem., vol. 25 no. 10, pp. 5467–5469, 2013. doi: 10.14233/ajchem.2013.14786.
  • J. Wang, X. Guo, “Adsorption kinetic models: Physical meanings, applications, and solving methods,” Journal of Hazardous Materials, vol. 390, pp. 122156, 2020. doi: 10.1016/j.jhazmat.2020.122156.
  • G. Ersan, Y. Kaya, M.S. Ersan, O.G. Apul, T. Karanfil, “Adsorption kinetics and aggregation for three classes of carbonaceous adsorbents in the presence of natural organic matter,” Chemosphere, vol. 229, pp. 514–524, 2019. doi: 10.1016/j.chemosphere.2019.05.014.
  • G. Sabarinathan, P. Karuppasamy, C.T. Vijayakumar, T. Arumuganathan, “Development of methylene blue removal methodology by adsorption using molecular polyoxometalate: kinetics, thermodynamics and mechanistic Study,” Microchem. J., vol. 146, pp. 315–326, 2019. doi: 10.1016/j.microc.2019.01.015.
  • C. Lin, W. Luo, T. Luo, Q. Zhou, H. Li, L. Jing, “A study on adsorption of Cr (VI) by modified rice straw: characteristics, performances and mechanism,” J. Clean. Prod., vol. 196, pp. 626–634, 2018. doi: 10.1016/j.jclepro.2018.05.279.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevresel ve Sürdürülebilir Süreçler
Bölüm Araştırma Makalesi
Yazarlar

İlhan Küçük 0000-0003-2876-3942

Halil Biçiçi 0009-0004-1409-552X

Proje Numarası 2209-A
Yayımlanma Tarihi 1 Mart 2024
Gönderilme Tarihi 23 Ekim 2023
Kabul Tarihi 1 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 1

Kaynak Göster

IEEE İ. Küçük ve H. Biçiçi, “ADSORPTION OF MALACHITE GREEN INTO POTATO PEEL: NONLINEAR ISOTHERM AND KINETIC”, KONJES, c. 12, sy. 1, ss. 150–161, 2024, doi: 10.36306/konjes.1379888.