Araştırma Makalesi
BibTex RIS Kaynak Göster

PRODUCTION OF CuO/ZrO2 NANOCOMPOSITES IN POWDER AND FIBER FORMS

Yıl 2024, Cilt: 12 Sayı: 1, 221 - 230, 01.03.2024
https://doi.org/10.36306/konjes.1410183

Öz

CuO/ZrO2 composite systems were synthesized in two different ways and comprehensively characterized with X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), scanning electron microscopy(SEM), transmission electron microscopy(TEM), and energy dispersive X-ray spectroscopy(EDX). These metal oxide samples were prepared by hydrothermal synthesis and electrospinning process. In these methods, the same metal salts were used as precursors. Separately produced ZrO2 nanoparticles(NPs) and CuO particles have spherical and cube-like shapes, and both morphologies have monoclinic structures. However, ZrO2 and CuO particles do not have uniform diameters, and the average size of these particles ranges between 6–17 and 215–847 nm, respectively. Moreover, CuO/ZrO2 nanocomposite particles(NCPs) were synthesized using a facile and one-pot hydrothermal technique. They have uniform, spherical, and monoclinic structures with a 15nm average diameter. Furthermore, ZrO2 fibers were produced with the electrospinning process as highly crystalline structures after annealing, with a 230 nm average fiber diameter. In addition, ZrO2 fibers were doped with hydrothermally synthesized CuO particles with a drop-casting method for the first time. This study clearly shows that particle-fiber structure allows the development of the efficiency of p-type counterparts by using only 0.5-1.5wt.% n-type. With these results, two methods can be used to produce heterostructure CuO/ZrO2 composite particles/fibers and as potential for photocatalytic degradation.

Etik Beyan

The author followed all ethical guidelines, including authorship, citation, data reporting, and publishing original research.

Destekleyen Kurum

Scientific Research Projects Coordination Unit of Konya Technical University

Proje Numarası

211019030

Kaynakça

  • A. Turki Jalil, H. Emad Al Qurabiy, S. Hussain Dilfy, S. Oudah Meza, S. Aravindhan, M. M Kadhim, A. M Aljeboree, “CuO/ZrO2 nanocomposites: facile synthesis, characterization and photocatalytic degradation of tetracycline antibiotic”, Journal of Nanostructures, vol. 11, no. 2, pp. 333-346, 2021, doi: 10.22052/JNS.2021.02.014.
  • Y. Wang and R. A. Caruso, “Preparation and characterization of CuO–ZrO2 nanopowders”, Journal of Materials Chemistry, vol. 12, no. 5, pp. 1442-1445, 2002, doi: 10.1039/B110844A.
  • Z. Chen, N. Meng, C. Gen, W. Qiong, T. Longfei, F. Changhui, R. Xiangling, Z. Hongshan, X. Ke, and Xianwei Meng, “Oxygen production of modified core–shell CuO@ZrO2 nanocomposites by microwave radiation to alleviate cancer hypoxia for enhanced chemo-microwave thermal therapy”, ACS nano, vol. 12, no. 12, pp. 12721-12732, 2018, doi: 10.1021/acsnano.8b07749.
  • J. Baneshi, M. Haghighi, N. Jodeiri, M. Abdollahifar, and H. Ajamein, “Homogeneous precipitation synthesis of CuO–ZrO2–CeO2–Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming for fuel cell applications”, Energy Conversion and Management, vol. 87, pp. 928-937, 2014, doi: /10.1016/j.enconman.2014.07.058.
  • J. Liu, J. Shi, D. He, Q. Zhang, X. Wu, Y. Liang, and Q. Zhu, “Surface active structure of ultra-fine Cu/ZrO2 catalysts used for the CO2+ H2 to methanol reaction”, Applied Catalysis A: General, vol. 218, no. 1-2, pp. 113-119, 2001, doi: 10.1016/S0926-860X(01)00625-1.
  • S. F. Zakeritabar, M. Jahanshahi, and M. Peyravi, “Photocatalytic Behavior of Induced Membrane by ZrO2–SnO2 Nanocomposite for Pharmaceutical Wastewater Treatment”, Catalysis Letters, vol. 148, no. 3, pp. 882-893, 2018, doi: 10.1007/s10562-018-2303-x.
  • S. Naz, A. Gul, M. Zia, and R. Javed, “Synthesis, biomedical applications, and toxicity of CuO nanoparticles”, Applied Microbiology and Biotechnology, vol. 107, no. 4, pp. 1039-1061, 2023, doi: 10.1007/s00253-023-12364-z.
  • S. F. Shaikh ve Z. A. Shaikh, “Electrospinning of metal oxide nanostructures”, Solution Methods for Metal Oxide Nanostructures, Elsevier, pp. 125-152, 2023, doi: 10.1016/B978-0-12-824353-4.00009-9.
  • T. Zhao, Y. Zheng, X. Zhang, D. Teng, Y. Xu, and Y. Zeng, “Design of helical groove/hollow nanofibers via tri-fluid electrospinning”, Materials & Design, vol. 205, pp. 109705, 2021, doi: 10.1016/j.matdes.2021.109705.
  • A. Yarin, “Coaxial electrospinning and emulsion electrospinning of core–shell fibers”, Polymers for Advanced Technologies, vol. 22, no. 3, pp. 310-317, 2011, doi: 10.1002/pat.1781.
  • Y. Zhang, Y. Feng, Z. Huang, S. Ramakrishna, and C. Lim, “Fabrication of porous electrospun nanofibres”, Nanotechnology, vol. 17, no. 3, pp. 901, 2006, doi: 10.1088/0957-4484/17/3/047.
  • Z. Çetinkaya, E. Güneş, and İ. Şavkliyildiz, “Investigation of biochemical properties of flash sintered ZrO2–SnO2 nanofibers”, Materials Chemistry and Physics, vol. 293, pp. 126900, 2023, doi: 10.1016/j.matchemphys.2022.126900.
  • R. O. Ijeh, C. O. Ugwuoke, E. B. Ugwu, S. O. Aisida, and F. I. Ezema, “Structural, optical and magnetic properties of Cu-doped ZrO2 films synthesized by electrodeposition method”, Ceramics International, vol. 48, no. 4, pp. 4686-4692, 2022, doi: 0.1016/j.ceramint.2021.11.0041.
  • K. V. Özdokur, Ç. C. Koçak, Ç. Eden, Z. Demir, Ç. Çirak, E. Yavuz, B. Çağlar, “Gold‐Nanoparticles‐Decorated ZrO2‐CuO Nanocomposites: Synthesis, Characterization and A Novel Platform for Electrocatalytic Formaldehyde Oxidation”, Chemistryselect, vol. 7, no 28, pp. e202201411, 2022, doi: 10.1002/slct.202201411.
  • E. S. Borovinskaya, S. Trebbin, F. Alscher, and C. Breitkopf, “Synthesis, modification, and characterization of CuO/ZnO/ZrO2 mixed metal oxide catalysts for CO2/H2 conversion”, Catalysts, vol. 9, no. 12, pp. 1037, 2019, doi: 10.3390/catal9121037.
  • A. Figini Albisetti, C. A. Biffi, and A. Tuissi, “Synthesis and structural analysis of Copper-Zirconium oxide”, Metals, vol. 6, no. 9, pp. 195, 2016, doi: 10.3390/met6090195.
  • S. Azhar, K. S. Ahmad, I. Abrahams, W. Lin, R. K. Gupta, and A. El-marghany, “Synthesis of phyto-mediated CuO–ZrO2 nanocomposite and investigation of their role as electrode material for supercapacitor and water splitting studies”, Journal of Materials Research, vol. 38, pp. 4937-4950, 2023, doi: 10.1557/s43578-023-01204-5.
  • T. Athar, S. K. Vishwakarma, A. Bardia, R. Alabass, A. Alqarlosy, and A. A. Khan, “Green approach for the synthesis and characterization of ZrSnO4 nanopowder”, Applied Nanoscience, vol. 6, no. 5, pp. 767-777, 2016, doi: 10.1007/s13204-015-0488-5.
  • N. Scotti, F. Bossola, F. Zaccheria, and N. Ravasio, “Copper–zirconia catalysts: Powerful multifunctional catalytic tools to approach sustainable processes”, Catalysts, vol. 10, no. 2, pp. 168, 2020, doi: 10.3390/catal10020168.
  • K. Kaviyarasu, L. Kotsedi, Aline Simo, Xolile Fuku, Genene T. Mola, J. Kennedy, M. Maaza, “Photocatalytic activity of ZrO2 doped lead dioxide nanocomposites: Investigation of structural and optical microscopy of RhB organic dye”, Applied Surface Science, vol. 421, pp. 234-239, 2017, doi: 10.1016/j.apsusc.2016.11.149.
  • A. K. Arora, V. S. Jaswal, K. Singh, and R. Singh, “Applications of metal/mixed metal oxides as photocatalyst:(A review)”, Oriental Journal of Chemistry, vol. 32, no. 4, pp. 2035, 2016, doi: 10.13005/ojc/320430.
  • V. Anitha, S. S. Lekshmy, and K. Joy, “Effect of annealing temperature on optical and electrical properties of ZrO2–SnO2 nanocomposite thin films”, Journal of Materials Science: Materials in Electronics, vol. 24, pp. 4340-4345, 2013, doi: 10.1007/s10854-013-1408-7.
Yıl 2024, Cilt: 12 Sayı: 1, 221 - 230, 01.03.2024
https://doi.org/10.36306/konjes.1410183

Öz

Proje Numarası

211019030

Kaynakça

  • A. Turki Jalil, H. Emad Al Qurabiy, S. Hussain Dilfy, S. Oudah Meza, S. Aravindhan, M. M Kadhim, A. M Aljeboree, “CuO/ZrO2 nanocomposites: facile synthesis, characterization and photocatalytic degradation of tetracycline antibiotic”, Journal of Nanostructures, vol. 11, no. 2, pp. 333-346, 2021, doi: 10.22052/JNS.2021.02.014.
  • Y. Wang and R. A. Caruso, “Preparation and characterization of CuO–ZrO2 nanopowders”, Journal of Materials Chemistry, vol. 12, no. 5, pp. 1442-1445, 2002, doi: 10.1039/B110844A.
  • Z. Chen, N. Meng, C. Gen, W. Qiong, T. Longfei, F. Changhui, R. Xiangling, Z. Hongshan, X. Ke, and Xianwei Meng, “Oxygen production of modified core–shell CuO@ZrO2 nanocomposites by microwave radiation to alleviate cancer hypoxia for enhanced chemo-microwave thermal therapy”, ACS nano, vol. 12, no. 12, pp. 12721-12732, 2018, doi: 10.1021/acsnano.8b07749.
  • J. Baneshi, M. Haghighi, N. Jodeiri, M. Abdollahifar, and H. Ajamein, “Homogeneous precipitation synthesis of CuO–ZrO2–CeO2–Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming for fuel cell applications”, Energy Conversion and Management, vol. 87, pp. 928-937, 2014, doi: /10.1016/j.enconman.2014.07.058.
  • J. Liu, J. Shi, D. He, Q. Zhang, X. Wu, Y. Liang, and Q. Zhu, “Surface active structure of ultra-fine Cu/ZrO2 catalysts used for the CO2+ H2 to methanol reaction”, Applied Catalysis A: General, vol. 218, no. 1-2, pp. 113-119, 2001, doi: 10.1016/S0926-860X(01)00625-1.
  • S. F. Zakeritabar, M. Jahanshahi, and M. Peyravi, “Photocatalytic Behavior of Induced Membrane by ZrO2–SnO2 Nanocomposite for Pharmaceutical Wastewater Treatment”, Catalysis Letters, vol. 148, no. 3, pp. 882-893, 2018, doi: 10.1007/s10562-018-2303-x.
  • S. Naz, A. Gul, M. Zia, and R. Javed, “Synthesis, biomedical applications, and toxicity of CuO nanoparticles”, Applied Microbiology and Biotechnology, vol. 107, no. 4, pp. 1039-1061, 2023, doi: 10.1007/s00253-023-12364-z.
  • S. F. Shaikh ve Z. A. Shaikh, “Electrospinning of metal oxide nanostructures”, Solution Methods for Metal Oxide Nanostructures, Elsevier, pp. 125-152, 2023, doi: 10.1016/B978-0-12-824353-4.00009-9.
  • T. Zhao, Y. Zheng, X. Zhang, D. Teng, Y. Xu, and Y. Zeng, “Design of helical groove/hollow nanofibers via tri-fluid electrospinning”, Materials & Design, vol. 205, pp. 109705, 2021, doi: 10.1016/j.matdes.2021.109705.
  • A. Yarin, “Coaxial electrospinning and emulsion electrospinning of core–shell fibers”, Polymers for Advanced Technologies, vol. 22, no. 3, pp. 310-317, 2011, doi: 10.1002/pat.1781.
  • Y. Zhang, Y. Feng, Z. Huang, S. Ramakrishna, and C. Lim, “Fabrication of porous electrospun nanofibres”, Nanotechnology, vol. 17, no. 3, pp. 901, 2006, doi: 10.1088/0957-4484/17/3/047.
  • Z. Çetinkaya, E. Güneş, and İ. Şavkliyildiz, “Investigation of biochemical properties of flash sintered ZrO2–SnO2 nanofibers”, Materials Chemistry and Physics, vol. 293, pp. 126900, 2023, doi: 10.1016/j.matchemphys.2022.126900.
  • R. O. Ijeh, C. O. Ugwuoke, E. B. Ugwu, S. O. Aisida, and F. I. Ezema, “Structural, optical and magnetic properties of Cu-doped ZrO2 films synthesized by electrodeposition method”, Ceramics International, vol. 48, no. 4, pp. 4686-4692, 2022, doi: 0.1016/j.ceramint.2021.11.0041.
  • K. V. Özdokur, Ç. C. Koçak, Ç. Eden, Z. Demir, Ç. Çirak, E. Yavuz, B. Çağlar, “Gold‐Nanoparticles‐Decorated ZrO2‐CuO Nanocomposites: Synthesis, Characterization and A Novel Platform for Electrocatalytic Formaldehyde Oxidation”, Chemistryselect, vol. 7, no 28, pp. e202201411, 2022, doi: 10.1002/slct.202201411.
  • E. S. Borovinskaya, S. Trebbin, F. Alscher, and C. Breitkopf, “Synthesis, modification, and characterization of CuO/ZnO/ZrO2 mixed metal oxide catalysts for CO2/H2 conversion”, Catalysts, vol. 9, no. 12, pp. 1037, 2019, doi: 10.3390/catal9121037.
  • A. Figini Albisetti, C. A. Biffi, and A. Tuissi, “Synthesis and structural analysis of Copper-Zirconium oxide”, Metals, vol. 6, no. 9, pp. 195, 2016, doi: 10.3390/met6090195.
  • S. Azhar, K. S. Ahmad, I. Abrahams, W. Lin, R. K. Gupta, and A. El-marghany, “Synthesis of phyto-mediated CuO–ZrO2 nanocomposite and investigation of their role as electrode material for supercapacitor and water splitting studies”, Journal of Materials Research, vol. 38, pp. 4937-4950, 2023, doi: 10.1557/s43578-023-01204-5.
  • T. Athar, S. K. Vishwakarma, A. Bardia, R. Alabass, A. Alqarlosy, and A. A. Khan, “Green approach for the synthesis and characterization of ZrSnO4 nanopowder”, Applied Nanoscience, vol. 6, no. 5, pp. 767-777, 2016, doi: 10.1007/s13204-015-0488-5.
  • N. Scotti, F. Bossola, F. Zaccheria, and N. Ravasio, “Copper–zirconia catalysts: Powerful multifunctional catalytic tools to approach sustainable processes”, Catalysts, vol. 10, no. 2, pp. 168, 2020, doi: 10.3390/catal10020168.
  • K. Kaviyarasu, L. Kotsedi, Aline Simo, Xolile Fuku, Genene T. Mola, J. Kennedy, M. Maaza, “Photocatalytic activity of ZrO2 doped lead dioxide nanocomposites: Investigation of structural and optical microscopy of RhB organic dye”, Applied Surface Science, vol. 421, pp. 234-239, 2017, doi: 10.1016/j.apsusc.2016.11.149.
  • A. K. Arora, V. S. Jaswal, K. Singh, and R. Singh, “Applications of metal/mixed metal oxides as photocatalyst:(A review)”, Oriental Journal of Chemistry, vol. 32, no. 4, pp. 2035, 2016, doi: 10.13005/ojc/320430.
  • V. Anitha, S. S. Lekshmy, and K. Joy, “Effect of annealing temperature on optical and electrical properties of ZrO2–SnO2 nanocomposite thin films”, Journal of Materials Science: Materials in Electronics, vol. 24, pp. 4340-4345, 2013, doi: 10.1007/s10854-013-1408-7.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fonksiyonel Malzemeler, Kompozit ve Hibrit Malzemeler, Malzeme Karekterizasyonu, Nanomalzemeler
Bölüm Araştırma Makalesi
Yazarlar

Zeynep Çetinkaya 0000-0002-4591-2332

Proje Numarası 211019030
Yayımlanma Tarihi 1 Mart 2024
Gönderilme Tarihi 26 Aralık 2023
Kabul Tarihi 7 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 1

Kaynak Göster

IEEE Z. Çetinkaya, “PRODUCTION OF CuO/ZrO2 NANOCOMPOSITES IN POWDER AND FIBER FORMS”, KONJES, c. 12, sy. 1, ss. 221–230, 2024, doi: 10.36306/konjes.1410183.