Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 11 Sayı: 2, 141 - 147, 31.10.2023

Öz

Kaynakça

  • [1] Bischof, C.H., Pusch, G.O., Knoesel, R.: Sensitivity analysis of the mm5 weather model using automatic differentiation. Computers in Physics 10(6), 605–612 (1996)
  • [2] Bisi, C., De Martino, A., Winkelmann, J.: On a runge theorem over R3. Annali di Matematica 202(4), 1531–1556 (2023)
  • [3] Bisi, C., Winkelmann, J.: On a quaternionic Picard theorem. Proc. Amer. Math. Soc., Ser. B, 7, 106–117 (2020)
  • [4] Bisi, C., Winkelmann, J.: The harmonicity of slice regular functions. The Journal of Geometric Analysis 31(8), 7773–7811 (2021)
  • [5] Casanova, G.: Parabolic analytic functions. Adv. Appl. Clifford Algebras 9(2), 221–224 (1999)
  • [6] Catoni, F., Cannata, R., Catoni, V., Zampetti, P.: N-dimensional geometries generated by hypercomplex numbers. Adv. Appl. Clifford Algebr. 15(1), 1–25 (2005)
  • [7] Catoni, F., Cannata, R., Nichelatti, E.: The parabolic analytic functions and the derivative of real functions. Adv. Appl. Clifford Algebr. 14(2), 185–190 (2004)
  • [8] Fjelstad, P., Gal, S.G.: Two-dimensional geometries, topologies, trigonometries and physics generated by complex-type numbers. Adv. Appl. Clifford Algebras 11(1), 81–107 (2001)
  • [9] Gentili, G., Stoppato, C., Struppa, D.: Regular Functions of a Quaternionic Variable. Springer Monographs in Mathematics. Springer (2022)
  • [10] Hovland, P.D., et al: Sensitivity analysis and design optimization through automatic differentiation. J. Phys.: Conf. Ser. 16, 466–470 (2005)
  • [11] Kedem, G.: Automatic differentiation of computer programs. ACM Trans. Math. Software 6(2), 150–165 (1980)
  • [12] Mehmood, S., Ochs, P.: Automatic differentiation of some first-order methods in parametric optimization. In: Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, vol. 108, pp. 1584–1594. PMLR (2020)
  • [13] Pe˜nu nuri, F., Pe´on, R., Gonz´alez-S´anchez, D., Escalante Soberanis, M.A.: Dual numbers and automatic differentiation to efficiently compute velocities and accelerations. Acta Appl. Math. 170, 649–659 (2020)
  • [14] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in Fortran 77: The art of scientific computing. Cambridge University Press (1992)
  • [15] Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education (2007)
  • [16] Yaglom, I.M.: A simple non-Euclidean geometry and its physical basis. Heidelberg Science Library. Springer-Verlag, New York-Heidelberg (1979). An elementary account of Galilean geometry and the Galilean principle of relativity, Translated from the Russian by Abe Shenitzer, With the editorial assistance of Basil Gordon.

Higher Order Real Derivatives Using Parabolic Analytic Functions

Yıl 2023, Cilt: 11 Sayı: 2, 141 - 147, 31.10.2023

Öz

Amid the bidimensional hypercomplex numbers, parabolic numbers are defined as $\{z=x+\imath y:\; x,y\in \mathbb{R}, \imath^2=0, \imath\neq 0\}$. The analytic functions of a parabolic variable have been introduced as an analytic continuation of the real function of a real variable. Also, their algebraic property has already been discussed. This paper will show the $n$-th derivative of the real functions using parabolic numbers to further generalize the automatic differentiation. Also, we shall show some of the applications of it.

Kaynakça

  • [1] Bischof, C.H., Pusch, G.O., Knoesel, R.: Sensitivity analysis of the mm5 weather model using automatic differentiation. Computers in Physics 10(6), 605–612 (1996)
  • [2] Bisi, C., De Martino, A., Winkelmann, J.: On a runge theorem over R3. Annali di Matematica 202(4), 1531–1556 (2023)
  • [3] Bisi, C., Winkelmann, J.: On a quaternionic Picard theorem. Proc. Amer. Math. Soc., Ser. B, 7, 106–117 (2020)
  • [4] Bisi, C., Winkelmann, J.: The harmonicity of slice regular functions. The Journal of Geometric Analysis 31(8), 7773–7811 (2021)
  • [5] Casanova, G.: Parabolic analytic functions. Adv. Appl. Clifford Algebras 9(2), 221–224 (1999)
  • [6] Catoni, F., Cannata, R., Catoni, V., Zampetti, P.: N-dimensional geometries generated by hypercomplex numbers. Adv. Appl. Clifford Algebr. 15(1), 1–25 (2005)
  • [7] Catoni, F., Cannata, R., Nichelatti, E.: The parabolic analytic functions and the derivative of real functions. Adv. Appl. Clifford Algebr. 14(2), 185–190 (2004)
  • [8] Fjelstad, P., Gal, S.G.: Two-dimensional geometries, topologies, trigonometries and physics generated by complex-type numbers. Adv. Appl. Clifford Algebras 11(1), 81–107 (2001)
  • [9] Gentili, G., Stoppato, C., Struppa, D.: Regular Functions of a Quaternionic Variable. Springer Monographs in Mathematics. Springer (2022)
  • [10] Hovland, P.D., et al: Sensitivity analysis and design optimization through automatic differentiation. J. Phys.: Conf. Ser. 16, 466–470 (2005)
  • [11] Kedem, G.: Automatic differentiation of computer programs. ACM Trans. Math. Software 6(2), 150–165 (1980)
  • [12] Mehmood, S., Ochs, P.: Automatic differentiation of some first-order methods in parametric optimization. In: Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, vol. 108, pp. 1584–1594. PMLR (2020)
  • [13] Pe˜nu nuri, F., Pe´on, R., Gonz´alez-S´anchez, D., Escalante Soberanis, M.A.: Dual numbers and automatic differentiation to efficiently compute velocities and accelerations. Acta Appl. Math. 170, 649–659 (2020)
  • [14] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in Fortran 77: The art of scientific computing. Cambridge University Press (1992)
  • [15] Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education (2007)
  • [16] Yaglom, I.M.: A simple non-Euclidean geometry and its physical basis. Heidelberg Science Library. Springer-Verlag, New York-Heidelberg (1979). An elementary account of Galilean geometry and the Galilean principle of relativity, Translated from the Russian by Abe Shenitzer, With the editorial assistance of Basil Gordon.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematikte Kompleks Sistemler
Bölüm Articles
Yazarlar

Sandipan Dutta

Sneha Gupta

Yayımlanma Tarihi 31 Ekim 2023
Gönderilme Tarihi 18 Temmuz 2023
Kabul Tarihi 21 Ekim 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 2

Kaynak Göster

APA Dutta, S., & Gupta, S. (2023). Higher Order Real Derivatives Using Parabolic Analytic Functions. Konuralp Journal of Mathematics, 11(2), 141-147.
AMA Dutta S, Gupta S. Higher Order Real Derivatives Using Parabolic Analytic Functions. Konuralp J. Math. Ekim 2023;11(2):141-147.
Chicago Dutta, Sandipan, ve Sneha Gupta. “Higher Order Real Derivatives Using Parabolic Analytic Functions”. Konuralp Journal of Mathematics 11, sy. 2 (Ekim 2023): 141-47.
EndNote Dutta S, Gupta S (01 Ekim 2023) Higher Order Real Derivatives Using Parabolic Analytic Functions. Konuralp Journal of Mathematics 11 2 141–147.
IEEE S. Dutta ve S. Gupta, “Higher Order Real Derivatives Using Parabolic Analytic Functions”, Konuralp J. Math., c. 11, sy. 2, ss. 141–147, 2023.
ISNAD Dutta, Sandipan - Gupta, Sneha. “Higher Order Real Derivatives Using Parabolic Analytic Functions”. Konuralp Journal of Mathematics 11/2 (Ekim 2023), 141-147.
JAMA Dutta S, Gupta S. Higher Order Real Derivatives Using Parabolic Analytic Functions. Konuralp J. Math. 2023;11:141–147.
MLA Dutta, Sandipan ve Sneha Gupta. “Higher Order Real Derivatives Using Parabolic Analytic Functions”. Konuralp Journal of Mathematics, c. 11, sy. 2, 2023, ss. 141-7.
Vancouver Dutta S, Gupta S. Higher Order Real Derivatives Using Parabolic Analytic Functions. Konuralp J. Math. 2023;11(2):141-7.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.