Derleme
BibTex RIS Kaynak Göster

Tool Wear in Machining of Wrought and Cast Aluminium Alloys: Literature Review

Yıl 2021, Cilt: 2 Sayı: 3, 34 - 46, 31.12.2021
https://doi.org/10.52795/mateca.1008145

Öz

Aluminum and its alloys are widely used in industry due to their lightness, high strength/weight ratio and easy formability. Different machining operations such as turning, drilling, milling and threading are needed in order to be manufactured in desired forms and used as a final product in mechanical systems. However, some problems arise that negatively affect the machined surface quality, dimensional tolerance and cutting tool performance during the machining of these materials. Cutting tool wear is among the most important of these problems. Cutting tool wear also causes loss of time due to tool changing and machine tool adjustment requirements in machining operations. In this study, current studies on tool wear in the machining of aluminum-based alloys were investigated in detail and the factors affecting tool wear were presented comparatively.

Kaynakça

  • 1. G. Wittbecker, Aluminium Market Outlook, CRU Group: 16 March 2018, London, UK.
  • 2. M.C. Santos, A.R. Machado, W.F. Sales, M.A. Barrozo & E.O. Ezugwu, Machining of aluminum alloys: a review, The International Journal of Advanced Manufacturing Technology, 86(9-12): 3067-3080, 2016.
  • 3. Q. Luo, G. Robinson, M. Pittman, M. Howarth, W. M. Sim, M. R. Stalley, H. Leitner, R. Ebner, D. Caliskanoglu, P. E. Hovsepian, Performance of nano-structured multilayer PVD coating TiAlN/VN in dry high speed milling of aerospace aluminium 7010-T7651, Surf. Coatings Technology, 200: 123–127, 2005.
  • 4. H. Demir, S. Gündüz, The effects of aging on machinability of 6061 aluminium alloy, J Materials and Design, 30(5): 1480–1483, 2009.
  • 5. P. E. Hovsepian, Q. Luo, G. Robinson, M. Pittman, M. Howarth, D. Doerwald, R. Tietema, W. M. Sim, A. Deeming, T. Zeus, TiAlN/VN superlattice structured PVD coatings: a new alternative in machining of aluminium alloys for aerospace and automotive components, Surf Coat Technol, 201(1–2): 265–272, 2006.
  • 6. I. Zagórski & T. Warda, Effect of technological parameters on the surface roughness of aluminium alloys after turning, Advances in Science and Technology Research Journal, 12(2): 144-149, 2018.
  • 7. A. Gomaz-Parra, M. Alvarez-Alcon, J. Salguero, M. Batista, M. Marcos, Analysis of the evolution of the built-up edge and built-up layer formation mechanisms in the dry turning of aeronautical aluminium alloys, Wear, 302: 1209–1218, 2013.
  • 8. A. Manna, B. Bhattacharya, Influence of machining parameters on the machinability of particulate reinforced Al/SiC–MMC, Int. J. Adv. Manuf. Technology, 25: 850–856, 2005.
  • 9. R. K. Bhushan, S. Kumar, S. Das, Effect of machining parameters on surface roughness and tool wear for 7075 Al alloy SiC composite, Int. J. Adv. Manuf. Technology, 50:459–469, 2010.
  • 10. P. Roy, S. K. Sarangi, A. Ghosh, A. K. Chattopadhyay, Machinability study of pure aluminum and Al-12% Si alloys against uncoated and coated carbide inserts, Int. Journal of Refractory Metals & Hard Materials, 27: 535-544, 2009.
  • 11. A. Rivero, G. Aramendi, S. Herranz, L. N. Lopez de Lacalle, An experimental investigation of the effect of coatings and cutting parameters on the dry drilling performance of aluminium alloys, Int J Adv Manuf Technol, 28: 1–11, 2006.
  • 12. I.P. Okokpujie, O.M. Ikumapayi, U.C. Okonkwo, E.Y. Salawu, S.A. Afolalu, J.O. Dirisu & O.O. Ajayi, Experimental and Mathematical Modeling for Prediction of Tool Wear on the Machining of Aluminium 6061 Alloy by High Speed Steel Tools, Open Engineering, 7(1): 461-469, 2017.
  • 13. M. P. Groover, Fundamentals of modern manufacturing, 4th ed., John wiley& Sons,Inc, USA, 1999.
  • 14. A. R. Machado, Machining of Ti6Al4V and Inconel 901 with a High pressure coolant system, Ph.D. Thesis, University of Warwick, Coventry, England, 1990.
  • 15. G. List, M. Nouari, D. G’ ehin, S. Gomez, J. P. Manaud, Y. Le Petitcorps, F. Girot, Wear behavior of cemented carbide tools in dry machining of aluminium alloy, Wear 259: 1177- 1189, 2005.
  • 16. A. R. Machado, J. Wallbank, Machining of titanium and its alloys – a review, Proc. of the Inst. Mech. Eng. J. Eng. Manufacture, I IMECHE, London, England, Part B 204: 53-60, 1990.
  • 17. C. A. Anderson, G. Milan, M. B. Silva, A. R. Machado, Some observations on wear and damages in cemented carbide tools, J. of the Braz. Soc. Of Mech. Sci. & Eng, 28(3): 269-277, 2006.
  • 18. Sandvik Coromant, Wear on cutting edges, https://www.sandvik.coromant.com/tr tr/knowledge/materials/pages/wear-on-cutting-edges.aspx, 05.03.2021.
  • 19. V. Songmene, R. Khettabi, I. Zaghbani, J. Kouam, & A. Djebara, Machining and machinability of aluminum alloys. Alum. Alloys Theory Appl, 377-400, 2011.
  • 20. Z. Ping, Y. Xiujie, W. Penghao, Y. Xiao, Surface integrity and tool wear mechanism of 7050-T7451 aluminum alloy under dry cutting, Elsevier Vacuum, 184: 1-12, 2021.
  • 21. P. Gao, X. Wang, Z. Liang, J. Xiang, W. Li, J. Xie, Effects of WC grain size and Co content on microscale wear behavior of micro end mills in aluminum alloy 7075 machining, The International Journal of Advanced Manufacturing Technology, 104: 2401-2413, 2019.
  • 22. W. H. Wang, X. Cheng, O. L. Sun, F. Wang, X. M. Yang, Study on tool wear for mircomilling of 6061 aluminium alloy, The 2nd International Workshop on Materials Science and Mechanical Engineering 504, 2019.
  • 23. Z. Ping, Z. Xiancheng, C. Xian, Y. Xiao, W. Youqiang, Analysis on the tool wear behavior of 7050-T7451 aluminum alloy under ultrasonic elliptical vibration cutting, Elsevier Wear, 466-467, 2021.
  • 24. Ş. Bayraktar, F. Afyon, Machinability properties of Al–7Si, Al–7Si–4Zn and Al–7Si–4Zn–3Cu alloys, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42: 187, 2020.
  • 25. A. P. Hekimoğlu, Ş. Bayraktar, Y. Turgut, Investigation of Effect of Cutting Speed and Feed Rate on Machining of the Al-35Zn Alloy, 2nd International Symposium on Innovative Approaches in Scientific Studied, November 30- December 2 2018, Samsun, Turkey.
  • 26. Ş. Bayraktar, Ç. Çamkerten, N. Salihoğlu, Investigation of the Effect on Copper and Silicon Additives on Machinability in Turning of Al-25Zn Alloy with CVD-Al2O3 Coated Tools, GU J Sci, Part C, 8(1): 79-93, 2020.
  • 27. R. Ghoreishi, A. H. Roohi, A. D. Ghadikolaei, Evaluation of tool wear in high speed face milling of Al/SiC metal matrix composites, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41: 146, 2019.
  • 28. M. Pul, Investigation of effects of MgO ratio on the surface quality and tool wear in turning Al–MgO composites, Proc IMechE Part B: J Engineering Manufacture 1–10, 2017.

Dövme ve Döküm Alüminyum Alaşımlarının İşlenmesinde Takım Aşınması: Literatür Araştırması

Yıl 2021, Cilt: 2 Sayı: 3, 34 - 46, 31.12.2021
https://doi.org/10.52795/mateca.1008145

Öz

Alüminyum ve alaşımları hafiflik, yüksek mukavemet/ağırlık oranı ve kolay şekillendirilebilme özelliklerinden dolayı endüstride yaygın kullanım alanına sahiptir. İstenilen formlarda üretilebilmesi ve mekanik sistemlerde nihai ürün olarak kullanılabilmeleri için tornalama, delme, frezeleme ve diş açma gibi farklı işleme operasyonlarına ihtiyaç duyulmaktadır. Ancak, bu malzemelerin işlenmesi esnasında işlenmiş yüzey kalitesini, boyutsal toleransı ve kesici takım performansını olumsuz etkileyen bazı sorunlar ortaya çıkmaktadır. Kesici takım aşınması, bu sorunlardan en önemlileri arasında yer almaktadır. Kesici takım aşınması, işleme operasyonlarında takım değiştirme ve takım tezgâhı ayarlama gereksinimlerinden dolayı zaman kaybına da yol açmaktadır. Bu çalışmada, literatürde alüminyum esaslı alaşımların işlenmesinde takım aşınması üzerine yapılan güncel çalışmalar detaylı bir şekilde araştırılmış ve takım aşınması üzerinde etkili olan faktörler karşılaştırmalı olarak ortaya konulmuştur.

Kaynakça

  • 1. G. Wittbecker, Aluminium Market Outlook, CRU Group: 16 March 2018, London, UK.
  • 2. M.C. Santos, A.R. Machado, W.F. Sales, M.A. Barrozo & E.O. Ezugwu, Machining of aluminum alloys: a review, The International Journal of Advanced Manufacturing Technology, 86(9-12): 3067-3080, 2016.
  • 3. Q. Luo, G. Robinson, M. Pittman, M. Howarth, W. M. Sim, M. R. Stalley, H. Leitner, R. Ebner, D. Caliskanoglu, P. E. Hovsepian, Performance of nano-structured multilayer PVD coating TiAlN/VN in dry high speed milling of aerospace aluminium 7010-T7651, Surf. Coatings Technology, 200: 123–127, 2005.
  • 4. H. Demir, S. Gündüz, The effects of aging on machinability of 6061 aluminium alloy, J Materials and Design, 30(5): 1480–1483, 2009.
  • 5. P. E. Hovsepian, Q. Luo, G. Robinson, M. Pittman, M. Howarth, D. Doerwald, R. Tietema, W. M. Sim, A. Deeming, T. Zeus, TiAlN/VN superlattice structured PVD coatings: a new alternative in machining of aluminium alloys for aerospace and automotive components, Surf Coat Technol, 201(1–2): 265–272, 2006.
  • 6. I. Zagórski & T. Warda, Effect of technological parameters on the surface roughness of aluminium alloys after turning, Advances in Science and Technology Research Journal, 12(2): 144-149, 2018.
  • 7. A. Gomaz-Parra, M. Alvarez-Alcon, J. Salguero, M. Batista, M. Marcos, Analysis of the evolution of the built-up edge and built-up layer formation mechanisms in the dry turning of aeronautical aluminium alloys, Wear, 302: 1209–1218, 2013.
  • 8. A. Manna, B. Bhattacharya, Influence of machining parameters on the machinability of particulate reinforced Al/SiC–MMC, Int. J. Adv. Manuf. Technology, 25: 850–856, 2005.
  • 9. R. K. Bhushan, S. Kumar, S. Das, Effect of machining parameters on surface roughness and tool wear for 7075 Al alloy SiC composite, Int. J. Adv. Manuf. Technology, 50:459–469, 2010.
  • 10. P. Roy, S. K. Sarangi, A. Ghosh, A. K. Chattopadhyay, Machinability study of pure aluminum and Al-12% Si alloys against uncoated and coated carbide inserts, Int. Journal of Refractory Metals & Hard Materials, 27: 535-544, 2009.
  • 11. A. Rivero, G. Aramendi, S. Herranz, L. N. Lopez de Lacalle, An experimental investigation of the effect of coatings and cutting parameters on the dry drilling performance of aluminium alloys, Int J Adv Manuf Technol, 28: 1–11, 2006.
  • 12. I.P. Okokpujie, O.M. Ikumapayi, U.C. Okonkwo, E.Y. Salawu, S.A. Afolalu, J.O. Dirisu & O.O. Ajayi, Experimental and Mathematical Modeling for Prediction of Tool Wear on the Machining of Aluminium 6061 Alloy by High Speed Steel Tools, Open Engineering, 7(1): 461-469, 2017.
  • 13. M. P. Groover, Fundamentals of modern manufacturing, 4th ed., John wiley& Sons,Inc, USA, 1999.
  • 14. A. R. Machado, Machining of Ti6Al4V and Inconel 901 with a High pressure coolant system, Ph.D. Thesis, University of Warwick, Coventry, England, 1990.
  • 15. G. List, M. Nouari, D. G’ ehin, S. Gomez, J. P. Manaud, Y. Le Petitcorps, F. Girot, Wear behavior of cemented carbide tools in dry machining of aluminium alloy, Wear 259: 1177- 1189, 2005.
  • 16. A. R. Machado, J. Wallbank, Machining of titanium and its alloys – a review, Proc. of the Inst. Mech. Eng. J. Eng. Manufacture, I IMECHE, London, England, Part B 204: 53-60, 1990.
  • 17. C. A. Anderson, G. Milan, M. B. Silva, A. R. Machado, Some observations on wear and damages in cemented carbide tools, J. of the Braz. Soc. Of Mech. Sci. & Eng, 28(3): 269-277, 2006.
  • 18. Sandvik Coromant, Wear on cutting edges, https://www.sandvik.coromant.com/tr tr/knowledge/materials/pages/wear-on-cutting-edges.aspx, 05.03.2021.
  • 19. V. Songmene, R. Khettabi, I. Zaghbani, J. Kouam, & A. Djebara, Machining and machinability of aluminum alloys. Alum. Alloys Theory Appl, 377-400, 2011.
  • 20. Z. Ping, Y. Xiujie, W. Penghao, Y. Xiao, Surface integrity and tool wear mechanism of 7050-T7451 aluminum alloy under dry cutting, Elsevier Vacuum, 184: 1-12, 2021.
  • 21. P. Gao, X. Wang, Z. Liang, J. Xiang, W. Li, J. Xie, Effects of WC grain size and Co content on microscale wear behavior of micro end mills in aluminum alloy 7075 machining, The International Journal of Advanced Manufacturing Technology, 104: 2401-2413, 2019.
  • 22. W. H. Wang, X. Cheng, O. L. Sun, F. Wang, X. M. Yang, Study on tool wear for mircomilling of 6061 aluminium alloy, The 2nd International Workshop on Materials Science and Mechanical Engineering 504, 2019.
  • 23. Z. Ping, Z. Xiancheng, C. Xian, Y. Xiao, W. Youqiang, Analysis on the tool wear behavior of 7050-T7451 aluminum alloy under ultrasonic elliptical vibration cutting, Elsevier Wear, 466-467, 2021.
  • 24. Ş. Bayraktar, F. Afyon, Machinability properties of Al–7Si, Al–7Si–4Zn and Al–7Si–4Zn–3Cu alloys, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42: 187, 2020.
  • 25. A. P. Hekimoğlu, Ş. Bayraktar, Y. Turgut, Investigation of Effect of Cutting Speed and Feed Rate on Machining of the Al-35Zn Alloy, 2nd International Symposium on Innovative Approaches in Scientific Studied, November 30- December 2 2018, Samsun, Turkey.
  • 26. Ş. Bayraktar, Ç. Çamkerten, N. Salihoğlu, Investigation of the Effect on Copper and Silicon Additives on Machinability in Turning of Al-25Zn Alloy with CVD-Al2O3 Coated Tools, GU J Sci, Part C, 8(1): 79-93, 2020.
  • 27. R. Ghoreishi, A. H. Roohi, A. D. Ghadikolaei, Evaluation of tool wear in high speed face milling of Al/SiC metal matrix composites, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41: 146, 2019.
  • 28. M. Pul, Investigation of effects of MgO ratio on the surface quality and tool wear in turning Al–MgO composites, Proc IMechE Part B: J Engineering Manufacture 1–10, 2017.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği, Üretim ve Endüstri Mühendisliği
Bölüm Derlemeler
Yazarlar

Cem Alparslan 0000-0001-7316-360X

Şenol Bayraktar 0000-0001-8226-0188

Erken Görünüm Tarihi 31 Aralık 2021
Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 11 Ekim 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 2 Sayı: 3

Kaynak Göster

APA Alparslan, C., & Bayraktar, Ş. (2021). Tool Wear in Machining of Wrought and Cast Aluminium Alloys: Literature Review. İmalat Teknolojileri Ve Uygulamaları, 2(3), 34-46. https://doi.org/10.52795/mateca.1008145
AMA Alparslan C, Bayraktar Ş. Tool Wear in Machining of Wrought and Cast Aluminium Alloys: Literature Review. MATECA. Aralık 2021;2(3):34-46. doi:10.52795/mateca.1008145
Chicago Alparslan, Cem, ve Şenol Bayraktar. “Tool Wear in Machining of Wrought and Cast Aluminium Alloys: Literature Review”. İmalat Teknolojileri Ve Uygulamaları 2, sy. 3 (Aralık 2021): 34-46. https://doi.org/10.52795/mateca.1008145.
EndNote Alparslan C, Bayraktar Ş (01 Aralık 2021) Tool Wear in Machining of Wrought and Cast Aluminium Alloys: Literature Review. İmalat Teknolojileri ve Uygulamaları 2 3 34–46.
IEEE C. Alparslan ve Ş. Bayraktar, “Tool Wear in Machining of Wrought and Cast Aluminium Alloys: Literature Review”, MATECA, c. 2, sy. 3, ss. 34–46, 2021, doi: 10.52795/mateca.1008145.
ISNAD Alparslan, Cem - Bayraktar, Şenol. “Tool Wear in Machining of Wrought and Cast Aluminium Alloys: Literature Review”. İmalat Teknolojileri ve Uygulamaları 2/3 (Aralık 2021), 34-46. https://doi.org/10.52795/mateca.1008145.
JAMA Alparslan C, Bayraktar Ş. Tool Wear in Machining of Wrought and Cast Aluminium Alloys: Literature Review. MATECA. 2021;2:34–46.
MLA Alparslan, Cem ve Şenol Bayraktar. “Tool Wear in Machining of Wrought and Cast Aluminium Alloys: Literature Review”. İmalat Teknolojileri Ve Uygulamaları, c. 2, sy. 3, 2021, ss. 34-46, doi:10.52795/mateca.1008145.
Vancouver Alparslan C, Bayraktar Ş. Tool Wear in Machining of Wrought and Cast Aluminium Alloys: Literature Review. MATECA. 2021;2(3):34-46.