Araştırma Makalesi
BibTex RIS Kaynak Göster

Thermodynamic data analysis and optimization of the Copper-Silver (Cu-Ag) phase system

Yıl 2024, Cilt: 13 Sayı: 2, 657 - 664, 15.04.2024
https://doi.org/10.28948/ngumuh.1257151

Öz

The Copper-Silver (Cu-Ag) thermodynamic database was assessed by employing the Calculation of Phase Diagram (CALPHAD) method with a critical analysis of the latest experimental data. The maximum solubility of copper in the crystalline silver-rich phase was found to be a 0.095-mole fraction. The maximum silver solubility in the solid copper-rich phase was calculated as a 0.046-mole fraction. Random mixing theory was used to model the Gibbs energies of the solid face-centered cubic and liquid phases. The most recent experimental values for copper activity and mixing enthalpy data were considered in the optimization process. A characteristic eutectic Cu-Ag phase diagram with a eutectic temperature of 1052.3 Kelvin was calculated from the optimized database. The thermodynamic properties obtained from the current assessment and calculated phase diagram were found to be more consistent with recent experimental data than previous optimizations.

Proje Numarası

Yoktur

Kaynakça

  • C. P. Thompson, L. Chen, W. N. Shafarman, J. Lee, S. Fields, and R. W. Birkmire, Bandgap gradients in (Ag, Cu) (In,Ga)Se2 thin film solar cells deposited by three-stage co-evaporation. 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), pp. 14-19, New Orleans, LA, USA, 2015.
  • H. Matsuo, K. Yoshino and T. Ikari, Characterization of AgGaSe2 thin films grown by post annealing method. Thin Solid Films, 515(2), 505-508, 2006. https://doi.org/10.1016/j.tsf.2005.12.281.
  • J. L Shay and J. H. Wernick, Ternary chalcopyrite semiconductors: Growth, electronic properties and applications. Pergamon, Oxford, 1975.
  • P. Subramanian and J. Perepezko. The Ag-Cu (silver-copper) system. Journal of Phase Equilibria, 14, 62-75, 1993. https://doi.org/10.1007/BF02652162.
  • V. T. Witusiewicz, U. Hecht, S. G. Fries and S. Rex, The Ag—Al—Cu System: Part 1: Reassessment of the Constituent Binaries on the Basis of New Experimental Data. Journal of Alloys and Compounds, 385(1-2), 133-143, 2004. https://doi.org/10.1016/j.jallcom.2004. 04.126.
  • M. Bienzle, T. Oishi, F. Sommer and K. Ono, Thermodynamic Study of the Silver-Rich Ag-Cu Solid-Solution. Materials Transactions Jim, 33, 51-56, 1992. https://doi.org/10.2320/matertrans1989.33.51.
  • C. T. Heycock and F. H. Neville, Complete Freezing-Point Curves of Binary Alloys Containing Silver or Copper Together with Another Metal. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 189, 25-69, 1897. https://www.jstor.org /stable/90689.
  • K. Friedich and A. Leroux, Copper, Silver, and Lead. Metallurgie, 4, 293-315, 1907.
  • T. Hirose, On the Silver-Copper Alloys. Rept Imp. Mint Osaka 1, 1, 1–74, 1927.
  • W. Broniewski and S. Kostacz, On the Alloys of Ag-Cu. Compt. Rend., 194, 973–975, 1932.
  • C. S. Smith and W. E. Lindlief, The Equilibrium Diagram of the Copper-Rich Copper-Silver Alloys. Trans. AIME, 91, 101–118, 1932.
  • B. Dobovisek and A. Paulin, Report on Caloric Measurements with the DTA at High Temperatures. Min. Met. Quart., 3, 27–32, 1962.
  • A. Rosina, N. Smajic, and B. Dobovisek, Application of Differential Thermal Analysis in Calorimetry. Mikrochim. Acta, 4, 626–638, 1967. https://doi.org/10 .1007/BF01224382.
  • U. V. Choudary and A. Ghosh, Thermodynamics of Liquid Copper-Silver Alloys by a Solid Electrolyte Cell. J. Electrochem. Soc., 117, 1024–1028, 1970. https://dx.doi.org/10.1149/1.2407712.
  • J. Markali and P. Thoresen, The Ag-Rich Side of the Binary Phase Diagrams Ag/Au and Ag/Cu as Studied by Zone Refining. Acta Chem. Scand, 15(1), 31–35, 1961. https://doi.org/10.3891/acta.chem.scand.15-003 1.
  • W. F. Roeser, Thermo-Electric Temperature Scales. U.S. Bur. Stds. J. Res., 3, 343–358, 1929.
  • D. Stockdale, The Solid Solutions of the Copper-Silver System. J. Inst. Metals, 45, 127–155, 1931.
  • H. Moser, J. Otto, and W. Thomas, Gasthermom etrische Messungen bei Hohen Temperaturen. Ill. Z. Phys., 175, 327–336, 1963. https://doi.org/10.1007/ BF01375109.
  • M. Hansen, Die Härte silberreicher Kupfer–Silberlegierungen. Bestimmung der Löslichkeit von Kupfer in Silber mit Hilfe von Härtemessungen. Z Anorg Allg Chem, 186(1), 41-48, 1929. https://doi.org /10.1002/zaac.19291860104.
  • Z. Bahari, M. Elgadi, J. Rivet, and J. Dugué, Experimental study of the ternary Ag–Cu–In phase diagram. Journal of Alloys and Compounds, 477, 152- 165, 2009. https://doi.org/10.1016/j.jallcom.2008.10.0 30.
  • N. Ageew, M. Hansen, and G. Sachs, Entmischung und Eigenschaftsanderungen ubersättigter Silber-Rupferlegierungen. Z. Phys., 66, 350–376, 1930. https://doi.org/10.1002/zaac.1929186010.
  • E. A. Owen and J. Rogers, X-Ray Study of Copper-Silver Alloys. J. Inst. Metals, 57, 257–266, 1935.
  • R. P. Elliott, F. A. Shunk & W. C. Giessen, The Ag−Cu (Silver-Copper) system. Bulletin of Alloy Phase Diagrams, 1, 41–45, 1980. https://doi.org/10.1007/BF 02883284.
  • E. Schmid and G. Siebel, Uber die Mischkristallbildung beiein- and Vielkristallinem Material. Z. Phys., 85(1-2), 36–55, 1932. https://doi.org/10.1007/BF01330777.
  • E. Schmid and G. Siebel, (as quoted in Hansen). Z. Phys., 85, 41–55, 1933.
  • F. Sommer, Yayınlanmamış data (as quoted in 2004 Witusiewicz et al.). MaxPlank-Instiut für Metallforschung, 2000.
  • R. A. Oriani and W. K. Murphy, Differential Calorimeter for Heats of Formation of Solid Alloys. Heats of Formation of Alloys of the Noble Metals. J. Phys. Chem., 62, 327–331, 1958. https://doi.org/10. 1021/j150561a020.
  • J. Kucera, L. Dvorak, and Z. Kudelasek, Tensimetric Measurement of Thermodynamic Functions of Silver in Ag-Cu Alloys by Method of Isotope Exchange. Ceskoslov. CasopisFys., 11, 277–284, 1961.
  • R. K. Edwards and J. H. Downing, The Thermodynamics of the Liquid Solutions in the Triad Cu-Ag-Au. I. The Cu-Ag System. J.Phys. Chem., 60, 108–111, 1956. https://doi.org/10.1021/j150535a026.
  • J. Golonka, J. Botor, and M. Dulat, Study of Copper-Silver Liquid Solutions by Combined Effusion Vaporization and Mass Spectrometry Sensing. Metals Tech., 6, 267–272, 1979. https://doi.org/10.1179/030 716979803276084.
  • O. P. Mohapatra and M. G. Frohberg, Calculation of Activities of Binary Metallic Systems from Distribution Equilibria Measurements with Fused Salt Mixtures. Z. Metallkd., 65, 58–62, 1974.
  • U. V. Choudary and A. Ghosh, Thermodynamics of Liquid Copper-Silver Alloys by a Solid Electrolyte Cell. J. Electrochem. Soc., 117, 1024–1028,1970. https://doi.org/10.1149/1.2407712.
  • S. Wagner, G. Sodeck, and A. Neckel, Thermodynamic Excess Quantities of Liquid Binary Silver-Copper by Mass Spectrometry. High Temp. Sci., 3, 481–490, 1971.
  • S. M. Howard, Direct Activity Measurements in Liquid Ag-Cu Alloys. Metall Trans. B, 20, 845–852, 1989. https://doi.org/10.1007/BF02670189.
  • R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley, Report-Selected Values of the Thermodynamic Properties of Binary Alloys, ASM, Metal Park, 1973. https://doi.org/10.1002/zaac.1929 1860104.
  • K. Fitzner, Q. Guo, J. Wang, and O. J. Kleppa, Enthalpies of liquid–liquid mixing in the systems Cu–Ag, Cu–Au and Ag–Au by using an in-situ mixing device in a high temperature single-unit differential calorimeter. Journal of Alloys and Compounds, 291(1-2), 190-200, 1999. https://doi.org/10.1016/S0925-8388(99)00279-0.
  • J. L. Murray, Calculations of Stable and Metastable Equilibrium Diagrams of the Ag-Cu and Cd-Zn Systems. Metall. Trans. A, 75, 261–268, 1984. https:// doi.org/10.1007/BF02645110.
  • F. H. Hayes, H. L Lukas, G. Effenberg, and G. Petzow, A Thermodynamic Optimisation of the Cu-Ag-Pb System. Z.Metallkd., 77(11), 749–754, 1986.
  • M. S. Lim, K.E. Tibballs, P.L. Rossiter, An assessment of thermodynamic equilibria in the Ag-Al-Cu-Mg quaternary system in relation to precipitation reactions. Zeitschrift fur Metallkunde, 88, 236-245, 1997. https:// 10.3139/ijmr-1997-0044.
  • A. Kusoffsky, Thermodynamic evaluation of the ternary Ag–Au–Cu system including a short range order description. Acta Materialia, 50(20), 5139-5145, 2002. https://doi.org/10.1016/S1359-6454(02)00382-8
  • X. C. He, H. Wang, H. S. Liu, and Z. P. Jin, Thermodynamic description of the Cu–Ag–Zr system. Calphad, 30, 367-374, 2006. https://doi.org/10.1016/j. calphad.2006.09.001.
  • A. T. Dinsdale, Sgte Data for Pure Elements. Calphad, 15(4), 317-425, 1991. https://doi.org/10.1016/0364-5916(91)90030-N.
  • J. C. Slater, Atomic Radii in Crystals. J. Chem. Phys., 41, 3199-3204, 1964. https://doi.org/10.1063/1.17256 97.
  • A. Bondi, van der Waals Volumes and Radii. The Journal of Physical Chemistry. 68(3), 441–45, 1964. https://doi.org/10.1021/j100785a001.

Bakır-Gümüş (Cu-Ag) faz sistemi termodinamik veri analizi ve optimizasyonu

Yıl 2024, Cilt: 13 Sayı: 2, 657 - 664, 15.04.2024
https://doi.org/10.28948/ngumuh.1257151

Öz

Bakır-Gümüş (Cu-Ag) termodinamik veri tabanı Calculation of Phase Diagram (CALPHAD) metodu kullanılarak en son deneysel verilerin kıyaslamalı analizi ile optimize edilmiştir. Gümüşçe zengin katı fazında maksimum bakır çözünürlüğü mol kesri olarak 0.095 bulunmuştur. Bakır zengin katı fazında maksimum gümüş çözünürlüğü mol kesri olarak 0.046 hesaplanmıştır. Rastlantısal karışım teorisi katı yüzey merkezli kübik fazı ve sıvı fazı Gibbs enerjilerini modellemek için kullanılmıştır. En güncel deneysel bakır aktivitesi değerleri ve karışma entalpisi verileri optimizasyon prosesinde dikkate alınmıştır. Optimize edilen veri tabanından ötektik sıcaklığı 1052.3 Kelvin olan karakteristik bir ötektik Cu-Ag faz diyagramı hesaplanmıştır. Bu kıyaslamalı veri analizi çalışmasından elde edilen termodinamik özellikler ve hesaplanan faz diyagramı en son deneysel verilerle önceki optimizasyon çalışmalarından daha uyumlu bulunmuştur.

Destekleyen Kurum

Yoktur

Proje Numarası

Yoktur

Teşekkür

Yoktur

Kaynakça

  • C. P. Thompson, L. Chen, W. N. Shafarman, J. Lee, S. Fields, and R. W. Birkmire, Bandgap gradients in (Ag, Cu) (In,Ga)Se2 thin film solar cells deposited by three-stage co-evaporation. 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), pp. 14-19, New Orleans, LA, USA, 2015.
  • H. Matsuo, K. Yoshino and T. Ikari, Characterization of AgGaSe2 thin films grown by post annealing method. Thin Solid Films, 515(2), 505-508, 2006. https://doi.org/10.1016/j.tsf.2005.12.281.
  • J. L Shay and J. H. Wernick, Ternary chalcopyrite semiconductors: Growth, electronic properties and applications. Pergamon, Oxford, 1975.
  • P. Subramanian and J. Perepezko. The Ag-Cu (silver-copper) system. Journal of Phase Equilibria, 14, 62-75, 1993. https://doi.org/10.1007/BF02652162.
  • V. T. Witusiewicz, U. Hecht, S. G. Fries and S. Rex, The Ag—Al—Cu System: Part 1: Reassessment of the Constituent Binaries on the Basis of New Experimental Data. Journal of Alloys and Compounds, 385(1-2), 133-143, 2004. https://doi.org/10.1016/j.jallcom.2004. 04.126.
  • M. Bienzle, T. Oishi, F. Sommer and K. Ono, Thermodynamic Study of the Silver-Rich Ag-Cu Solid-Solution. Materials Transactions Jim, 33, 51-56, 1992. https://doi.org/10.2320/matertrans1989.33.51.
  • C. T. Heycock and F. H. Neville, Complete Freezing-Point Curves of Binary Alloys Containing Silver or Copper Together with Another Metal. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 189, 25-69, 1897. https://www.jstor.org /stable/90689.
  • K. Friedich and A. Leroux, Copper, Silver, and Lead. Metallurgie, 4, 293-315, 1907.
  • T. Hirose, On the Silver-Copper Alloys. Rept Imp. Mint Osaka 1, 1, 1–74, 1927.
  • W. Broniewski and S. Kostacz, On the Alloys of Ag-Cu. Compt. Rend., 194, 973–975, 1932.
  • C. S. Smith and W. E. Lindlief, The Equilibrium Diagram of the Copper-Rich Copper-Silver Alloys. Trans. AIME, 91, 101–118, 1932.
  • B. Dobovisek and A. Paulin, Report on Caloric Measurements with the DTA at High Temperatures. Min. Met. Quart., 3, 27–32, 1962.
  • A. Rosina, N. Smajic, and B. Dobovisek, Application of Differential Thermal Analysis in Calorimetry. Mikrochim. Acta, 4, 626–638, 1967. https://doi.org/10 .1007/BF01224382.
  • U. V. Choudary and A. Ghosh, Thermodynamics of Liquid Copper-Silver Alloys by a Solid Electrolyte Cell. J. Electrochem. Soc., 117, 1024–1028, 1970. https://dx.doi.org/10.1149/1.2407712.
  • J. Markali and P. Thoresen, The Ag-Rich Side of the Binary Phase Diagrams Ag/Au and Ag/Cu as Studied by Zone Refining. Acta Chem. Scand, 15(1), 31–35, 1961. https://doi.org/10.3891/acta.chem.scand.15-003 1.
  • W. F. Roeser, Thermo-Electric Temperature Scales. U.S. Bur. Stds. J. Res., 3, 343–358, 1929.
  • D. Stockdale, The Solid Solutions of the Copper-Silver System. J. Inst. Metals, 45, 127–155, 1931.
  • H. Moser, J. Otto, and W. Thomas, Gasthermom etrische Messungen bei Hohen Temperaturen. Ill. Z. Phys., 175, 327–336, 1963. https://doi.org/10.1007/ BF01375109.
  • M. Hansen, Die Härte silberreicher Kupfer–Silberlegierungen. Bestimmung der Löslichkeit von Kupfer in Silber mit Hilfe von Härtemessungen. Z Anorg Allg Chem, 186(1), 41-48, 1929. https://doi.org /10.1002/zaac.19291860104.
  • Z. Bahari, M. Elgadi, J. Rivet, and J. Dugué, Experimental study of the ternary Ag–Cu–In phase diagram. Journal of Alloys and Compounds, 477, 152- 165, 2009. https://doi.org/10.1016/j.jallcom.2008.10.0 30.
  • N. Ageew, M. Hansen, and G. Sachs, Entmischung und Eigenschaftsanderungen ubersättigter Silber-Rupferlegierungen. Z. Phys., 66, 350–376, 1930. https://doi.org/10.1002/zaac.1929186010.
  • E. A. Owen and J. Rogers, X-Ray Study of Copper-Silver Alloys. J. Inst. Metals, 57, 257–266, 1935.
  • R. P. Elliott, F. A. Shunk & W. C. Giessen, The Ag−Cu (Silver-Copper) system. Bulletin of Alloy Phase Diagrams, 1, 41–45, 1980. https://doi.org/10.1007/BF 02883284.
  • E. Schmid and G. Siebel, Uber die Mischkristallbildung beiein- and Vielkristallinem Material. Z. Phys., 85(1-2), 36–55, 1932. https://doi.org/10.1007/BF01330777.
  • E. Schmid and G. Siebel, (as quoted in Hansen). Z. Phys., 85, 41–55, 1933.
  • F. Sommer, Yayınlanmamış data (as quoted in 2004 Witusiewicz et al.). MaxPlank-Instiut für Metallforschung, 2000.
  • R. A. Oriani and W. K. Murphy, Differential Calorimeter for Heats of Formation of Solid Alloys. Heats of Formation of Alloys of the Noble Metals. J. Phys. Chem., 62, 327–331, 1958. https://doi.org/10. 1021/j150561a020.
  • J. Kucera, L. Dvorak, and Z. Kudelasek, Tensimetric Measurement of Thermodynamic Functions of Silver in Ag-Cu Alloys by Method of Isotope Exchange. Ceskoslov. CasopisFys., 11, 277–284, 1961.
  • R. K. Edwards and J. H. Downing, The Thermodynamics of the Liquid Solutions in the Triad Cu-Ag-Au. I. The Cu-Ag System. J.Phys. Chem., 60, 108–111, 1956. https://doi.org/10.1021/j150535a026.
  • J. Golonka, J. Botor, and M. Dulat, Study of Copper-Silver Liquid Solutions by Combined Effusion Vaporization and Mass Spectrometry Sensing. Metals Tech., 6, 267–272, 1979. https://doi.org/10.1179/030 716979803276084.
  • O. P. Mohapatra and M. G. Frohberg, Calculation of Activities of Binary Metallic Systems from Distribution Equilibria Measurements with Fused Salt Mixtures. Z. Metallkd., 65, 58–62, 1974.
  • U. V. Choudary and A. Ghosh, Thermodynamics of Liquid Copper-Silver Alloys by a Solid Electrolyte Cell. J. Electrochem. Soc., 117, 1024–1028,1970. https://doi.org/10.1149/1.2407712.
  • S. Wagner, G. Sodeck, and A. Neckel, Thermodynamic Excess Quantities of Liquid Binary Silver-Copper by Mass Spectrometry. High Temp. Sci., 3, 481–490, 1971.
  • S. M. Howard, Direct Activity Measurements in Liquid Ag-Cu Alloys. Metall Trans. B, 20, 845–852, 1989. https://doi.org/10.1007/BF02670189.
  • R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley, Report-Selected Values of the Thermodynamic Properties of Binary Alloys, ASM, Metal Park, 1973. https://doi.org/10.1002/zaac.1929 1860104.
  • K. Fitzner, Q. Guo, J. Wang, and O. J. Kleppa, Enthalpies of liquid–liquid mixing in the systems Cu–Ag, Cu–Au and Ag–Au by using an in-situ mixing device in a high temperature single-unit differential calorimeter. Journal of Alloys and Compounds, 291(1-2), 190-200, 1999. https://doi.org/10.1016/S0925-8388(99)00279-0.
  • J. L. Murray, Calculations of Stable and Metastable Equilibrium Diagrams of the Ag-Cu and Cd-Zn Systems. Metall. Trans. A, 75, 261–268, 1984. https:// doi.org/10.1007/BF02645110.
  • F. H. Hayes, H. L Lukas, G. Effenberg, and G. Petzow, A Thermodynamic Optimisation of the Cu-Ag-Pb System. Z.Metallkd., 77(11), 749–754, 1986.
  • M. S. Lim, K.E. Tibballs, P.L. Rossiter, An assessment of thermodynamic equilibria in the Ag-Al-Cu-Mg quaternary system in relation to precipitation reactions. Zeitschrift fur Metallkunde, 88, 236-245, 1997. https:// 10.3139/ijmr-1997-0044.
  • A. Kusoffsky, Thermodynamic evaluation of the ternary Ag–Au–Cu system including a short range order description. Acta Materialia, 50(20), 5139-5145, 2002. https://doi.org/10.1016/S1359-6454(02)00382-8
  • X. C. He, H. Wang, H. S. Liu, and Z. P. Jin, Thermodynamic description of the Cu–Ag–Zr system. Calphad, 30, 367-374, 2006. https://doi.org/10.1016/j. calphad.2006.09.001.
  • A. T. Dinsdale, Sgte Data for Pure Elements. Calphad, 15(4), 317-425, 1991. https://doi.org/10.1016/0364-5916(91)90030-N.
  • J. C. Slater, Atomic Radii in Crystals. J. Chem. Phys., 41, 3199-3204, 1964. https://doi.org/10.1063/1.17256 97.
  • A. Bondi, van der Waals Volumes and Radii. The Journal of Physical Chemistry. 68(3), 441–45, 1964. https://doi.org/10.1021/j100785a001.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği, Malzeme Üretim Teknolojileri
Bölüm Araştırma Makaleleri
Yazarlar

Muhsin İder 0000-0001-9015-2822

Proje Numarası Yoktur
Erken Görünüm Tarihi 28 Mart 2024
Yayımlanma Tarihi 15 Nisan 2024
Gönderilme Tarihi 27 Şubat 2023
Kabul Tarihi 26 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 2

Kaynak Göster

APA İder, M. (2024). Bakır-Gümüş (Cu-Ag) faz sistemi termodinamik veri analizi ve optimizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(2), 657-664. https://doi.org/10.28948/ngumuh.1257151
AMA İder M. Bakır-Gümüş (Cu-Ag) faz sistemi termodinamik veri analizi ve optimizasyonu. NÖHÜ Müh. Bilim. Derg. Nisan 2024;13(2):657-664. doi:10.28948/ngumuh.1257151
Chicago İder, Muhsin. “Bakır-Gümüş (Cu-Ag) Faz Sistemi Termodinamik Veri Analizi Ve Optimizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, sy. 2 (Nisan 2024): 657-64. https://doi.org/10.28948/ngumuh.1257151.
EndNote İder M (01 Nisan 2024) Bakır-Gümüş (Cu-Ag) faz sistemi termodinamik veri analizi ve optimizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 2 657–664.
IEEE M. İder, “Bakır-Gümüş (Cu-Ag) faz sistemi termodinamik veri analizi ve optimizasyonu”, NÖHÜ Müh. Bilim. Derg., c. 13, sy. 2, ss. 657–664, 2024, doi: 10.28948/ngumuh.1257151.
ISNAD İder, Muhsin. “Bakır-Gümüş (Cu-Ag) Faz Sistemi Termodinamik Veri Analizi Ve Optimizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/2 (Nisan 2024), 657-664. https://doi.org/10.28948/ngumuh.1257151.
JAMA İder M. Bakır-Gümüş (Cu-Ag) faz sistemi termodinamik veri analizi ve optimizasyonu. NÖHÜ Müh. Bilim. Derg. 2024;13:657–664.
MLA İder, Muhsin. “Bakır-Gümüş (Cu-Ag) Faz Sistemi Termodinamik Veri Analizi Ve Optimizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 13, sy. 2, 2024, ss. 657-64, doi:10.28948/ngumuh.1257151.
Vancouver İder M. Bakır-Gümüş (Cu-Ag) faz sistemi termodinamik veri analizi ve optimizasyonu. NÖHÜ Müh. Bilim. Derg. 2024;13(2):657-64.

 23135