Araştırma Makalesi
BibTex RIS Kaynak Göster

Detection of micro-cracks in PV system using electroluminescence (EL) testing

Yıl 2024, Cilt: 13 Sayı: 2, 413 - 418, 15.04.2024
https://doi.org/10.28948/ngumuh.1318611

Öz

With the increase in the use of solar energy, the investigation of the failures that cause the decrease in efficiency and loss in production is increasing day by day. It is extremely beneficial to conduct on-site testing of solar systems in order to evaluate the plant's actual performance and identify potential problems. There are important methods for on-site and fast detection of failures. In this study, the failures in the panels were analyzed using the Electroluminescence test, which is one of the most reliable methods for the detection of micro-cracks, and 11 failures were detected as a result of the EL imaging. The EL test, which is the most reliable method for detecting micro-cracks, has been compared with infrared thermal images and its superiority has been proven. Energy losses were prevented by intervening in the field with rapid fault detection.

Kaynakça

  • S. Gallardo-Saavedra, L. Hernandez-Callejo, MD. Alonso-Garcia, JD. Santos, JI. Morales-Aragones, V. Alonso-Gomez, A. Moreton-Fernandez, MA. Gonzalez-Rebollo, O. Martinez-Sacristan, Nondest ructive characterization of solar PV cells defects by means of electroluminescence, infrared thermography, I-V curves and visual tests: Experimental study and comparison. Energy, 205, 2022. https://doi.org/10. 1016/j.energy.2020.117930
  • M. Y. Demirci, N. Besli, A. Gumuscu, Efficient deep feature extraction and classification for identifying defective photovoltaic module cells in Electroluminescence images. Expert Systems with Applications, 175, 2021. https://doi.org/10.1016/j.esw a.2021.114810
  • T. Fuyuki, H. Kondo, T. Yamazaki, Y. Takahashi, Y. Uraoka, Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence. Applied Physics Letters, 86 (26), 2005. https://doi.org/10.1063/1.1978979
  • O. Breitenstein, J. Bauer, K. Bothe, D. Hinken, J. Muller, W. Kwapil, MC. Schubert, W. Warta, Can Luminescence Imaging Replace Lock-in Thermograph y on Solar Cells IEEE Journal of Photovoltaics, 1 (2), 159-167, 2011. https://doi.org/10.1109/Jphotov.2011. 2169394
  • S. Duenas, E. Perez, H. Castan, H. Garcia, L. Bailon, The role of defects in solar cells: Control and detection Defects in solar cells. Proceedings of the 2013 Spanish Conference on Electron Devices Valladolid, Spain, 2013. https://doi.org/10.1109/CDE.2013.6481402
  • R. Ebner, S. Zamini, G. Újvari, Defect analysis in differ rent photovoltaic modules using Electroluminescence (EL) and Infrared (IR)-thermography, 25th European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion, Valencia, Spain, 2010. https://doi.org/ 10.4229/ 25thEUPVSEC2010-1DV.2.8
  • R. Ebner, B. Kubicek, G. Ujvari, S. Novalin, M. Rennhofer, M. Halwachs, Optical characterization of different thin film module technologies. Interna tional Journal of Photoenergy, 2015. https://doi.org/ 10.1155/ 2015/159458
  • I. Pvps, I. Tsanakas, JS. Stein, KA. Berger, S. Ranta, T. Tanahashi,. Z. Bayern, Review on Infrared and Electroluminescence Imaging for PV Field Applications, Technical Report T10-13, 2018.
  • W. Warta, MC. Schubert, W. Kwapil, J. Müller, D. Hinken, K. Bothe,. O. Breitenstein, Luminescence Imaging versus Lock-in Thermography on Solar Cells and Wafers, 26th European Photovoltaic Solar Energy Conference and Exhibition, 2011 https:/doi.org/ 10.4229/26thEUPVSEC2011-2CO.13.5.
  • S. Deitsch, V. Christlein, S. Berger, C. Buerhop-Lutz, A. Maier, F. Gallwitz, C. Riess, Automatic classification of defective photovoltaic module cells in electroluminescence images. Solar Energy, 185, 455-468, 2019. https://doi.org/10.1016/j.solener.2019.02.0 67
  • H. Bakir, Detection of Faults in Photovoltaic Modules of SPPS in Turkey; Infrared thermographic diagnosis and recommendations. Journal of Electrical Engineering & Technology.18(3), 1945-1957, 2022. https://doi.org/10.1007/s42835-022-01245-6
  • M. Cubukcu, A. Akanalci, Real-time inspection and determination methods of faults on photovoltaic power systems by thermal imaging in Turkey Renewable Energy, 147(1) 1231-1238, 2020. https://doi.org/10.10 16/j.renene.2019.09.075
  • H. Açıkgöz, D. Korkmaz, Elektrolüminesans görüntülerde arızalı fotovoltaik panel hücrelerin evrişimli sinir ağı ile otomatik sınıflandırılması, Fırat Üniversitesi Müh. Bil. Dergisi, 34(2), 589-600, 2022 https://doi.org/10.35234/fumbd.1099000
  • R. Evans, Interpreting module EL images for quality control Proceedings of the 52nd Annual Conference, Australian Solar Energy Society, 2014 http://solar. org.au/papers/14papers/%23117_final.pdf
  • H. Bakır, Thermal image analysis for fault detection of PV systems in Ankara/Turkey. European Journal of Science and Technology, 41-44, 2022. https://doi.org /10.31590/ejosat.1098973
  • P. A. Analysis. Test ve Ölçüm Hizmeti, Retrieved from. 2022 https://www.petaaerial.com

Elektrolüminesans (EL) testi kullanılarak FV sistemindeki mikro çatlakların tespiti

Yıl 2024, Cilt: 13 Sayı: 2, 413 - 418, 15.04.2024
https://doi.org/10.28948/ngumuh.1318611

Öz

Güneş enerjisi kullanımının artması ile birlikte verimin düşmesine ve üretimde kayıplara sebep olan arızaların araştırılması gün geçtikçe artmaktadır. Tesisin gerçek performansını değerlendirmek ve potansiyel sorunları belirlemek için güneş enerjisi sistemlerinin yerinde test edilmesi son derece faydalıdır. Arızaların yerinde ve hızlı tespiti için önemli yöntemler mevcuttur. Bu çalışmada mikro çatlak tespiti için en güvenilir yöntemlerden biri olan Elektrolüminesans test kullanılarak panellerdeki arızalar analiz edilmiş ve EL görüntüleme sonucunda 11 arıza tespit edilmiştir. Mikro çatlakları tespit etmede en güvenilir yöntem olan EL testi kızılötesi termal görüntüler ile karşılaştırılmış ve üstünlüğü kanıtlanmıştır. Hızlı arıza tespiti ile sahada müdahale edilerek enerji kayıplarının önüne geçilmiştir.

Kaynakça

  • S. Gallardo-Saavedra, L. Hernandez-Callejo, MD. Alonso-Garcia, JD. Santos, JI. Morales-Aragones, V. Alonso-Gomez, A. Moreton-Fernandez, MA. Gonzalez-Rebollo, O. Martinez-Sacristan, Nondest ructive characterization of solar PV cells defects by means of electroluminescence, infrared thermography, I-V curves and visual tests: Experimental study and comparison. Energy, 205, 2022. https://doi.org/10. 1016/j.energy.2020.117930
  • M. Y. Demirci, N. Besli, A. Gumuscu, Efficient deep feature extraction and classification for identifying defective photovoltaic module cells in Electroluminescence images. Expert Systems with Applications, 175, 2021. https://doi.org/10.1016/j.esw a.2021.114810
  • T. Fuyuki, H. Kondo, T. Yamazaki, Y. Takahashi, Y. Uraoka, Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence. Applied Physics Letters, 86 (26), 2005. https://doi.org/10.1063/1.1978979
  • O. Breitenstein, J. Bauer, K. Bothe, D. Hinken, J. Muller, W. Kwapil, MC. Schubert, W. Warta, Can Luminescence Imaging Replace Lock-in Thermograph y on Solar Cells IEEE Journal of Photovoltaics, 1 (2), 159-167, 2011. https://doi.org/10.1109/Jphotov.2011. 2169394
  • S. Duenas, E. Perez, H. Castan, H. Garcia, L. Bailon, The role of defects in solar cells: Control and detection Defects in solar cells. Proceedings of the 2013 Spanish Conference on Electron Devices Valladolid, Spain, 2013. https://doi.org/10.1109/CDE.2013.6481402
  • R. Ebner, S. Zamini, G. Újvari, Defect analysis in differ rent photovoltaic modules using Electroluminescence (EL) and Infrared (IR)-thermography, 25th European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion, Valencia, Spain, 2010. https://doi.org/ 10.4229/ 25thEUPVSEC2010-1DV.2.8
  • R. Ebner, B. Kubicek, G. Ujvari, S. Novalin, M. Rennhofer, M. Halwachs, Optical characterization of different thin film module technologies. Interna tional Journal of Photoenergy, 2015. https://doi.org/ 10.1155/ 2015/159458
  • I. Pvps, I. Tsanakas, JS. Stein, KA. Berger, S. Ranta, T. Tanahashi,. Z. Bayern, Review on Infrared and Electroluminescence Imaging for PV Field Applications, Technical Report T10-13, 2018.
  • W. Warta, MC. Schubert, W. Kwapil, J. Müller, D. Hinken, K. Bothe,. O. Breitenstein, Luminescence Imaging versus Lock-in Thermography on Solar Cells and Wafers, 26th European Photovoltaic Solar Energy Conference and Exhibition, 2011 https:/doi.org/ 10.4229/26thEUPVSEC2011-2CO.13.5.
  • S. Deitsch, V. Christlein, S. Berger, C. Buerhop-Lutz, A. Maier, F. Gallwitz, C. Riess, Automatic classification of defective photovoltaic module cells in electroluminescence images. Solar Energy, 185, 455-468, 2019. https://doi.org/10.1016/j.solener.2019.02.0 67
  • H. Bakir, Detection of Faults in Photovoltaic Modules of SPPS in Turkey; Infrared thermographic diagnosis and recommendations. Journal of Electrical Engineering & Technology.18(3), 1945-1957, 2022. https://doi.org/10.1007/s42835-022-01245-6
  • M. Cubukcu, A. Akanalci, Real-time inspection and determination methods of faults on photovoltaic power systems by thermal imaging in Turkey Renewable Energy, 147(1) 1231-1238, 2020. https://doi.org/10.10 16/j.renene.2019.09.075
  • H. Açıkgöz, D. Korkmaz, Elektrolüminesans görüntülerde arızalı fotovoltaik panel hücrelerin evrişimli sinir ağı ile otomatik sınıflandırılması, Fırat Üniversitesi Müh. Bil. Dergisi, 34(2), 589-600, 2022 https://doi.org/10.35234/fumbd.1099000
  • R. Evans, Interpreting module EL images for quality control Proceedings of the 52nd Annual Conference, Australian Solar Energy Society, 2014 http://solar. org.au/papers/14papers/%23117_final.pdf
  • H. Bakır, Thermal image analysis for fault detection of PV systems in Ankara/Turkey. European Journal of Science and Technology, 41-44, 2022. https://doi.org /10.31590/ejosat.1098973
  • P. A. Analysis. Test ve Ölçüm Hizmeti, Retrieved from. 2022 https://www.petaaerial.com
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yenilenebilir Enerji Sistemleri
Bölüm Araştırma Makaleleri
Yazarlar

Hale Bakır 0000-0001-5580-0505

Erken Görünüm Tarihi 15 Şubat 2024
Yayımlanma Tarihi 15 Nisan 2024
Gönderilme Tarihi 22 Haziran 2023
Kabul Tarihi 25 Ekim 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 2

Kaynak Göster

APA Bakır, H. (2024). Detection of micro-cracks in PV system using electroluminescence (EL) testing. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(2), 413-418. https://doi.org/10.28948/ngumuh.1318611
AMA Bakır H. Detection of micro-cracks in PV system using electroluminescence (EL) testing. NÖHÜ Müh. Bilim. Derg. Nisan 2024;13(2):413-418. doi:10.28948/ngumuh.1318611
Chicago Bakır, Hale. “Detection of Micro-Cracks in PV System Using Electroluminescence (EL) Testing”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, sy. 2 (Nisan 2024): 413-18. https://doi.org/10.28948/ngumuh.1318611.
EndNote Bakır H (01 Nisan 2024) Detection of micro-cracks in PV system using electroluminescence (EL) testing. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 2 413–418.
IEEE H. Bakır, “Detection of micro-cracks in PV system using electroluminescence (EL) testing”, NÖHÜ Müh. Bilim. Derg., c. 13, sy. 2, ss. 413–418, 2024, doi: 10.28948/ngumuh.1318611.
ISNAD Bakır, Hale. “Detection of Micro-Cracks in PV System Using Electroluminescence (EL) Testing”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/2 (Nisan 2024), 413-418. https://doi.org/10.28948/ngumuh.1318611.
JAMA Bakır H. Detection of micro-cracks in PV system using electroluminescence (EL) testing. NÖHÜ Müh. Bilim. Derg. 2024;13:413–418.
MLA Bakır, Hale. “Detection of Micro-Cracks in PV System Using Electroluminescence (EL) Testing”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 13, sy. 2, 2024, ss. 413-8, doi:10.28948/ngumuh.1318611.
Vancouver Bakır H. Detection of micro-cracks in PV system using electroluminescence (EL) testing. NÖHÜ Müh. Bilim. Derg. 2024;13(2):413-8.

 23135