Araştırma Makalesi
BibTex RIS Kaynak Göster

Characterization of natural zeolite and bentonite and their use in CO2 capture

Yıl 2024, Cilt: 13 Sayı: 2, 568 - 574, 15.04.2024
https://doi.org/10.28948/ngumuh.1348145

Öz

In this study, natural zeolite and bentonite were used as adsorbent material in CO2 sequestration without any treatment. The structural properties of the supplied zeolite and bentonite were characterized using X-ray diffraction (XRD) and Fourier Transform Infrared Spectrophotometer (FTIR). Morphological properties were characterized using Field Emission Scanning Electron Microscopy (FESEM) and N2-adsorption-desorption measurements using Brunauer–Emmett–Teller (BET) instruments. BET surface areas and CO2 capture performance of zeolite and bentonite were investigated under both static and flow conditions. The zeolite exhibited a high mesopore volume, a high BET surface area of 125.23 m2/g and a high CO2 capture capacity (38.7 mg/g) at 25 °C and 1 bar. In addition, Bentonite material showed a lower BET surface area of 53.79 m2/g and lower CO2 capture capacity (20.53 mg/g) than zeolite.

Kaynakça

  • T. H. Pham, B. K. Lee, J. Kim and C. H. Lee, Enhancement of CO2 capture by using synthesized nano-zeolite, Journal of the Taiwan Institute of Chemical Engineers, 64, 220-226, 2016. https://doi.org/10.1016/j.jtice.2016.04.026.
  • G. Song, X. Zhu, R. Chen, Q. Liao, Y. D. Ding and L. Chen, An investigation of CO2 adsorption kinetics on porous magnesium oxide, Chemical Engineering Journal, 283, 175-183, 2016. https://doi.org/10.1016/j.cej.2015.07.055.
  • J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried and R. D. Srivastava, Advances in CO2 capture technology—the US Department of Energy's Carbon Sequestration Program, International journal of greenhouse gas control, 2, 9-20, 2008. https://doi.org/10.1016/S1750-5836(07)00094-1.
  • S. Cavenati, C. A. Grande and A. E. Rodrigues, Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures, Journal of Chemical & Engineering Data, 49, 1095-1101, 2004. https://doi.org/10.1021/je0498917.
  • R. S. Haszeldine, Carbon capture and storage: how green can black be?, Science, 325, 1647-1652, 2009. https://doi.org/10.1126/science.1172246.
  • S. Choi, J. H. Drese and C. W. Jones, Adsorbent materials for carbon dioxide capture from large anthropogenic point sources, ChemSusChem: Chemistry & Sustainability Energy & Materials, 2, 796-854, 2009. https://doi.org/10.1002/cssc.200900036.
  • D. Ko, H. A. Patel and C. T. Yavuz, Synthesis of nanoporous 1, 2, 4-oxadiazole networks with high CO 2 capture capacity, Chemical Communications, 51, 2915-2917, 2015. https://doi.org/10.1039/C4CC08649J.
  • E. Díaz, E. Muñoz, A. Vega and S. Ordóñez, Enhancement of the CO2 retention capacity of X zeolites by Na-and Cs-treatments, Chemosphere, 70, 1375-1382, 2008. https://doi.org/10.1016/j.chemosphere.2007.09.034.
  • E. Díaz, E. Munoz, A. Vega and S. Ordonez, Enhancement of the CO2 retention capacity of Y zeolites by Na and Cs treatments: effect of adsorption temperature and water treatment, Industrial & engineering chemistry research, 47, 412-418, 2008. https://doi.org/10.1021/ie070685c.
  • G. T. Rochelle, Amine scrubbing for CO2 capture, Science, 325, 1652-1654, 2009. https://doi.org/10.1126/science.117673.
  • S. Zulfiqar, M. I. Sarwar and C. T. Yavuz, Melamine based porous organic amide polymers for CO 2 capture, RSC advances, 4, 52263-52269, 2014. https://doi.org/10.1039/C4RA11442F.
  • H. A. Patel, F. Karadas, A. Canlier, J. Park, E. Deniz, Y. Jung, M. Atilhan and C. T. Yavuz, High capacity carbon dioxide adsorption by inexpensive covalent organic polymers, Journal of Materials Chemistry, 22, 8431-8437, 2012. https://doi.org/10.1039/C2JM30761H.
  • Z. Liang, M. Marshall and A. L. Chaffee, CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X), Energy & Fuels, 23, 2785-2789, 2009. https://doi.org/10.1021/ef800938e.
  • J. Dunne, M. Rao, S. Sircar, R. Gorte and A. Myers, Calorimetric heats of adsorption and adsorption isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on NaX, H-ZSM-5, and Na-ZSM-5 zeolites, Langmuir, 12, 5896-5904, 1996. https://doi.org/10.1021/la960496r.
  • S. T. Yang, J. Kim and W. S. Ahn, CO2 adsorption over ion-exchanged zeolite beta with alkali and alkaline earth metal ions, Microporous and Mesoporous Materials, 135, 90-94, 2010. https://doi.org/10.1016/j.micromeso.2010.06.015.
  • F. Banat, B. Al-Bashir, S. Al-Asheh, O. Hayajneh, Adsorption of phenol by bentonite, Environmental pollution, 107, 391-398, 2000. https://doi.org/10.1016/S0269-7491(99)00173-6.
  • G. Bereket, A. Z. Arog and M. Z. Özel, Removal of Pb (II), Cd (II), Cu (II), and Zn (II) from aqueous solutions by adsorption on bentonite, Journal of Colloïd and interface science, 187, 338-343 (1997) https://doi.org/10.1006/jcis.1996.4537.
  • R. J. Hook, An investigation of some sterically hindered amines as potential carbon dioxide scrubbing compounds, Industrial & engineering chemistry research, 36, 1779-1790, 1997. https://doi.org/10.1021/ie9605589.
  • C. Chen and W. S. Ahn, CO2 capture using mesoporous alumina prepared by a sol–gel process, Chemical Engineering Journal, 166, 646-651, 2011. https://doi.org/10.1016/j.cej.2010.11.038.
  • C. A. Trickett, A. Helal, B. A. Al-Maythalony, Z. H. Yamani, K. E. Cordova and O. M. Yaghi, The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion, Nature Reviews Materials, 2, 1-16, 2017. https://doi.org/10.1038/natrevmats.2017.45.
  • M. Ding, R. W. Flaig, H. L. Jiang and O. M. Yaghi, Carbon capture and conversion using metal–organic frameworks and MOF-based materials, Chemical Society Reviews, 48, 2783-2828, 2019. https://doi.org/10.1039/C8CS00829A.
  • M. S. Atas, S. Dursun, H. Akyildiz, M. Citir, C. T. Yavuz and M. S. Yavuz, Selective removal of cationic micro-pollutants using disulfide-linked network structures, RSC advances, 7, 25969-25977, 2017. https://doi.org/10.1039/C7RA04775D.
  • G. P. Hao, W. C. Li, D. Qian and A. H. Lu, Rapid synthesis of nitrogen‐doped porous carbon monolith for CO2 capture, Advanced materials, 22, 853-857, 2010. https://doi.org/10.1002/adma.200903765.
  • O. A. Yildirim and M. S. Atas, Synthesis and characterization of spherical FeNi3 metallic nanoparticles based on sodium dodecyl sulfate, Journal of Materials and Manufacturing, 1, 33-40, 2022. https://doi.org/10.5281/zenodo.7472367.
  • M. Ş. Ataş and Ö. A. Yildirim, Ni-FeNi3-Fe3O4 metalik nanoalaşimlarin hidrotermal yöntemle sentezi ve karakterizasyonu, Konya Journal of Engineering Sciences, 10, 965-975, 2022. https://doi.org/10.36306/konjes.1148331.
  • M. A. Topçu, Production and characterization of zinc oxide nanofibers derived from waste material as precursor, Process Safety and Environmental Protection, 175, 150-159, 2023. https://doi.org/10.1016/j.psep.2023.05.035.
  • S. Yang, L. Zhan, X. Xu, Y. Wang, L. Ling and X. Feng, Graphene-based porous silica sheets impregnated with polyethyleneimine for superior CO2 capture, Advanced Materials (Deerfield Beach, Fla.), 25, 2130-2134, 2013. https://doi.org/10.1002/adma.201204427.
  • A. Kaya and S. Durukan, Utilization of bentonite-embedded zeolite as clay liner, Applied Clay Science, 25, 83-91, 2004. https://doi.org/10.1016/j.clay.2003.07.002.
  • M. Trckova, L. Matlova, L. Dvorska and I. Pavlik, Kaolin, bentonite, and zeolites as feed supplements for animals: health advantages and risks, Veterinární Medicína, 49, 389-399, 2004. https://doi.org/10.17221/5728-VETMED.
  • S. Ghaffari, M. F. Gutierrez, A. Seidel-Morgenstern, H. Lorenz and P. Schulze, Sodium Hydroxide-Based CO2 Direct Air Capture for Soda Ash Production─Fundamentals for Process Engineering, Industrial & Engineering Chemistry Research, 62, 7566-7579, 2023. https://doi.org/10.1021/acs.iecr.3c00357.
  • S. Kumar, R. Srivastava and J. Koh, Utilization of zeolites as CO2 capturing agents: Advances and future perspectives, Journal of CO2 Utilization, 41, 101251, 2020. https://doi.org/10.1016/j.jcou.2020.101251.
  • C. Chen, D. W. Park and W. S. Ahn, CO2 capture using zeolite 13X prepared from bentonite, Applied Surface Science, 292, 63-67, 2014. https://doi.org/10.1016/j.apsusc.2013.11.064.
  • F. Wang, C. Gunathilake and M. Jaroniec, Development of mesoporous magnesium oxide–alumina composites for CO2 capture, Journal of CO2 Utilization, 13, 114-118, 2016. https://doi.org/10.1016/j.jcou.2015.11.001.
  • Y. Xia, R. Mokaya, G. S. Walker and Y. Zhu, Superior CO2 adsorption capacity on N‐doped, high‐surface‐area, microporous carbons templated from zeolite, Advanced Energy Materials, 1, 678-683, 2011. https://doi.org/10.1002/aenm.201100061.
  • V. Garshasbi, M. Jahangiri and M. Anbia, Equilibrium CO2 adsorption on zeolite 13X prepared from natural clays, Applied Surface Science, 393, 225-233, 2017. https://doi.org/10.1016/j.apsusc.2016.09.161.
  • H. Aysan, S. Edebali, C. Ozdemir, M. Celi̇k Karakaya and N. Karakaya, Use of chabazite, a naturally abundant zeolite, for the investigation of the adsorption kinetics and mechanism of methylene blue dye, Microporous and Mesoporous Materials, 235, 78-86, 2016. https://doi.org/10.1016/j.micromeso.2016.08.007.
  • L. Cao, Z. Li, S. Xiang, Z. Huang, R. Ruan and Y. Liu, Preparation and characteristics of bentonite–zeolite adsorbent and its application in swine wastewater, Bioresource Technology, 284, 448-455, 2019. https://doi.org/10.1016/j.biortech.2019.03.043.
  • P. Murge, S. Dinda and S. Roy, Zeolite-Based Sorbent for CO2 Capture: Preparation and Performance Evaluation, Langmuir, 35, 14751-14760, 2019. https://doi.org/10.1021/acs.langmuir.9b02259.
  • N. Kuanchertchoo, R. Suwanpreedee, S. Kulprathipanja, P. Aungkavattana, D. Atong, K. Hemra, T. Rirksomboon and S. Wongkasemjit, Effects of synthesis parameters on zeolite membrane formation and performance by microwave technique, Applied Organometallic Chemistry, 21, 841-848, 2007. https://doi.org/10.1002/aoc.1295.
  • R. Vinodh, C. Deviprasath, C. V. M. Gopi, V. G. R. Kummara, R. Atchudan, T. Ahamad, H. J. Kim and M. Yi, Novel 13X Zeolite/PANI electrocatalyst for hydrogen and oxygen evolution reaction, International Journal of Hydrogen Energy, 45, 28337-28349, 2020. https://doi.org/10.1016/j.ijhydene.2020.07.194.
  • R. S. Hebbar, A. M. Isloor, B. Prabhu, Inamuddin, A. M. Asiri and A. Ismail, Removal of metal ions and humic acids through polyetherimide membrane with grafted bentonite clay, Scientific reports, 8, 4665, 2018. https://doi.org/10.1038/s41598-018-22837-1.
  • M. A. Salam, M. R. Abukhadra and A. Adlii, Insight into the adsorption and photocatalytic behaviors of an organo-bentonite/Co3O4 green nanocomposite for malachite green synthetic dye and Cr (VI) metal ions: application and mechanisms, ACS omega, 5, 2766, 2020. https://doi.org/10.1021/acsomega.9b03411.
  • E. Z. M. Tarmizi, H. Baqiah, Z. A. Talib and H. M. Kamari, Preparation and physical properties of polypyrrole/zeolite composites, Results in Physics, 11, 793-800, 2018. https://doi.org/10.1016/j.rinp.2018.09.043.
  • W. Wang, Q. Feng, K. Liu, G. Zhang, J. Liu and Y. Huang, A novel magnetic 4A zeolite adsorbent synthesised from kaolinite type pyrite cinder (KTPC), Solid State Sciences, 39, 52-58, 2015. https://doi.org/10.1016/j.solidstatesciences.2014.11.012.
  • A. Kassim, H. E. Mahmud and F. Adzmi, Polypyrrole–montmorillonite clay composites: an organic semiconductor, Materials science in semiconductor processing, 10, 246-251, 2007. https://doi.org/10.1016/j.mssp.2008.02.001.
  • J. Kim, F. Liu, H. Choi, S. Hong and J. Joo, Intercalated polypyrrole/Na+-montmorillonite nanocomposite via an inverted emulsion pathway method, Polymer, 44, 289-293, 2003. https://doi.org/10.1016/S0032-3861(02)00749-8.
  • C. Chen, W. J. Son, K. S. You, J. W. Ahn and W. S. Ahn, Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity, Chemical Engineering Journal, 161, 46-52, 2010. https://doi.org/10.1016/j.cej.2010.04.019.
  • Z. Zhang, W. Zhang, X. Chen, Q. Xia and Z. Li, Adsorption of CO2 on zeolite 13X and activated carbon with higher surface area, Separation Science and Technology, 45, 710-719, 2010. https://doi.org/10.1080/01496390903571192.
  • X. Xu, C. Song, J. M. Andrésen, B.G. Miller and A.W. Scaroni, Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41, Microporous and mesoporous materials, 62, 29-45, 2003. https://doi.org/10.1016/S1387-1811(03)00388-3.
  • C. Chen, J. Kim, D. A. Yang and W. S. Ahn, Carbon dioxide adsorption over zeolite-like metal organic frameworks (ZMOFs) having a sod topology: Structure and ion-exchange effect, Chemical Engineering Journal, 168, 1134-1139, 2011. https://doi.org/10.1016/j.cej.2011.01.096.
  • C. M. Lu, J. Liu, K. Xiao and A. T. Harris, Microwave enhanced synthesis of MOF-5 and its CO2 capture ability at moderate temperatures across multiple capture and release cycles, Chemical Engineering Journal, 156, 465-470, 2010. https://doi.org/10.1016/j.cej.2009.10.067.
  • L. Zhao, Z. Bacsik, N. Hedin, W. Wei, Y. Sun, M. Antonietti and M.M. Titirici, Carbon dioxide capture on Amine‐Rich carbonaceous materials derived from glucose, ChemSusChem, 3, 840-845, 2010. https://doi.org/10.1002/cssc.201000044.
  • J. Venaruzzo, C. Volzone, M. Rueda and J. Ortiga, Modified bentonitic clay minerals as adsorbents of CO, CO2 and SO2 gases, Microporous and Mesoporous Materials, 56, 73-80, 2002. https://doi.org/10.1016/S1387-1811(02)00443-2.
  • V. Zeleňák, M. Badaničová, D. Halamová, J. Čejka, A. Zukal, N. Murafa and G. Goerigk, Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture, Chemical Engineering Journal, 144, 336-342, 2008. https://doi.org/10.1016/j.cej.2008.07.025.
  • X. Xu, C. Song, J. M. Andrésen, B. G. Miller and A. W. Scaroni, Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41, Microporous and Mesoporous Materials, 62, 29-45, 2003. https://doi.org/10.1016/S1387-1811(03)00388-3.

Doğal zeolit ve bentonitin karakterizasyonu ve CO2 tutumunda kullanımı

Yıl 2024, Cilt: 13 Sayı: 2, 568 - 574, 15.04.2024
https://doi.org/10.28948/ngumuh.1348145

Öz

Bu çalışmada doğal zeolit ve bentonit herhangi bir işleme tabi tutulmadan CO2 tutumunda adsorban malzemesi olarak kullanılmıştır. Temin edilen zeolit ve bentonitin yapısal özellikleri, X-ışını kırınımı (XRD) ve Fourier Dönüşümlü Kızılötesi Spektrofotometresi (FTIR) kullanılarak karakterize edilmiştir. Morfolojik özellikleri Alan Emisyonlu Taramalı Elektron Mikroskobu (FESEM) ve N2-adsorpsiyon-desorpsiyon ölçümleri ise Brunauer–Emmett–Teller (BET) cihazları kullanılarak karakterize edilmiştir. Zeolit ve bentonitin BET yüzey alanları ve CO2 yakalama performansı hem statik hem de akış koşulları altında incelenmiştir. Zeolit, yüksek mezogözenek hacmi ile 125,23 m2/g'lık yüksek bir BET yüzey alanı ve 25 °C ve 1 bar'da yüksek CO2 yakalama kapasitesi (38,7 mg/g) sergilemiştir. Buna ek olarak, Bentonit malzemesi zeolite göre daha düşük 53,79 m2/g'lık bir BET yüzey alanı ve daha düşük CO2 yakalama kapasitesi (20,53 mg/g) göstermiştir.

Kaynakça

  • T. H. Pham, B. K. Lee, J. Kim and C. H. Lee, Enhancement of CO2 capture by using synthesized nano-zeolite, Journal of the Taiwan Institute of Chemical Engineers, 64, 220-226, 2016. https://doi.org/10.1016/j.jtice.2016.04.026.
  • G. Song, X. Zhu, R. Chen, Q. Liao, Y. D. Ding and L. Chen, An investigation of CO2 adsorption kinetics on porous magnesium oxide, Chemical Engineering Journal, 283, 175-183, 2016. https://doi.org/10.1016/j.cej.2015.07.055.
  • J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried and R. D. Srivastava, Advances in CO2 capture technology—the US Department of Energy's Carbon Sequestration Program, International journal of greenhouse gas control, 2, 9-20, 2008. https://doi.org/10.1016/S1750-5836(07)00094-1.
  • S. Cavenati, C. A. Grande and A. E. Rodrigues, Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures, Journal of Chemical & Engineering Data, 49, 1095-1101, 2004. https://doi.org/10.1021/je0498917.
  • R. S. Haszeldine, Carbon capture and storage: how green can black be?, Science, 325, 1647-1652, 2009. https://doi.org/10.1126/science.1172246.
  • S. Choi, J. H. Drese and C. W. Jones, Adsorbent materials for carbon dioxide capture from large anthropogenic point sources, ChemSusChem: Chemistry & Sustainability Energy & Materials, 2, 796-854, 2009. https://doi.org/10.1002/cssc.200900036.
  • D. Ko, H. A. Patel and C. T. Yavuz, Synthesis of nanoporous 1, 2, 4-oxadiazole networks with high CO 2 capture capacity, Chemical Communications, 51, 2915-2917, 2015. https://doi.org/10.1039/C4CC08649J.
  • E. Díaz, E. Muñoz, A. Vega and S. Ordóñez, Enhancement of the CO2 retention capacity of X zeolites by Na-and Cs-treatments, Chemosphere, 70, 1375-1382, 2008. https://doi.org/10.1016/j.chemosphere.2007.09.034.
  • E. Díaz, E. Munoz, A. Vega and S. Ordonez, Enhancement of the CO2 retention capacity of Y zeolites by Na and Cs treatments: effect of adsorption temperature and water treatment, Industrial & engineering chemistry research, 47, 412-418, 2008. https://doi.org/10.1021/ie070685c.
  • G. T. Rochelle, Amine scrubbing for CO2 capture, Science, 325, 1652-1654, 2009. https://doi.org/10.1126/science.117673.
  • S. Zulfiqar, M. I. Sarwar and C. T. Yavuz, Melamine based porous organic amide polymers for CO 2 capture, RSC advances, 4, 52263-52269, 2014. https://doi.org/10.1039/C4RA11442F.
  • H. A. Patel, F. Karadas, A. Canlier, J. Park, E. Deniz, Y. Jung, M. Atilhan and C. T. Yavuz, High capacity carbon dioxide adsorption by inexpensive covalent organic polymers, Journal of Materials Chemistry, 22, 8431-8437, 2012. https://doi.org/10.1039/C2JM30761H.
  • Z. Liang, M. Marshall and A. L. Chaffee, CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X), Energy & Fuels, 23, 2785-2789, 2009. https://doi.org/10.1021/ef800938e.
  • J. Dunne, M. Rao, S. Sircar, R. Gorte and A. Myers, Calorimetric heats of adsorption and adsorption isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on NaX, H-ZSM-5, and Na-ZSM-5 zeolites, Langmuir, 12, 5896-5904, 1996. https://doi.org/10.1021/la960496r.
  • S. T. Yang, J. Kim and W. S. Ahn, CO2 adsorption over ion-exchanged zeolite beta with alkali and alkaline earth metal ions, Microporous and Mesoporous Materials, 135, 90-94, 2010. https://doi.org/10.1016/j.micromeso.2010.06.015.
  • F. Banat, B. Al-Bashir, S. Al-Asheh, O. Hayajneh, Adsorption of phenol by bentonite, Environmental pollution, 107, 391-398, 2000. https://doi.org/10.1016/S0269-7491(99)00173-6.
  • G. Bereket, A. Z. Arog and M. Z. Özel, Removal of Pb (II), Cd (II), Cu (II), and Zn (II) from aqueous solutions by adsorption on bentonite, Journal of Colloïd and interface science, 187, 338-343 (1997) https://doi.org/10.1006/jcis.1996.4537.
  • R. J. Hook, An investigation of some sterically hindered amines as potential carbon dioxide scrubbing compounds, Industrial & engineering chemistry research, 36, 1779-1790, 1997. https://doi.org/10.1021/ie9605589.
  • C. Chen and W. S. Ahn, CO2 capture using mesoporous alumina prepared by a sol–gel process, Chemical Engineering Journal, 166, 646-651, 2011. https://doi.org/10.1016/j.cej.2010.11.038.
  • C. A. Trickett, A. Helal, B. A. Al-Maythalony, Z. H. Yamani, K. E. Cordova and O. M. Yaghi, The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion, Nature Reviews Materials, 2, 1-16, 2017. https://doi.org/10.1038/natrevmats.2017.45.
  • M. Ding, R. W. Flaig, H. L. Jiang and O. M. Yaghi, Carbon capture and conversion using metal–organic frameworks and MOF-based materials, Chemical Society Reviews, 48, 2783-2828, 2019. https://doi.org/10.1039/C8CS00829A.
  • M. S. Atas, S. Dursun, H. Akyildiz, M. Citir, C. T. Yavuz and M. S. Yavuz, Selective removal of cationic micro-pollutants using disulfide-linked network structures, RSC advances, 7, 25969-25977, 2017. https://doi.org/10.1039/C7RA04775D.
  • G. P. Hao, W. C. Li, D. Qian and A. H. Lu, Rapid synthesis of nitrogen‐doped porous carbon monolith for CO2 capture, Advanced materials, 22, 853-857, 2010. https://doi.org/10.1002/adma.200903765.
  • O. A. Yildirim and M. S. Atas, Synthesis and characterization of spherical FeNi3 metallic nanoparticles based on sodium dodecyl sulfate, Journal of Materials and Manufacturing, 1, 33-40, 2022. https://doi.org/10.5281/zenodo.7472367.
  • M. Ş. Ataş and Ö. A. Yildirim, Ni-FeNi3-Fe3O4 metalik nanoalaşimlarin hidrotermal yöntemle sentezi ve karakterizasyonu, Konya Journal of Engineering Sciences, 10, 965-975, 2022. https://doi.org/10.36306/konjes.1148331.
  • M. A. Topçu, Production and characterization of zinc oxide nanofibers derived from waste material as precursor, Process Safety and Environmental Protection, 175, 150-159, 2023. https://doi.org/10.1016/j.psep.2023.05.035.
  • S. Yang, L. Zhan, X. Xu, Y. Wang, L. Ling and X. Feng, Graphene-based porous silica sheets impregnated with polyethyleneimine for superior CO2 capture, Advanced Materials (Deerfield Beach, Fla.), 25, 2130-2134, 2013. https://doi.org/10.1002/adma.201204427.
  • A. Kaya and S. Durukan, Utilization of bentonite-embedded zeolite as clay liner, Applied Clay Science, 25, 83-91, 2004. https://doi.org/10.1016/j.clay.2003.07.002.
  • M. Trckova, L. Matlova, L. Dvorska and I. Pavlik, Kaolin, bentonite, and zeolites as feed supplements for animals: health advantages and risks, Veterinární Medicína, 49, 389-399, 2004. https://doi.org/10.17221/5728-VETMED.
  • S. Ghaffari, M. F. Gutierrez, A. Seidel-Morgenstern, H. Lorenz and P. Schulze, Sodium Hydroxide-Based CO2 Direct Air Capture for Soda Ash Production─Fundamentals for Process Engineering, Industrial & Engineering Chemistry Research, 62, 7566-7579, 2023. https://doi.org/10.1021/acs.iecr.3c00357.
  • S. Kumar, R. Srivastava and J. Koh, Utilization of zeolites as CO2 capturing agents: Advances and future perspectives, Journal of CO2 Utilization, 41, 101251, 2020. https://doi.org/10.1016/j.jcou.2020.101251.
  • C. Chen, D. W. Park and W. S. Ahn, CO2 capture using zeolite 13X prepared from bentonite, Applied Surface Science, 292, 63-67, 2014. https://doi.org/10.1016/j.apsusc.2013.11.064.
  • F. Wang, C. Gunathilake and M. Jaroniec, Development of mesoporous magnesium oxide–alumina composites for CO2 capture, Journal of CO2 Utilization, 13, 114-118, 2016. https://doi.org/10.1016/j.jcou.2015.11.001.
  • Y. Xia, R. Mokaya, G. S. Walker and Y. Zhu, Superior CO2 adsorption capacity on N‐doped, high‐surface‐area, microporous carbons templated from zeolite, Advanced Energy Materials, 1, 678-683, 2011. https://doi.org/10.1002/aenm.201100061.
  • V. Garshasbi, M. Jahangiri and M. Anbia, Equilibrium CO2 adsorption on zeolite 13X prepared from natural clays, Applied Surface Science, 393, 225-233, 2017. https://doi.org/10.1016/j.apsusc.2016.09.161.
  • H. Aysan, S. Edebali, C. Ozdemir, M. Celi̇k Karakaya and N. Karakaya, Use of chabazite, a naturally abundant zeolite, for the investigation of the adsorption kinetics and mechanism of methylene blue dye, Microporous and Mesoporous Materials, 235, 78-86, 2016. https://doi.org/10.1016/j.micromeso.2016.08.007.
  • L. Cao, Z. Li, S. Xiang, Z. Huang, R. Ruan and Y. Liu, Preparation and characteristics of bentonite–zeolite adsorbent and its application in swine wastewater, Bioresource Technology, 284, 448-455, 2019. https://doi.org/10.1016/j.biortech.2019.03.043.
  • P. Murge, S. Dinda and S. Roy, Zeolite-Based Sorbent for CO2 Capture: Preparation and Performance Evaluation, Langmuir, 35, 14751-14760, 2019. https://doi.org/10.1021/acs.langmuir.9b02259.
  • N. Kuanchertchoo, R. Suwanpreedee, S. Kulprathipanja, P. Aungkavattana, D. Atong, K. Hemra, T. Rirksomboon and S. Wongkasemjit, Effects of synthesis parameters on zeolite membrane formation and performance by microwave technique, Applied Organometallic Chemistry, 21, 841-848, 2007. https://doi.org/10.1002/aoc.1295.
  • R. Vinodh, C. Deviprasath, C. V. M. Gopi, V. G. R. Kummara, R. Atchudan, T. Ahamad, H. J. Kim and M. Yi, Novel 13X Zeolite/PANI electrocatalyst for hydrogen and oxygen evolution reaction, International Journal of Hydrogen Energy, 45, 28337-28349, 2020. https://doi.org/10.1016/j.ijhydene.2020.07.194.
  • R. S. Hebbar, A. M. Isloor, B. Prabhu, Inamuddin, A. M. Asiri and A. Ismail, Removal of metal ions and humic acids through polyetherimide membrane with grafted bentonite clay, Scientific reports, 8, 4665, 2018. https://doi.org/10.1038/s41598-018-22837-1.
  • M. A. Salam, M. R. Abukhadra and A. Adlii, Insight into the adsorption and photocatalytic behaviors of an organo-bentonite/Co3O4 green nanocomposite for malachite green synthetic dye and Cr (VI) metal ions: application and mechanisms, ACS omega, 5, 2766, 2020. https://doi.org/10.1021/acsomega.9b03411.
  • E. Z. M. Tarmizi, H. Baqiah, Z. A. Talib and H. M. Kamari, Preparation and physical properties of polypyrrole/zeolite composites, Results in Physics, 11, 793-800, 2018. https://doi.org/10.1016/j.rinp.2018.09.043.
  • W. Wang, Q. Feng, K. Liu, G. Zhang, J. Liu and Y. Huang, A novel magnetic 4A zeolite adsorbent synthesised from kaolinite type pyrite cinder (KTPC), Solid State Sciences, 39, 52-58, 2015. https://doi.org/10.1016/j.solidstatesciences.2014.11.012.
  • A. Kassim, H. E. Mahmud and F. Adzmi, Polypyrrole–montmorillonite clay composites: an organic semiconductor, Materials science in semiconductor processing, 10, 246-251, 2007. https://doi.org/10.1016/j.mssp.2008.02.001.
  • J. Kim, F. Liu, H. Choi, S. Hong and J. Joo, Intercalated polypyrrole/Na+-montmorillonite nanocomposite via an inverted emulsion pathway method, Polymer, 44, 289-293, 2003. https://doi.org/10.1016/S0032-3861(02)00749-8.
  • C. Chen, W. J. Son, K. S. You, J. W. Ahn and W. S. Ahn, Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity, Chemical Engineering Journal, 161, 46-52, 2010. https://doi.org/10.1016/j.cej.2010.04.019.
  • Z. Zhang, W. Zhang, X. Chen, Q. Xia and Z. Li, Adsorption of CO2 on zeolite 13X and activated carbon with higher surface area, Separation Science and Technology, 45, 710-719, 2010. https://doi.org/10.1080/01496390903571192.
  • X. Xu, C. Song, J. M. Andrésen, B.G. Miller and A.W. Scaroni, Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41, Microporous and mesoporous materials, 62, 29-45, 2003. https://doi.org/10.1016/S1387-1811(03)00388-3.
  • C. Chen, J. Kim, D. A. Yang and W. S. Ahn, Carbon dioxide adsorption over zeolite-like metal organic frameworks (ZMOFs) having a sod topology: Structure and ion-exchange effect, Chemical Engineering Journal, 168, 1134-1139, 2011. https://doi.org/10.1016/j.cej.2011.01.096.
  • C. M. Lu, J. Liu, K. Xiao and A. T. Harris, Microwave enhanced synthesis of MOF-5 and its CO2 capture ability at moderate temperatures across multiple capture and release cycles, Chemical Engineering Journal, 156, 465-470, 2010. https://doi.org/10.1016/j.cej.2009.10.067.
  • L. Zhao, Z. Bacsik, N. Hedin, W. Wei, Y. Sun, M. Antonietti and M.M. Titirici, Carbon dioxide capture on Amine‐Rich carbonaceous materials derived from glucose, ChemSusChem, 3, 840-845, 2010. https://doi.org/10.1002/cssc.201000044.
  • J. Venaruzzo, C. Volzone, M. Rueda and J. Ortiga, Modified bentonitic clay minerals as adsorbents of CO, CO2 and SO2 gases, Microporous and Mesoporous Materials, 56, 73-80, 2002. https://doi.org/10.1016/S1387-1811(02)00443-2.
  • V. Zeleňák, M. Badaničová, D. Halamová, J. Čejka, A. Zukal, N. Murafa and G. Goerigk, Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture, Chemical Engineering Journal, 144, 336-342, 2008. https://doi.org/10.1016/j.cej.2008.07.025.
  • X. Xu, C. Song, J. M. Andrésen, B. G. Miller and A. W. Scaroni, Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41, Microporous and Mesoporous Materials, 62, 29-45, 2003. https://doi.org/10.1016/S1387-1811(03)00388-3.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Karekterizasyonu
Bölüm Araştırma Makaleleri
Yazarlar

Mehmet Şahin Ataş 0000-0001-8361-5913

Erken Görünüm Tarihi 15 Şubat 2024
Yayımlanma Tarihi 15 Nisan 2024
Gönderilme Tarihi 22 Ağustos 2023
Kabul Tarihi 1 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 2

Kaynak Göster

APA Ataş, M. Ş. (2024). Doğal zeolit ve bentonitin karakterizasyonu ve CO2 tutumunda kullanımı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(2), 568-574. https://doi.org/10.28948/ngumuh.1348145
AMA Ataş MŞ. Doğal zeolit ve bentonitin karakterizasyonu ve CO2 tutumunda kullanımı. NÖHÜ Müh. Bilim. Derg. Nisan 2024;13(2):568-574. doi:10.28948/ngumuh.1348145
Chicago Ataş, Mehmet Şahin. “Doğal Zeolit Ve Bentonitin Karakterizasyonu Ve CO2 Tutumunda kullanımı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, sy. 2 (Nisan 2024): 568-74. https://doi.org/10.28948/ngumuh.1348145.
EndNote Ataş MŞ (01 Nisan 2024) Doğal zeolit ve bentonitin karakterizasyonu ve CO2 tutumunda kullanımı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 2 568–574.
IEEE M. Ş. Ataş, “Doğal zeolit ve bentonitin karakterizasyonu ve CO2 tutumunda kullanımı”, NÖHÜ Müh. Bilim. Derg., c. 13, sy. 2, ss. 568–574, 2024, doi: 10.28948/ngumuh.1348145.
ISNAD Ataş, Mehmet Şahin. “Doğal Zeolit Ve Bentonitin Karakterizasyonu Ve CO2 Tutumunda kullanımı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/2 (Nisan 2024), 568-574. https://doi.org/10.28948/ngumuh.1348145.
JAMA Ataş MŞ. Doğal zeolit ve bentonitin karakterizasyonu ve CO2 tutumunda kullanımı. NÖHÜ Müh. Bilim. Derg. 2024;13:568–574.
MLA Ataş, Mehmet Şahin. “Doğal Zeolit Ve Bentonitin Karakterizasyonu Ve CO2 Tutumunda kullanımı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 13, sy. 2, 2024, ss. 568-74, doi:10.28948/ngumuh.1348145.
Vancouver Ataş MŞ. Doğal zeolit ve bentonitin karakterizasyonu ve CO2 tutumunda kullanımı. NÖHÜ Müh. Bilim. Derg. 2024;13(2):568-74.

 23135